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ABSTRACT

This paper surveys methods for the simulation of random systems of hard particles, namely sedimentation and
collective rearrangement algorithms, molecular dynamics, and Monte Carlo methods such as the Metropolis-
Hastings algorithm. Furthermore, some set-theoretic statistical characteristics are discussed: the covariance
and topological descriptors such as specific connectivity numbers and Mecke’s morphological functions.
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INTRODUCTION

In many situations engineers and many kinds
of scientists are confronted with irregular spatial
structures which can be interpreted and modeled
as systems of hard particles, in particular packings.
Examples are structures which result from packing
processes (such as sinter metals), materials such as
concrete (with the sand grains as ‘particles’), porous
media like sand stone or soil, granular matter like sand
and systems of cell nuclei. It is important to investigate
statistically and stereologically the geometry of these
structures, since there are in general close relationships
between geometrical structure and bulk material
properties such as mechanical strength or conductivity
for electric current and fluids. However, it is rather
difficult to fit models to such structures since for dense
and packed structures until now there are no tractable
mathematical models for which formulas for the main
geometrical characteristics are known. Therefore, the
only way for mathematical-statistical investigations of
such systems is computer simulation. Such simulations
are a pragmatic way to obtain quantitative results.
They are difficult and have been made mainly only for
spherical and ellipsoidal particles.

The main aim of this paper is to describe some
of the simulation methods used in the context of
hard particle systems. Additionally, the use of the
covariance and of topological characteristics such
as specific connectivity number and Klaus Mecke’s
morphological functions is discussed.
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GENERAL IDEAS FOR THE
SIMULATION OF RANDOM SYSTEMS
OF HARD PARTICLES

There are two main classes of random systems of
hard particles:

— systems in which the particles are usually isolated,
where contacts are only rare events (as in the case
of sand grains in concrete or biological cell nuclei)
and

— systems of packed particles where the particles
are in contact and may even form a mechanically
stable structure.

In this paper such systems are modelled as infinite
structures, which are statistically homogeneous or, in
other words, stationary and isotropic.

In the first case, Gibbs processes are a probably
good model. In contrast, for random packings there
is until now no rigorous mathematical model, even in
the case of identical spheres; there are only various
simulation algorithms.

Therefore, many existing studies of random sphere
systems are not much more than studies of the
properties of structures obtained by various simulation
algorithms. All these algorithms can be interpreted
as simulations of Markov chains, which are either
homogeneous and heterogeneous.

A Markov chain is a particular stochastic process
with the lack-of-memory property, where a new
state is randomly generated from the present one,
independently of past states. In the given case, the
states of the process are configurations of sphere
systems, i.e. the process is rather complicated. A very



good reference to Markov chain Monte Carlo is the
book Gilks et al. (1996).

In the case of non-spherical particles, all is
still more complicated since there are different
physical packing conditions. For example, packings
of cylinders generated in air and viscous fluid show
remarkable differences in density and structure.

THE RSA MODEL

Sometimes engineers have used spontaneously a
quite simple procedure to obtain random systems of
hard spheres: the SSI model or the RSA model (‘simple
sequential inhibition model’, ‘random sequential
absorption model’). Usually, it is defined in a bounded
region B of three-dimensional space. Spheres are
placed sequentially and randomly in B. If a new sphere
is placed so in B that it intersects a sphere already
existing then the new sphere is rejected and a new
placing trial is made. The process of placing spheres
is stopped when the system is in its ‘jamming limit’,
when all placing attempts must fail. Clearly, there are
no contacts between the spheres.

If the sphere diameters are not constant, then
smaller spheres have greater chances to find a position
in B than larger ones if the diameters used in the
placing attempts are chosen randomly. Thus it is
necessary to discriminate between the sphere diameter
distribution in the placing trials and in the final RSA
model, see the discussion in Stoyan and Schlather
(2000).

It is possible to define an analogous stationary
model, which is defined in the whole R3, see Stoyan
and Schlather (2000). Its volume fraction V;, is only
0.382 in the case of equal spheres. This value is too
small in many practical situations. Nevertheless, this
model is of great physical relevance, see Evans (1993).
Doge (2001) has developed a clever method for the
efficient simulation of the RSA model.

