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ABSTRACT

In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy
realisations of random sets in the plane. The procedure utilises recent advances in configuration theory
for noise free random sets, where the probabilities of observing the different boundary configurations are
expressed in terms of the mean normal measure of the random set. These probabilities are used as prior
probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model
is outlined for salt and pepper noise. The inference in the model is discussed in detail for 3× 3 and 5× 5
configurations and examples of the performance of the procedure are given.

Keywords: Bayesian image analysis, configurations, digital image analysis, salt and pepper noise, stochastic
geometry.

INTRODUCTION

The comparison of neighbouring grid points in
a discrete realisation of a random closed set Z in
R

2 has been used for decades to make inference on
various characteristics of the random set. A classical
result, cf. Serra (1982), states that the information
obtained by comparing pairs of neighbouring grid
points can be used to estimate the mean length of
the total projection of the boundary of the random set
in directions associated with the digitisation. This, in
turn, yields certain information about the directional
properties of the boundary. Larger configurations, such
as grid squares of size 2× 2 or 3× 3, were used in
Ohser et al. (1998) and Ohser and Mücklich (2000) to
estimate the area density, length density, and density of
the Euler number of Z.

In Jensen and Kiderlen (2003) and Kiderlen and
Jensen (2003), the authors use grid squares of size
n× n, n ≥ 2, to estimate the mean normal measure of
the random set Z. The knowledge of this can then be
used to quantify the anisotropy of Z. Events of type
tB ⊂ Z, tW ⊂ R

2 \ Z are observed, where tB and tW
are finite subsets of the scaled standard grid tZ2. The
probability of such events,

P(tB ⊂ Z, tW ⊂ R
2 \Z),

can effectively be estimated by filtering the discrete
image. In digitised images, B usually stands for
“black” points and W for “white” points. Here, we
use the notion point for the mid-point of a pixel in
the digitised image. We will not distinguish between

a pixel and its mid-point and we use both notions in
the following.

Another interesting aspect in the analysis of
discrete planar random sets is the restoration of
the random set from a noisy image. If the mean
normal measure of the random set Z is known, the
method in Kiderlen and Jensen (2003) and Jensen and
Kiderlen (2003) can be reversed to obtain the prior
probabilities for a Bayesian restoration procedure.
The fundaments for Bayesian image analysis were
developed by Grenander (1981), while the method
itself was developed and popularised mainly by Geman
and Geman (1984). For further readings on the subject,
see e.g. Chalmond (2003) and Winkler (2003).

Hartvig and Jensen (2000) introduce a spatial
mixture modelling approach to the Bayesian image
restoration. They consider n × n neighbourhoods
around each pixel in the image, where n ≥ 3
is an odd number. The prior probability of a
certain configuration or pattern to be observed in
the neighbourhood then depends on the number of
black points in the given configuration. In other
words, every two configurations with equal number
of black points have the same prior probability. If,
however, the restored image represents a random
closed set Z that fulfils some regularity conditions
and the resolution of the image is “good enough”, the
following configurations should not have equal prior
probabilities:
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This is showed in Kiderlen and Jensen (2003)
where, asymptotically, a black and white configuration
has a positive prior probability if and only if there
exists a line going through the centre of at least two
pixels that separates the black and the white points and
hits only points of one colour. We use this theory to
specify new prior probabilities for the spatial mixture
model of Hartvig and Jensen (2000).

PRELIMINARIES

A compact convex subset of R
2 is called a convex

body and we denote by K the family of convex bodies
in R

2. The convex ring, denoted by R, is the family
of finite unions of convex bodies while the extended
convex ring is the family of all closed subsets F ∈ R

2

such that F∩K ∈R for all K ∈K . Further, we denote
by L(K, ·) the normal measure of K ∈ R on the unit
circle S1. For a Borel set A ∈ B(S1), L(K,A) is the
length of the part of the boundary of K with outer
normal in A. L is thus a Borel measure on S1 and the
total mass L(K,S1) is just the boundary length L(K)
of K. The normal measure is sometimes called the first
surface area measure and then denoted by S1(K, ·), cf.
Schneider (1993).

