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ABSTRACT

In the study an algorithm based on a lattice gas model is proposed as a tool for enhancing quality of low-
resolution images of binary structures. Analyzed low-resolution gray-level images are replaced with binary
images, in which pixel size is decreased. The intensity in the pixels of these new images is determined by
corresponding gray-level intensities in the original low-resolution images. Then the white phase pixels in the
binary images are assumed to be particles interacting with one another, interacting with properly defined
external field and allowed to diffuse. The evolution is driven towards a state with maximal energy by
Metropolis algorithm. This state is used to estimate the imaged object. The performance of the proposed
algorithm and local and global thresholding methods are compared.
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INTRODUCTION

For the most common types of image acquisition
devices, pixels of an acquired image represent an
averaging of the signal across a finite area of the
scene or specimen. If the imaged object is a binary
structure (i.e., structure built of two distinct phases),
image pixels, which straddle a boundary between two
phases average their brightness and have an
intermediate intensity, depending on the fraction of
both phases contained in a pixel.

Frequently the resolution of an acquired image is
not sufficient to extract all interesting features of the
object. In such a case super-resolution algorithms
(Park et al., 2003) can be applied to enhance the
resolution. It is crucial, that the super-resolution
algorithms require at input multiple low-resolution
images, which differ from one another because of the
object movement or exposition conditions. The
number of scenes on which any super-resolution
algorithm operates depends on the size of the smallest
feature, which has to be extracted.

The central problem of any algorithm enhancing
resolution of the images of binary structures is, how
the interface between two phases should be drawn
across the relatively large in size pixels of the
acquired image. In this paper it is demonstrated that a
lattice gas model can be a useful tool to address the

above formulated problem. The proposed method
requires one low-resolution input image to produce
its enhanced (in a sense of decreased pixel size)
representation. Strictly speaking, super-resolution can
not be achieved with the developed algorithm under
arbitrary conditions, because the information contained
in the enhanced image is the same as in the acquired
one. However, if the phase interface can be described
by a suitably low-dimensional family of functions,
improvement of the quality of the low-resolution data
can be achieved by suitable subpixel processing,
which however is not superresolution restoration in a
strict sense (no subpixel features exist if all information
is already present in the low-resolution image).

PROBLEM FORMULATION
It is assumed that low-resolution image is an

M × M matrix of integer numbers, taking values
(gray-level intensities) in the range from 0 to L. 0 and
L are intensities of the “black” and “white” phases,
respectively. The restored image (the estimate of the
object, which has to be reconstructed), is an
M·N × M·N matrix (N > 1), elements of which are
either 0 (black phase) or 1 (white phase). Because
image acquisition could be represented as an
averaging of the signal across a finite area of the
scene, the restored image is one of the possible
solutions to the following set of M2 equations:
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where GI,J is the gray level intensity of the (I,J)-th
pixel of the low-resolution image and M2·N2

unknown pI+i,J+j are the 0 or 1 values attributed to the
(I+i,J+j)-th pixel of the restored image.

All information contained in the acquired image
is used to write Eq. 1. To enable the solution, prior
assumptions are necessary. In particular, if it is
assumed that phase interface of the object can be
parameterised by suitably low-dimensional family of
functions (the phase interface is sufficiently smooth),
then super-resolution could be achieved. More formally,
the number K of parameters, describing phase interface
must be less than M2. If K >> M2 superresolution is
not possible.

Indeed, assume that a phase interface within a
pixel of a low-resolution image can be represented by
a straight line. Then, for any selected slope of the
straight line segment, intercept can be calculated
from Eq. 1, which determines the fraction of white
and black phases within a pixel of a low-resolution
image. The slope can be determined from the demand
that the phase interface at the border of neighbouring
pixels is continuous. In such a case Eq. 1, together
with the assumption about simplicity of the phase
interface deliver sufficient information to reproduce
an object. Having specified some data set, the validity
of the above assumption must be tested by suitable
comparison of known objects and their restored
images. Here I present an algorithm for subpixel
processing of images of binary structures. The
assumption about smoothness of the phase interface is
not necessary for the algorithm to work. Conversely,
satisfactory performance of the algorithm suggests
that this assumption is fulfilled at least approximately.