SEDIMENTATION ALGORITHMS

Sphere systems which are closer to true packings
are obtained by the sedimentation algorithm of Jodrey
and Tory (1979). Variations of this algorithm are
described in Jodrey and Tory (1979, 1985) and
Tory et al. (1973). It generates a system of spheres
in a parallelepipedal container; periodic boundary
conditions try to ensure that the simulated sphere
system can be considered as a sample of a statistically
homogeneous structure, if the container is large
enough. A typical implementation of the sequential
addition concept is as follows. First, some initial
configuration of n, spheres is produced, usually a

STOYAN D: Random systems of hard particles

layer of spheres at the bottom of the container.
Every subsequent iteration drops a new sphere into
the system. The sphere then moves in a prescribed
direction (typically downwards, following gravitation)
until it hits another already existing sphere in the
system. Then, the sphere rolls along others until it
reaches a stable configuration (typically, if it is in
contact with three supporting spheres). If a stable
configuration cannot be found after long time, the
algorithm stops or repeats the trial with a new sphere.
This process of filling the container with new spheres
continues until all planned spheres are packed or if the
container is filled up. Typically, the packings obtained
by this method are not very dense, since there is no
additional pressing or densification procedure; in the
case of identical spheres, the obtained volume fraction
Vy is about 0.58, which is a little below the value for a
natural so-called random loose packing.

Probably the idea of this algorithm has not yet been
applied to the case of non-spherical particles. Probably
this generalization is difficult and one has to expect
that without a densification procedure such packings
are only of a very poor quality.

COLLECTIVE REARRANGEMENT
ALGORITHMS

A family of algorithms which produce ‘better’
packings, i.e. packings with higher volume
fractions, are algorithms sometimes called ‘collective
rearrangement’ algorithms. Here the number of
spheres N is fixed during the whole simulation and
overlappings are occasionally permitted. During the
simulation they are reduced by moving the spheres and
by shrinking of their diameters. The oldest algorithm
of this type is probably Stillinger’s algorithm, see
Stillinger et al. (1964). In the present paper the packing
algorithm developed by Moscinski and Bargiel and
colleagues, see Moscinski et al. (1989) and Bargiet
and Moscinski (1991), is briefly described. It was also
used to produce Figs. 1 and 2 in Bezrukov et al. (2001).
This algorithm, called ‘force biased algorithm’, is able
to produce packings with a wide range of densities up
to ultradense packings with V;, greater than 0.70 in the
case of identical spheres, see Bargiet and Tory (1993).

The initial configuration of the algorithm is a set of
N spheres b(x;, r;) with centres x; uniformly distributed
in the given parallelepipedal container and radii r;
chosen according to a prescribed radius distribution
function. Overlappings are permitted. While the
number of spheres is fixed, the algorithm attempts
to reduce overlaps between spheres by pushing apart
overlapping spheres and gradual shrinking of the radii.
In this algorithm only the starting configuration is
random; the rest is completely deterministic.
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The algorithm defines a ‘repulsion force’, F,-j,
between each pair (i, j) of overlapping spheres as

o1 X=X
ij =P ijpinxjixiH 5

where p;; is a given ‘potential” function, p is a scaling

factor, and 1;; is equal to 0 if b(x;,r;) Nb(x;,r;) = 0

and equal to 1 otherwise.

The new position of the i-th sphere is given by

1
=x.+— > F...
xl ‘xl 2ri§‘i i

In every step of the algorithm this shifting
operation and a shrinking operation are performed for
all spheres until all overlappings vanish. This shrinking
is organized in such a way that the absolute values
of radii may decrease but their proportions are not
changed during the simulation.

The choice of p;; is a non-trivial task but crucial to
the efficiency of the algorithm. For the case of equal
spheres (i.e. constant radii) the potential function may
be simply proportional to the volume of intersection
of the overlapping spheres i and j. However, for radius
distributions leading to large differences of sphere radii
this potential is ineffective. The paper Bezrukov et
al. (2002) describes a better potential and the way in
which the diameters are shrinked in the algorithm.