Now, let Z be a stationary random set in R
2 with

values in the extended convex ring. We assume in the
following that Z satisfies the integrability condition

E2N(Z∩K)
< +∞ , (1)

for all K ∈ K . Here, N(U) is the minimal number
k ∈ N such that U = ∪k

i=1Ki with Ki ∈ K if U 6= /0
and N( /0) = 0. This condition is stricter than most
standard integrability conditions, but it guarantees that
the realisations of Z do not become too complex in
structure. The mean normal measure of Z is defined
by

L̄(Z, ·) = lim
r→+∞

EL(Z∩ rK, ·)
ν2(rK)

,

where ν2 is the Lebesgue measure on R
2. See e.g.

Schneider and Weil (2000) for more details.

A digitisation (or discretisation) of Z is the
intersection of Z with a scaled lattice. For a fixed
scaling factor t > 0, we consider Z∩ tL, where

L := Z
2 = {(i, j) : i, j ∈ Z}

is the usual lattice of points with integer coordinates.
The lattice square

Ln :=
{

(i, j) : i, j = −n−1
2

, . . . ,
n−1

2

}

,

consists of n2 points (n ≥ 3,n odd). Here, we follow
the notation in Hartvig and Jensen (2000) and place
the lattice square around a centre pixel. As we only
consider lattice squares with odd number of points, this
should not cause any conflicts in the notation. A line
passing through at least two points of Ln will be called
an n-lattice line.

Let X ⊂ tZ2 be a finite set and t > 0. A binary
image on X is a function f : X → {0,1}. Here, f is
given by f (x) =

� {x ∈ Z ∩X} so that f is a random
function due to the randomness of the set Z. We call
a certain pattern of the values of f on a n× n grid a
configuration. We denote it by Cn

t , where t > 0 is the
resolution of the grid, as in the definition of a lattice
above. The elements of the configuration are numbered
to match the numbering of the elements in the lattice
square Ln. For n = 3 this gives

C3
t =





c−1,1 c0,1 c1,1
c−1,0 c0,0 c1,0

c−1,−1 c0,−1 c1,−1





t

,

and similarly for other allowed values of n. If the size
of the configuration is clear from the context, we will
omit the index n. Examples of 3×3 configurations are

[• ◦ ◦
• ◦ ◦
• • ◦

]

t

[• ◦ ◦
• ◦ •
• • ◦

]

t

[◦ • •
• ◦ •
• • ◦

]

t
,

where the sign • means that f (x) = 1 or equivalently
z ∩ {x} 6= /0, while ◦ means that f (x) = 0 or
equivalently z∩{x} = /0. Here, z is the realisation of
the random set Z observed in the image f .

CONFIGURATION PROBABILITIES

Let f : X →{0,1} be an image as before and let Z
be a stationary random set that fulfils Eq. 1. In Kiderlen
and Jensen (2003), the authors show that for n > 0, a
given x ∈ X , and a given configuration Ct ,

lim
t→0+

1
t
P
(

Z∩ t(Ln + x) = Ct
)

=
∫

S1
h(−v)L̄(Z,dv).

(2)
The function h is given by

h(·) =
[

min
x∈B

〈x, ·〉−max
x∈W

〈x, ·〉
]+

,
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where (tB, tW ) = Ct is the partitioning of the
configuration Ct in “black” and “white” points, that
is, tB ⊂ Z and tW ⊂ R

2 \ Z. Here, g+ := max{g,0}
denotes the positive part of the function g and 〈x,y〉
denotes the usual inner product of the vectors x and y.
A configuration Ct with non-identically zero h is called
an informative configuration. Ct is informative if and
only if there exists a n-lattice line separating tB and tW
not hitting both of them. More precisely, Ct = (tB, tW )
is informative if and only if there exists an n-lattice line
g such that tB is on one side of g, tW is on the other
side of g and all the lattice points on g are either all
black or all white.

Furthermore, it is shown in Jensen and Kiderlen
(2003) that for a given informative configuration Ct ,
there exist vectors a,b ∈ R

2 such that

h(−v) = min{〈a,v〉+,〈b,v〉+} ,

for all v ∈ S1. These results are then used to obtain
estimators for the mean normal measure L̄(Z, ·) based
on observed frequencies of the different types of
configurations. If we, on the other hand, assume
we have a discrete noisy image in R

2, where the
underlying image is a realisation of a stationary
random closed set Z with a known mean normal
measure L(Z, ·), Eq. 2 provides prior probabilities in
a Bayesian restoration procedure.