As an example of a binary structure, trabecular
bone is considered in the present study. Trabecular
bone is especially interesting porous material,
because it develops under the control of a living
organism (Tabor et al., 2002), it is highly optimized,
comparing its strength to its density and adapts to
varied load conditions (Huiskes et al., 2000).
Osteoporosis, which is a common trabecular bone
pathology is a serious health and economic problem.
High resolution images (pixel size significantly
smaller than typical thickness of trabeculae, which is
of the order of 100 µm) are necessary for reliable
quantification of the trabecular structure (van
Rietbergen et al., 1995; Müller et al., 1996; Ulrich et

al., 1998), while only low-resolution images of
trabecular bone are clinically available (pixel size of
the order of 150 µm), because on the limitation on
applied dose of X-rays and acquisition time.

High-resolution (HR) images of vertebral
trabecular bone were obtained from 16 autopsy cases,
from which the third lumbar vertebral body was
removed. The procedure of bone specimens preparation
and image acquisition was described elsewhere
(Tabor and Rokita, 2000) and only brief details are
presented here. The vertebral bodies were sectioned
perpendicularly to the vertical axis of the vertebra
and ground to a uniform thickness of 200 µm. 8-bit
images of each section were acquired using a low-
magnification digital camera. The pixel size of the
images was equal to 30 µm. In each case the
brightness histograms contained two well separated
peaks and the bone/marrow interfaces were selected
by setting the threshold level between the peaks.
Sample binary image of a histological sections of
vertebral trabecular bone is shown in Fig. 1. Because
resolution of the order of 30 µm is sufficient for the
typical histomorphometric measurements (Müller et
al., 1996), the images are treated as the objects, i.e. it
is assumed that they contain all interesting information.
Low-resolution (LR) images of the objects were
simulated by averaging pixels of the objects over
10 × 10 pixel boxes. A result of the averaging
procedure (51 × 51 pixel grey level images, 300 µm
pixel size) performed for the section depicted in Fig.
1 is shown in Fig. 2.

Fig. 1. A sample high-resolution binary image of a
sections of vertebral trabecular bone (pixel size 30 µm).
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Fig. 2. A low-resolution image of the structure shown
in Fig. 1 (300 µm pixel size). The range of grey levels
present in the image is due to the partial volume effect.

IMAGE RECONSTRUCTION

Pixel subdivision and ridge images
The final goal of a resolution enhancement

algorithm is to draw the phase interface across the
interior of the pixels of the LR images. At the first
stage of the algorithm, the first guesses of the
restored images are created. For this purpose each
pixel of a LR image is replaced by an N × N matrix,
N2·G/L elements of which are set to 1 and the rest to
0 (where G is the grey level of the replaced pixel). In
Fig. 3 a 10 × 10 matrix replacement of a part of the
structure shown in Fig. 2 is shown.

To find the ridges of the white phase, a bicubic
interpolation M·NxM·N image is obtained from each
corresponding LR image. Then the ridge detection
procedure (Ross, 1994; Elmoutaouakkil et al., 2002)
is applied to the interpolated images. In Fig. 4 a bicubic
interpolation image of the image shown in Fig. 1 is
depicted, together with the white phase ridges.

Fig. 3. A first guess particle model binary image - the
result of transformation of a part of the image
depicted in Fig. 2 (30 µm pixel size).

Fig. 4. An image (30 µm pixel size) obtained by
bicubic interpolation of the image shown in Fig. 2.
The image is used to determine the ridges of the white
phase. The ridges are drawn as black lines.
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Lattice gas model
The following method is introduced to assign

black and white labels to the pixels of enhanced
image. The assumption about smoothness of the
phase interface leads to a model, according to which
each white pixel of the first guess image is identified
with a particle allowed to diffuse inside the N × N
matrix, to which the pixel belongs. It is further
assumed that the particles interact with one another.
The interaction is chosen to be Ising-like. Besides
self-interaction, particles interact also with an
external field. This interaction is defined as attraction
to the ridges of the white phase. Thus the energy of
the system is defined as follows:

∑∑ α−⋅α=
>< i

i2
j,i

ji1 )w(dwwE , (2)

where α1 and α2 are some parameters, wi is set to 1
for white pixels and 0 for black pixels. The second
term of the energy (2) is responsible for aligning the
phase interface along the white phase ridges, i.e., it
specifies locally the slope of the phase interface. The
first term ensures that the phase interface is smooth.