Probably, the force-biased algorithm has not yet
been generalized to the non-spherical case. But such
generalization should be possible and the chances to
obtain packings of a high density are perhaps better
than in the case of sedimentation algorithms.

MOLECULAR DYNAMICS

A further family of algorithms for obtaining dence
random systems (which can be used as approximations
for packings), which is very popular among physicists
and engineers, is molecular dynamics invented by
Alder and Wainwright (1960). A today well developed
method is the distinct-element method (DEM)
introduced by Cundall (1971) for the analysis of
rock-mechanical problems and further developed until
commercially used programs, see Cundall and Hart
(1992). Here the particles move in large containers
following Newton’s laws of motion, having contacts
with other particles and the container’s boundaries.
The calculations are performed in discrete time steps,
where in each step the set of contacts is updated,
then the contact forces are determined applying a
force-displacement law, and finally for each particle
its new velocity and position is calculated. States of
equlilibrium are obtained when the internal forces
balance. The particles are either spheres or polyhedra.
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HARD-CORE GIBBS PROCESSES

An important mathematical model for systems
of non-overlapping particles is the hard-core Gibbs
process, see Stoyan et al. (1995) for explanation both
for the finite and infinite, stationary case. The finite
hard-core Gibbs process can be explained as follows.
There is a bounded region in space W, for example a
parallelepiped. In W a point process is given, where
the points serve as ‘centres’ of hard particles. If the
number of points is fixed (equal to n, ‘canonical’ case)
and only their positions are random and all particles are
of the same shape and orientation and size K (i.e., the
particle centred at x is K 4 x), then the joint probability
density function f of the points is given as follows:

f(xl,...,xn):Zexp{—Zd(xi,xj)}, (1)

i<j
where

dx,x) = 0 if K+x,NK+x;,=0
#7j7 7)1 oo otherwise

and Z is the necessary normalizing constant making f
to a probability density.

Generalization to the case of a random number
of particles (‘grand canonical’ case), and even to
infinite, stationary systems with particles of random
orientation and size is possible. From a rather abstract
mathematical standpoint, the distribution given by (1)
can be interpreted as the uniform distribution on the set
of all configura- tions of hard particles with centre in
W. This may explain why there are so many different
simulation algorithms for obtaining samples of hard-
core Gibbs processes.

Typically, hard-core Gibbs processes are not
packings in the narrow sense, since between the
particles there are usually (small) gaps; but for
densities high enough, they are good approximations
for packings. The volume fraction V), of stationary
hard-core Gibbs processes of identical spheres can take
all values between 0 und the highest value 7/+/18 =
0.74, which is obtained for the densest deterministic
packing.

In simulations of samples of stationary Gibbs
processes, structures in finite regions are generated,
usually in parallelepids. In order to come close
to the situation of samples from a statistically
homogeneous process, periodic boundary conditions
are used. Various simulation methods can be used
for the simulation of such finite Gibbs processes, see



Binder (1997, 2001). A very popular possibility is
also here molecular dynamics, see e.g. Truskett et al.
(1999). This method has been also applied to the case
of ellipsoidal particles, see e.g. Schmid (2002) and
Figs. 1 and 2.

Fig. 1. A simulated sample of a Gibbs process of hard
ellipsoids in case of low density, V;, = 0.38 (Courtesy
of Nguyen Hoang Phuong, Bielefeld).

Fig. 2. A simulated sample of a Gibbs process of hard
ellipsoids in case of Vi, = 0.47. Observe the parallelity
tendency in the structure (Courtesy of Nguyen Hoang
Phuong, Bielefeld).
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But there are also other methods for the simulation
of Gibbs processes, which use other, perhaps more
efficient concepts of Markov chain Monte Carlo.
The classical algorithm is the Metropolis-Hastings
algorithm, Metropolis et al. (1953), Hastings (1970)
and Binder (1997, 2001). The idea is to construct a
Markov chain with states in the set of all possible
configurations of systems of hard spheres, with the
property that the stationary distribution of the chain is
just a Gibbs distribution such as (1). Then the Markov
chain is simulated for a long time in the hope to get to
the stationary state. There samples are taken which are
considered as samples of the Gibbs process. In the case
of a grand canonical system of hard spheres in a region
W, typically a parallelepiped, this algorithm works as
follows, see Mase et al. (2001). For a simpler version
which is closer to the original algorithm by Metropolis,
see Torquato (2002), p. 275.