As an example, let us assume that Z is isotropic.
Then, the mean normal measure L̄(Z, ·) is, up to
a positive constant of proportionality, the Lebesgue
measure on [0,2π). Eq. 2 thus becomes

lim
t→0+

1
t
P
(

Z∩ t(Ln + x) = Ct
)

= k
∫ 2π

0
min

{

〈a,y(θ )〉+ ,〈b,y(θ )〉+
}

dθ , (3)

where y(θ ) = (cosθ ,sinθ ) and k > 0 is a constant.
For t > 0 small enough, such that only informative,
all black, and all white configurations have positive
probability, this gives the marginal probability of
each informative configurations up to a constant of
proportionality.

For n = 3, the vectors a and b are given in Jensen
and Kiderlen (2003). We can thus insert those values
without further effort into the right hand side of Eq. 3.
For x ∈ X , this gives

P
(

A
)

=























































































p0, Ct =
[◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

]

t

p1, Ct =
[• • •
• • •
• • •

]

t

p2, Ct ∈ R
([• ◦ ◦

• ◦ ◦
• ◦ ◦

]

t
,

[• • ◦
• • ◦
• • ◦

]

t

)

p3, Ct ∈ R
([◦ ◦ ◦

• ◦ ◦
• • ◦

]

t
,

[• ◦ ◦
• • ◦
• • •

]

t

)

p4, Ct ∈ R
([• • ◦

• • •
• • •

]

t
,

[◦ ◦ ◦
◦ ◦ ◦
• ◦ ◦

]

t

)

p5, Ct ∈ R
([• ◦ ◦

• ◦ ◦
• • ◦

]

t
,

[• ◦ ◦
• • ◦
• • ◦

]

t
,

[ • • ◦
• • ◦
• • •

]

t
,

[ ◦ ◦ ◦
• ◦ ◦
• ◦ ◦

]

t

)

0, otherwise,

where A is the event Z ∩ (tL3 + x) = Ct and R(·) is
the set of all possible rotations and reflections. The
probabilities p2, . . . , p5 are determined from Eq. 3 up
to a multiplicative constant c. They are given by

p2 = c
[

5sin(atan(2))−4
]

,

p3 = c
[

5sin(atan(2))−3
√

2
]

,

p4 = c
[

2−
√

2
]

,

p5 = c
[

1+
√

2− 5
2

sin(atan(2))
]

.

As the total probability is 1, we have

p0 + p1 +8(p2 + p3 + p4)+32p5 = 1.

We can thus express c in terms of the other unknown
probabilities,

c =
1− p0− p1

16
.

For n = 5, we have used the methods described
in Jensen and Kiderlen (2003) to determine the
informative 5×5 configurations and the vectors a and
b for each configuration. We have then calculated the
prior probabilities in the same manner as described
above for 3× 3 configurations. The results from this
can be found in Appendix A.

Knowledge of the mean normal measure of Z
will not give us information about the probability of
observing all white and all black configurations, as the
mean normal measure is a property of the boundary of
the set. The remaining parameters, p0 and p1 must thus
be estimated from the data. This problem is treated in
the next section.

RESTORATION OF A NOISY
IMAGE

Let F : X → {0,1} be a binary image on a finite
set X ⊂ tZ2 for t > 0 and such that F can be viewed
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as a realisation of an isotropic stationary random set Z
with noise. Note that the randomness in the image F is
two-fold. First, the noise free image is random due to
the randomness of the set Z. Second, a random noise is
added to the image. By Bayes rule we have, for x ∈ X
and a given configuration Ct ,

P
(

Z∩(tLn + x) = Ct |F(tLn + x)
)

∝ P
(

Z∩ (tLn + x) = Ct
)

× p
(

F(tLn + x)|Z∩ (tLn + x) = Ct
)

.

We assume that F(xi) and F(x j) are conditionally
independent given Z for all xi,x j ∈ X , and that the
conditional distribution of F(x) given Z only depends
on Z∩ x for all x ∈ X . Under these conditions, we get

p
(

F(tLn + x)|Z∩ (tLn + x) = Ct
)

=
n2

∏
k=1

p
(

F(yk)|Z∩{yk} = {ck}
)

,

where {yk}n2

k=1 = tLn + x and {ck}n2

k=1 = Ct .