I have found it experimentally, that for N = 10
two-pixel range of the self-interaction is an optimal
choice. d(wi) denotes the distance of wi from the
nearest ridge. The distance field was computed only
once, at the beginning of the simulation, using the
digital distance transform (Ross, 1994).

The diffusion is driven by standard Metropolis
algorithm towards a state with maximal energy. I
choose α2 a few times larger than α1 (e.g. α1 = 2, α2 =
15) and thus there is much higher penalty for
increasing the distance from the ridge, than for
decreasing the number of neighbors. Thus I can split
the maximization procedure in two parts. First, I
maximize the distance part of the energy with the
self-interaction term turned-off (α1 = 0). Typically a
few dozens of iterations (a single iteration consisting
of attempts to change the state of each particle) are
necessary to complete this step. Then to make phase
interface smooth I maximize the self-interaction term,
with the distance term turned-off, but now I allow the
particles to move in more broad boxes (not larger
than 20 × 20 pixels for N = 10). This step also
requires a few dozen of iterations. Every iteration
takes about one second for an image 500 × 500 pixels
on a PC equipped with a Pentium IV, 2.4 GHz
processor. Thus the maximization procedure takes not
more than two minutes for a single image 500 × 500

pixels. The values of the distance term energy, obtained
during reconstruction of the structure shown in Fig. 1
are plotted vs. the iteration number in Fig. 5a. The
values of the self-interaction term energy, obtained
for the same structure are plotted vs. the iteration
number in Fig. 5b.
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Fig. 5. The evidence of the convergence of the distance
term energy (a) and self-interaction term energy (b),
during the maximization procedure.

Pruning
In the final step of the processing the images are

cleaned to remove clusters of black or white pixels
(Fig. 6) smaller than some cut-off value (typically 25
pixels). Such isolated clusters of white or black pixels
can arise due to noise added to the image or due to
the diffusion to the border of boxes during the
maximization of the distance term energy. The result
of the reconstruction of the object depicted in Fig. 1,
based on the information contained solely in Fig 2 is
shown in Fig. 7.
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Fig. 6. A binary image (30 µm pixel size), which is
the results of maximization of the energy defined in
Eq. 2 can contain isolated clusters of white or black
pixels (especially in the presence of noise).

Fig. 7. A binary images after pruning operation (30
µm pixel size) is the final reconstruction of the original
image, depicted in Fig. 1. The reconstruction, based
on the novel algorithm, uses only the data present in
Fig. 2.

PERFORMANCE
The performance of the introduced algorithm was

compared with standard thresholding techniques
applied to:

1. Globally thresholded bicubic interpolation
images: in this case the threshold value is set to
achieve the fraction BV/TV of white pixels of the
thresholded image equal to the BV/TV of the
original image (Fig. 8).

2. Locally thresholded bicubic interpolation images:
in this case the threshold is set locally in n × n
matrices of pixels to achieve local BV/TV (i.e.,
BV/TV evaluated for nxn matrix of pixels) of the
thresholded image equal to the corresponding
local BV/TV of the original image. n in the range
from 10 to 50 was used in the calculations (n = 50
shown in Fig. 9).

Fig. 8. A binary image (30 µm pixel size), which is
the result of global thresholding of the image
depicted in Fig. 4. The threshold value is set to
achieve BV/TV of the thresholded image equal to the
BV/TV of the image depicted in Fig. 1.
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Fig. 9. A binary image (30 µm pixel size), which is
the result of local thresholding of the image depicted
in Fig. 4. The threshold value is set locally in 50 × 50
matrix of pixels to achieve local BV/TV of the
thresholded image equal to the corresponding local
BV/TV of the image depicted in Fig. 1.

Following quantities were used to test the
performance of the introduced algorithm vs. the
performance of standard thresholding procedures:

1. Mean pore area P.Ar.

2. Euler number density E.N.

3. Mean thickness of white phase Wh.Th.

4. Mean thickness of black phase B.Th.

5. The badly reconstructed area – the half of the
number of white pixels of the image being the
difference between the original image and the
reconstructed image, related to the number of
white pixels of the original image. The pixel of a
difference image is white if pixels of subtracted
binary images are different and it is black otherwise.