Assume that a current state @ = {x,X,,...,%,}
of the sphere system is given. It is then proposed to
either (a) insert, (b) delete, or (c) move a sphere with
probabilities p™*, p?! and 1 — p™s — p?  respectively.
The proposal for the next state in the chain is taken as
follows:

(a) old configuration ¢ plus a new point x which is
sampled in W from a density b(@,.),

(b) old configuration ¢ minus one of its points with
probability d(,.),

(c) old configuration minus one of its points (chosen
with probability d(@,.)), x, plus a new point
sampled from a density m(,x,.).

Possible choices of the probabilities and densities
are: p" = p% = p with 0 < p < 0.5, b(@,.) is
independently of ¢ the uniform distribution on W,
d{@,.) is the discrete uniform distribution on ¢, and
m(@,x,.) is the uniform distribution on the cube of
side length 2¢ centered at x and sides parallel to the
coordinate axes. The choice of p and € is usually made
after some experiments, see Mase et al. (2001).

In the Metropolis-Hastings algorithm these
proposals are accepted with some probability, called
Hastings ratio; in case of rejection of the proposal, the
chain remains in its given state ¢. This acceptance rule
ensures that the chain has the equilibrium or stationary
density f.

The Hastings ratios depend on the type of
transition and are given by

(@) f(@")p™d(¢’ x)
f(@)p™b(@.x)
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fl@")p™b(¢",x)

®) Heyrdle.

f(@))d(@',y)m(@\ {x},y,x)
f(@)d(@,x)m(o\ {x},x,y) ’

where ¢ denotes the proposed configuration.

()

The sequence of states ¢ forms a homogeneous
ergodic Markov chain the stationary distribution of
which has the probability density f. Consequently,
after a sufficient long ‘burning-in time’ the states of
the sequence can be taken as samples from the Gibbs
process.

The Metropolis-Hastings algorithm was again
refined in Mase et al. (2001) in order to simulate very
dense systems of discs and to investigate the so-called
melting transition of hard discs in two dimensions.
The new algorithm is called ‘simulated tempering’ (not
‘simulated annealing’) and goes back to Marinari and
Parisi (1992). The idea is to consider a Markov chain
the states of which are not only particle configurations,
but instead pairs {particle configuration, temperature }
with a discrete series of temperatures. Clearly, this new
chain has a much larger state space, but it has a better
mixing behaviour than the corresponding Metropolis-
Hastings chain. Thus it can be still successfully
simulated in situations where the Metroplis-Hastings
algorithm converges unacceptably slowly and yields
highly correlated results.

For fixed temperature the Markov chain behaves
like a Metropolis-Hastings chain as explained above.
But with increasing temperature overlappings of
particles are permitted in increasing extent, while
for the coldest temperature such overlappings are
completely forbidden. The transitions in the new
Markov chain are organized in such a way that samples
taken in the cold state can be considered as samples
from the hard core Gibbs process to be studied.

A REMARK ON THE CASE OF
NON-SPHERICAL PARTICLES

The simulation of random dense systems or
packings of non-spherical particles is still a very
difficult task. As mentioned above, there are
simulations for polyhedral and ellipsoidal particles,
but their quality as models for packings has not been
systematically studied. In this case even V|, depends
strongly on both particle shape and packing method
(characterized by the degree of tapping and pressing).
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STATISTICAL CHARACTERIZATION BY
THE COVARIANCE

A very valuable statistical quantity also for
systems of hard particles is the covariance C(r). It
has the advantage that it can be determined very
easily stereologically, see Stoyan et al. (1995). By
some training the statistician is able to make similar
use of C(r) as of the more explicit pair correlation
function. Note that Stoyan and Stoyan (1994) explains
in detail the interpretation of empirical pair correlation
functions. This helps also to interpret the curves in Fig.
3, if they are compared with Figs. 4 and 5 in Bezrukov
et al. (2001).