By summing over the neighbouring states, we
obtain the probability of Z hitting a single point x ∈ X ,

P
(

Z∩{x} 6= /0|F(tLn + x)
)

∝ ∑
{Ct :c00=•}

P
(

Z∩ (tLn + x) = Ct
)

×
n2

∏
k=1

p
(

F(yk)|Z∩{yk} = {ck}
)

=: S1(x). (4)

The probability of Z not hitting a single point x ∈ X is
obtained in a similar way. It is given by

P
(

Z∩{x}= /0|F(tLn + x)
)

∝ ∑
{Ct :c00=◦}

P
(

Z∩ (tLn + x) = Ct
)

×
n2

∏
k=1

p
(

F(yk)|Z∩{yk} = {ck}
)

=: S2(x). (5)

As the probabilities in Eq. 4) and Eq. 5 sum to one, we
only need to compare S1(x) and S2(x) for determining
the restored value of the image for a pixel x. The
restored value is 1 if S1(x) > S2(x) and 0 otherwise.

To compare S1(x) and S2(x), we need to determine
the densities p

(

F(x)|Z ∩ {x}
)

which depend on the
distribution of the noise. As an example, we consider
salt and pepper noise. That is, a black point is replaced

by a white point with probability q, and vice versa.
More precisely,

p
(

F(x)|Z∩{x}
)

= qF(x)(1−q)1−F(x) � {

Z∩{x}= /0
}

+(1−q)F(x)q1−F(x) � {

Z∩{x} 6= /0
}

,

for some 0≤ q≤ 1. This noise model has one unknown
parameter, q, which must be estimated from the data.

Further, we need to determine the marginal
probability P

(

Z ∩ (tLn + x) = Ct
)

of observing a
given configuration, Ct . A method to obtain the
prior probabilities of observing the different types of
boundary configurations, that is configurations that
contain both black and white points, is given in the
previous section. We still lack information about the
prior probabilities of observing configurations that are
all black or all white, that is

p0 = P

(

Z∩ (tL3 + x) =
[◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

]

t

)

and
p1 = P

(

Z∩ (tL3 + x) =
[• • •
• • •
• • •

]

t

)

if n = 3 and similarly for larger n.

We use the parameter estimation approach
introduced in Hartvig and Jensen (2000) which is
related to maximum likelihood estimation. Within the
model, we can calculate the marginal density of an
n×n neighbourhood. It is given by

p
(

F(tLn + x); p0, p1,q
)

= ∑
Ct

p
(

F(tLn + x)|Z∩ (tLn + x) = Ct ;q
)

×P
(

Z∩ (tLn + x) = Ct ; p0, p1
)

= p0q∑F(yk)(1−q)n2−∑F(yk)

+ p1qn2−∑F(yk)(1−q)∑F(yk)

+
1− p0− p1

A(n) ∑
Ct inform.

[

B(Ct)

×
n2

∏
k=1

[

qF(yk)(1−q)1−F(yk)
� {Z∩{yk} = /0}

+q1−F(yk)(1−q)F(yk)
� {Z∩{yk} 6= /0}

]

]

,

where the constant B(Ct) is given by the integral on the
right hand side of Eq. 3 and A(n) = ∑Ct inform. B(Ct).
We have A(3) = 16 and A(5) = 32.

A possibility for estimating the parameters p0, p1,

and q is to maximise the contrast function

γ(p0, p1,q) = ∑
x∈X

log p
(

F(tLn + x); p0, p1,q
)

. (6)
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This is, however, computationally a very demanding
task. We have therefore used a simplified version of
the approach. The probability that a single point x ∈ X
is in the set Z is

P
(

Z∩{x} 6= /0
)

= ∑
{Ct :c00=•}

P
(

Z∩ (tLn + x) = Ct
)

=
1− p0− p1

2
+ p1

=
1− p0 + p1

2
,

as exactly half of the boundary configurations have a
black mid-point. The marginal density of a single point
is thus given by

p
(

F(x); p0, p1,q
)

= P
(

Z ∩{x} 6= /0; p0, p1
)

p
(

F(x)|Z∩{x} 6= /0;q
)

+P
(

Z∩{x}= /0; p0, p1
)

p
(

F(x)|Z∩{x}= /0;q
)

=
1
2

[

(1− p0 + p1)q1−F(x)(1−q)F(x)

+(1+ p0− p1)qF(x)(1−q)1−F(x)
]

.

The corresponding contrast function

γm(p0, p1,q) = ∑
x∈X

log p
(

F(x); p0, p1,q
)

,

can easily be differentiated with repect to the
parameters p0, p1, and q. The differentiation yields that
the maximum of γm is obtained when

p1 = p0 +
2∑F(x)−|X |
|X |(1−2q)

,

where |X | denotes the number of points in X . In
the examples in the following, we have inserted this
into Eq. 6 and maximised γ on a grid with q ∈
[0.05,0.1, . . . ,0.45,0.49] and p0 ∈ [0.05,0.1, . . . ,0.9]
under the constraints

2p0 +
2∑F(x)−|X |
|X |(1−2q)

< 1, p0 +
2∑F(x)−|X |
|X |(1−2q)

≥ 0.