6. Mean area of bad clusters: a badly reconstructed
pixel is any pixels of the reconstructed image,
which is white, while the corresponding pixel of
the original image is black. Badly reconstructed
pixels are grouped in clusters. The reconstruction
errors are smaller if the mean area of bad clusters
is lower.

The results of comparison (mean value, standard
error) are summarized in Table 1. The introduced
method allows quantifying the reconstructed structure
with errors smaller than thresholding techniques. This
is true for both structural parameters (P.Ar, E.N,
Wh.Th and B.Th) and measures of badly reconstructed
area. The advantages of the presented algorithm are
especially noticeable in the cases, when porous
structure with low thickness of the white phase has to
be restored from a low-resolution image. An example
is presented in Fig. 10. The badly reconstructed area
is equal to 5%, 21% and 19% for lattice gas model,
global and local thresholding, respectively. The main
drawback of the thresholding method is that they do
not recover the connectivity of the original structure.
The Euler number of the original structure is equal to
-126. The Euler number for lattice gas model, global
and local thresholding is equal to -108, 26 and 90,
respectively.

Table 1. The comparison of the performance of the novel algorithm vs. threshold techniques.

Parameter Original images Simulation Global threshold Local threshold

P.Ar [mm2] 1.04 (0.14) 1.11 (0.16) 2.07 (0.33) 0.66 (0.10)

E.N (1/mm2] -68 (6) -67 (7) -33 (5) -72 (11)

Wh.Th(µm) 280 (15) 279 (15) 354 (17) 242 (14)

B.Th (µm) 319 (19) 321 (20) 407 (25) 282 (19)

badly reconstructed area [%] - 3.1 (0.2)% 9.9 (0.9)% 8.0 (0.9)%

mean area of bad clusters [pixel] - 3.8 (0.1) 10.3 (0.7) 5.4 (0.4)
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Fig. 10. A high- (top-left) and low-resolution (top-right) image of a low-thickness structure, its ridges (middle-
left), lattice gas model (middle-right), global (bottom-left) and local (bottom-right ) thresholding restoration.

DISCUSSION

There are at least two reasons, why thresholding
methods lead to relatively poor results. The first
reason is significant variation of the thickness of the
white phase (trabeculae) over the analyzed field of
view. Generally, thick trabeculae are properly
recognized as white phase. With decreasing trabcular
thickness it becomes more problematic to properly
recognize trabeculae. This is clearly seen from the
results of the measurement of the Euler number.
Small value of E.N for global threshold is just the

result of the described process. In the case of the local
threshold, E.N is close to E.N of the original sections
but it is due to the existence of small loops – artifacts
of the local threshold method – which compensate the
lack of trabeculae. Thresholding methods lose
trabeculae, because they do not “feel” the presence of
trabecular ridges, what is the second reason, why
these methods produce large restoration errors.
Exactly for this reason the distance term in the energy
(Eq. 2) is set much more important, by appropriate
choice of the parameters α1 and α2. Diffusion with
particle self-interaction term only does not lead to
object reconstruction of acceptable quality.
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The results presented above were obtained for
idealized case of no noise imposed on the low-
resolution data. Extensive calculation were also
performed for the case of Gaussian noise added to the
low-resolution data (signal-to-noise ratio from 30 to
40 dB). In this case reasonable restoration of an
object was possible if the input low-resolution images
of the objects were an average over multiple
(typically not more than two dozens) low-resolution
noisy expositions.

From the comparison of the object and restored
images (e.g. Fig. 10, Fig. 1 and Fig. 7) it is evident
that super-resolution was not achieved with the
proposed method (i.e., certainly the number of
parameters parameterizing phase interface is larger
than the number of pixels in the low-resolution image).
Indeed, there are fine features, present in the object
images but not reconstructed. Badly reconstructed
area, although relatively small, is nonzero. The increase
of quality, comparing to thresholding methods, was
however achieved with the number of unknowns 100
times larger (N = 10) than the number of equations.
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