The covariance is the probability that both
members of a random point pair of distance r fall into
the union set of all spheres, which is denoted by X.
Because of stationarity and isotropy, this probability
can be written as

C(r)y=PloeX,reX) for r>0
where o is the origin of the space and r is a point of
distance r from o. (Because the structure is assumed
to be statistically homogeneous, any point pair of
distance r can be used.) It is useful to decompose C(r)
as the sum of two terms

C(r)=C{r)+C,(r) for r>0. (2)
Here the first term is the probability that the two
points belong to the same particle and the second the
probablity that the points belong to different particles,
see Torquato (1991). The first term depends only
on particle size and shape and can be computed

separately, given the probability distribution of the
particles. It is

Ci(r) = NV?(’”):

where (r) is the mean isotropized set covariance
of the typical particle and N, the mean number of
particles per volume unit. The paper by Delarue and
Jeulin (2001) demonstrates the use of the covariance,
in particular of C,(r), in the study of packings
of spheres. Fig. 3 shows C,(r) for three different
packings. These differences demonstrate that C,(r)
is indeed a valuable characteristic, since shows large
differences for the three packings. In particular, the
great variablity of the lognormal packing is expressed
by the very smooth form of C,(r).
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Fig. 3. The covariance functions C,(r) for three
different packings of spheres.

identical spheres, V|, = 0.64, —_ =
lognormal diameter distribution, V,, = 0.68,

— — : binary mixture with diameters 1 (90 %) and 10
(10 %), V,, = 0.82.

SPECIFIC CONNECTIVITY NUMBER

The specific connectivity number K, is a
topological characteristic. If all particles are convex
and isolated (i.e., there are no contacts between them)
then K, is the same as mean particle number per unit
volume, Ny,. But if the particles have contacts, then
K, gives valuable information on the topology of
the particle system; even negative values of K, are
possible.

The specific connectivity number K, (or density
of Euler characteristic) can be explained starting from
the Euler-Poincaré characteristic. The Euler-Poincaré
characteristic ) is a generalization of ‘number of
components’ for nonconvex sets and is a topological
invariant, i.e., it is not changed if the set is continuously
and biuniquely deformed. For a polyconvex set K, i.e.
a finite union of compact convex sets K,... , K, itis

:ix(K _gzz 2(K:NK)
_]X(DKi)=

where y(K) = 1 for a convex set K. (Note that the
intersection of convex sets is again a convex set, so
that the right hand side is well defined. In its third
term, intersections of three sets appear.) Thus for a
single sphere y(K) = 1, while for a set formed by the
union of four identical spheres arranged in a chain ....
and touching neighbours, so that the two inner spheres
contact two other spheres, it is

xX(K)

and for six spheres arranged as ::: in two parallel
touching chains, where the two inner spheres contact

=4-3=1,

STOYAN D: Random systems of hard particles

three other spheres,

x(K)=6-7=—1.

The specific connectivity number of a stationary

random closed set is given by
K, =E(x(XNW)—x(XNa*w)),

i.e. the mean of the Euler-Poincaré characteristic of
X MW reduced by a boundary-related term, where W
is a cube of volume 1 and d*W is the ‘upper right
boundary of W’, 9% = {x = (x,x,,x;) : maxx; = 1}.
In the particular case of a packing of spheres it is

c

Ky =N, (1-3) (3)
where N,, is the number of spheres per volume unit
and c is the mean number of spheres in contact with a

typical sphere of the packing, see Mecke and Stoyan
(2001).