EXAMPLES

We illustrate the method by applying it to two
synthetic datasets and one real data set. We use the
salt and pepper noise model and isotropic priors for the
configuration probabilities in all three examples. The
method can not be used directly to restore the values on
the edge of an image. In the examples below, we have
therefore a one-pixel-wide edge of white (background)

pixels in each restored image for n = 3 and a two-
pixel-wide edge of white pixels in each restored image
for n = 5. Another possibility here would be to add
either a one-pixel-wide boundary of white pixels for
n = 3, or a two-pixel-wide boundary of white pixels
for n = 5, around the noisy image before restoration.
This will, however, lead to a slight underestimate of
black pixels on the edge. We will quantify the results
by the classification error. The classification error is
estimated as the percentage of misclassified pixels
(either type I or type II errors). The results given for the
classification error are based on those pixels from the
interior of each image where there are no edge effects.

Example 1 (Boolean model with isotropic grains).
The first example is based on digitisation of a
simulated Boolean model, see Schneider and Weil
(2000). Boolean models are widely used as simple
geometric models for random sets. The simulation
of a Boolean model is a two-step procedure. First,
independent uniform points are simulated in a
sampling window. Second, a random grain is attached
to each point. The grains are independent from one
another and from the points. In order to avoid edge
effects, the sampling window must be larger than the
target window. Here, the target window is the unit
square and the grains are circular discs with random
radii. The radius of each grain is a uniform number
from the interval [0.0375,0.15]. Fig. 1 (left) shows
a realisation of this model. We have then digitised
the image with t = 0.01 which gives a resolution of
100 × 100. The digitised image is shown in Fig. 1
(right).

Fig. 1. Boolean model with circular grains. Left: a
realisation of the model on the unit square. Right:
a digitised image of the realisation with resolution
100×100.

The digitised realisation of the Boolean model
from Fig. 1 (right) is now our original image. We have
added salt and pepper noise to it for three different
values of the noise parameter q. The noisy images
are shown in Fig. 2 (top row). In the leftmost image
we have q = 0.25, in the middle image q = 0.33,
and in the rightmost image q = 0.4. We have restored
the original image from the noisy images using
both 3 × 3 configurations and 5 × 5 configurations
as described in the previous section. The resulting
images for 3 × 3 configurations are shown in the
middle row of Fig. 2 and the resulting images for 5×5
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configurations are shown in the bottom row of Fig. 2.
The parameter estimates and the classification errors
for the restoration are given in Table 1.

Fig. 2. Restoration of the digitised realisation of the
Boolean model with isotropic grains. Top row: the
original image disturbed with salt and pepper noise for
q equal to 0.25,0.33, and 0.4. Middle row: estimates of
the true image using 3×3 configurations. Bottom row:
estimates of the true image using 5×5 configurations.

Example 2 (Boolean model with non-isotropic
grains). The grains in the Boolean model are here
the right half of circular discs with random radii. The
radius of each grain is a uniform number from the
interval [0.0375,0.15] and the target window is again
the unit square. A realisation of this model is shown
in Fig. 3 (left). As before, we have digitised the image
with t = 0.01 which gives a resolution of 100× 100.
The digitised image is shown in Fig. 3 (right).

Fig. 3. Boolean model with non-isotropic grains. Left:
a realisation of the model on the unit square. Right:
a digitised image of the realisation with resolution
100×100.

We have proceeded exactly as in the previous
example. The noisy images are shown in Fig. 4 (top
row). In the leftmost image we have q = 0.25, in
the middle image q = 0.33, and in rightmost image
q = 0.4. The restored images for 3× 3 configurations
are shown in the middle row of Fig. 4 and the restored

images for 5 × 5 configurations are shown in the
bottom row of Fig. 4. Further, Table 2 shows the
parameter estimates and the classification errors for the
restoration.

Fig. 4. Restoration of the digitised realisation of the
non-isotropic Boolean model. Top row: the original
image disturbed with salt and pepper noise for q equal
to 0.25,0.33, and 0.4. Middle row: estimates of the
true image using 3 × 3 configurations. Bottom row:
estimates of the true image using 5×5 configurations.