MECKE’S MORPHOLOGICAL
FUNCTIONS

In a series of papers, K. Mecke developed a
powerful technique for the topological characterization
of structures which can be described by stationary
random sets, see Mecke and Wagner (1991) and Mecke
(2000). He speaks about Minkowski functionals
or functions, but perhaps the term ‘morphological
functions’ is a better general notation. The idea is
a natural generalization of the well-known spherical
contact distribution H,(r), see Stoyan er al. (1995).
One of its definitions for a statistically homogeneous
random set X is as follows. Let X, be the set X dilated
by the sphere b(o,r) of radius r centred at the origin
o0, i.e., X, = X @& b(o,r) is the set of all points of the
space which belong to X or have a distance less than
r from X. Let V,,(r) be the volume fraction of X, and

Vi, (0) =V, that of X. Then
1-V,
Hs(r)zl—i‘/(r) for r>0. 4)
-V,

This function describes statistically the pore space
between the spheres; it can be also interpreted as the
distribution function of the distance from a random
test point in pore space to the nearest surface point.
Formula (4) is usually the base for the statistical
determination of Hy(r) in image analysis, since pixel
or voxel counting and dilation of pixel sets are basic
operations in 2D and 3D image analysis.
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Consider now the specific surface (or the
Minkowski functional of order 1) of X,. This is a
function Sy (r) of r. The same can be done with
the other Minkowski functionals, e.g. with the Euler-
Poincaré characteristic, which leads to the function
Ky, (r), the specific connectivity number of X,. So the
statistician has four functions of r, which describe
various geometrical properties of the set X. While
Vy (r) and H,(r) tell frequently not very much about the
morphology of X, the ensemble of all four functions
together enables a very instructive understanding. In
particular, Ky, (r) is often very interesting. By the way,
also negative values of r can be used; for negative r
the set X & b(o,r) is considered, the ‘erosion’ of X.
Instead of dilation and erosion also the more complex
morphological operations closing and opening can be
used.

Fig. 4 shows these functions for two packings
of spheres. The curves for V,,(r) differ only a little.
Because of discretization effects, the value for r = 0
for the lognormal case is a bit too small. However,
the qualitative behaviour is correctly shown. R is the
(mean) sphere radius. Since there are many small
spheres in the lognormal case, S, (r)R is very large
for small r. Clearly, S, (—R) = 0 for the case of
identical spheres. The mean curvature density M, (r)
is multiplied by R? in order to obtain a dimension-
free characteristic. My, (r) must linearly decrease for
negative r in the case of identical spheres. It becomes
negative since for positive r the spheres overlap and
sharp non-convex edges appear. The small spheres in
the lognormal case cause big differences to the case
of identical spheres. The specific connectivity number
K, (r) is multiplied by V /N = volume/sphere number.
K, (r)V/N is equal to one for negative r (if r/R < 1)
for identical spheres. For r = 0 it is negative because
of (3). With increasing positive r it tends towards zero.
It is typical that the morphological differences are best
visible for My, (r) and K, (r).

CONCLUSIONS

The art of simulating systems of hard particles
has made big progress. In near future we can expect
the appearance of high-quality commercial programs.
Also the case of non-spherical particles will be
attacked. This opens the way to statistical analyses of
real geometrical structures of very high complexity.

In such analyses not only point process methods
(in particular the pair correlation function) should
be used, but also the characteristics discussed in the
present paper. They are easier to measure, in part they
can be even obtained from planar sections.
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For mathematicians there is the challenge to
develop formulas for the characteristics of the systems,
which can today be only simulated.
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Fig. 4. K. Mecke’s morphological functions, for a
packing of identical spheres with V,, = 0.64 and
for a packing of spheres with a lognormal radius
distribution (——). See the text for more explanation.

REFERENCES

Alder BJ, Wainwright TE (1960). Studies in molecular
dynamics. II. Behaviour of a small number of elastic
spheres. J Chem Phys 33:1439-51.

Bargiel M, Moscinski J (1991). C language program for
the irregular packing of hard spheres. Computer Phys
Comm 64:183-92.

Bargiel M, Tory EM (1993). Packing fraction and measures
of disorder of ultradense packings of equal spheres. I.
Nearly ordered packing. Adv Powder Technol 4:79-101.

Bezrukov A, Stoyan D, Bargiel M (2001). Spatial statistics
for simulated packings of spheres. Image Anal Stereol
20:203-6.

Bezrukov A, Bargiel M, Stoyan D (2002). Statistical
analysis of simulated random packings of spheres. Part
Past Syst Char 19:111-8.

Binder K (1997). Applications of Monte Carlo methods to
statistical physics. Rep Prog Phys 60:487-559.

Binder K (2001). How Monte Carlo simulations can clarify
complex problems in statistical physics. Int ] Mod Phys
B 12:1193-211.

Cundall PA (1971). A computer model for simulating
progressive large scale movements in blocky rock
systems. In: Proc Symp Int Soc Rock Mechanics,
Nancy, France, Vol. 1, Paper No. II 8.



Cundall PA, Hart R. (1992). Numerical modeling of
discontinua. J Engr Comp 9:101-13.

Delarue A, Jeulin D (2001). Multi-scale simulation of
spherical aggregates. Image Anal Stereol 20:181-6.

Doge G (2001). Perfect simulation for random sequential
adsorption of d dimensional spheres with random radii.
J Statist Comput Simul 69:141-56.

Evans JW (1993). Random and cooperative sequential
adsorption. Rev Modern Phys 65:1281-304.

Gilks WR, Richardson S, Spiegelhalter DJ (1996). Markov
Chain Monte Carlo in Practice. London: Chapman and
Hall.

Hastings WK (1970). Monte Carlo sampling methods
using Markov chains and their applications. Biometrika
57:97-109.

Jodrey WS, Tory EM (1979). Simulation of random packing
of spheres. J Simulation 32:1-12.

Jodrey WS, Tory EM (1985). Computer simulation of close
random packing of equal spheres. Phys Rev A 32:2347-
51.

Marinari E, Parisi G (1992). Simulated tempering: A new
Monte Carlo scheme. Europhysics Letters 19:451-8.

Mase S, Mgller J, Stoyan D, Waagepetersen RP, Doge G
(2001). Packing densities and simulated tempering for
hard core Gibbs point proceses. Ann Inst Statist Math
53:661-80.

Mecke J, Stoyan D (2001). The specific connectivity number
of random networks. Adv Appl Prob 33:576-83.

Mecke K, Wagner H (1991). Euler characteristics and
related measures for random geomeric sets. J Statist
Phys 64:843-50.

Mecke K (2000). Additivity, convexity, and beyond:
Applications of Minkowski functionals in statistical
physics. In: Mecke KR, Stoyan D, eds. Statistical
Physics and Spatial Statistics. Springer Lecture Notes
in Physics 554:111-84.

STOYAN D: Random systems of hard particles

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH,
Telle E (1953). Equations of state calculations by fast
computing machines. J Chem Phys 21:1087-92.

Moscinski J, Bargiel M, Rycerz ZA, Jacobs PWM (1989).
The force biased algorithm for the irregular close
packing of equal hard spheres. Molecular Simulation
3:201-12.

Schmid F (2002). Computer simulations of systems of
ellipsoids. In: Mecke KR, Stoyan D, eds. Morphology
of Condensed Matter. Physics and Geometry of
Spatially Complex Systems. Springer Lecture Notes in
Physics.

Stillinger FH, DiMarzio EA, Kornegay RL (1964).
Systematic approach to explanation of the rigid disk
phase transition. J Chem Phys 40:1564-76.

Stoyan D, Kendall WS, Mecke J (1995). Stochastic
Geometry and its Applications. Chichester: J Wiley and
Sons.

Stoyan D, Schlather M (2000). Random sequential
adsorption:  relationship to dead leaves and
characterization of variability. J Statist Phys 100:969—
79.

Stoyan D, Stoyan H (1994). Fractals, Random Shapes and
Point Fields. Chichester: J. Wiley and Sons.

Torquato S (1991). Random heterogeneous media:
Microstructure and improved bounds on effective
properties. Appl Mech Rev 44:37-76.

Torquato S (2002). Random Heterogeneous Materials. New
York: Springer-Verlag.

Tory EM, Church BH, Tam MK, Ratner M (1973).
Simulated random packing of equal spheres. Canad J
Chem Eng 51:484-93.

Truskett TM, Torquato S, Sastry S, Debenedetti PG,
Stillinger FH (1999). A structural precursor to freezing
in the hard disk and hard sphere systems. Phys Review
E 58:3083-8.

S48