Example 3 (Image from steel data). Our last
example is an image showing the micro-structure
of steel. The image is from Ohser and Mücklich
(2000), where it has been analysed to estimate the
mean normal measure, see also Jensen and Kiderlen
(2003). The thresholded, binary image of the data is
shown in Fig. 5. We have used Otsu’s method for
the thresholding. This method minimises the intraclass
variance of the black and the white pixels, see Otsu
(1979). The resolution of the image is 896 × 1280
pixels.

Fig. 5. Binary image of rolled stainless steel in a
longitudinal section. The light phase is ferrite, the
black phase is austenite. From Ohser and Mücklich
(2000).
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Table 1. Parameter estimates, true parameter values, and classification errors for the restoration of a Boolean
model with isotropic grains. The parameter estimates are based on five independent simulations of the degraded
image. The standard errors of the estimates are given in parentheses. The classification errors are given in
percentage.

n×n q q̂ p0 p̂0 p1 p̂1 Class. error

3×3 0.25 0.25 (0) 0.30 0.31 (0.02) 0.45 0.45 (0.01) 8.98 (0.55)

5×5 0.25 0.25 (0) 0.20 0.21 (0.02) 0.35 0.35 (0.01) 5.11 (0.39)

3×3 0.33 0.32 (0.03) 0.30 0.33 (0.08) 0.45 0.48 (0.10) 17.79 (0.01)
5×5 0.33 0.33 (0.03) 0.20 0.22 (0.07) 0.35 0.37 (0.09) 10.61 (0.32)

3×3 0.40 0.40 (0) 0.30 0.31 (0.08) 0.45 0.45 (0.06) 29.19 (0.77)

5×5 0.40 0.40 (0) 0.20 0.22 (0.06) 0.35 0.36 (0.05) 21.20 (1.02)

Table 2. Parameter estimates, the true parameter values, and classification errors for the restoration of the non-
isotropic Boolean model. The parameter estimates are based on five independent simulations of the degraded
image. The standard errors of the estimates are given in parentheses. The classification errors are given in
percentage.

n×n q q̂ p0 p̂0 p1 p̂1 Class. error

3×3 0.25 0.25 (0) 0.48 0.47 (0.03) 0.31 0.30 (0.03) 9.03 (0.15)
5×5 0.25 0.25 (0) 0.39 0.39 (0.02) 0.22 0.22 (0.01) 5.05 (0.29)

3×3 0.33 0.35 (0) 0.48 0.55 (0) 0.31 0.36 (0.02) 18.27 (0.88)

5×5 0.33 0.35 (0) 0.39 0.44 (0.02) 0.22 0.25 (0.03) 10.72 (0.60)

3×3 0.40 0.40 (0) 0.48 0.48 (0.03) 0.31 0.35 (0.04) 29.06 (0.52)
5×5 0.40 0.40 (0) 0.39 0.36 (0.04) 0.22 0.23 (0.04) 20.62 (0.74)

Fig. 6. Restoration of the steel data image. Left column: the original binary image disturbed with salt and pepper
noise for q = 0.25 (upper image) and q = 0.33 (lower image). Middle column: estimates of the true image using
3×3 configurations. Right column: estimates of the true image using 5×5 configurations.

We have added salt and pepper noise to the binary
image for q = 0.25 and q = 0.33. The noisy images
are shown in Fig. 6 (left column). We have used
the method described in the previous section for
the restoration of the noisy images, using isotropic

priors for the informative configurations. The resulting
images can be seen in Fig. 6 (middle column) for 3×3
configurations and in Fig. 6 (right column) for 5× 5
configurations. Further, the parameter estimates with
classification errors are given in Table 3.
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Table 3. Parameter estimates, the true parameter values, and classification errors for the restoration of the steel
data image. The parameter estimates are based on five independent simulations of the degraded image. The
standard errors of the estimates are given in parentheses. The classification errors are given in percentage.

n×n q q̂ p0 p̂0 p1 p̂1 Class. error

3×3 0.25 0.25 (0) 0.34 0.35 (0) 0.45 0.46 (0.002) 8.92 (0.03)

5×5 0.25 0.25 (0) 0.25 0.25 (0) 0.35 0.36 (0.002) 4.90 (0.03)

3×3 0.33 0.35 (0) 0.34 0.40 (0) 0.45 0.53 (0.003) 17.74 (0.03)

5×5 0.33 0.35 (0) 0.25 0.30 (0) 0.35 0.43 (0.003) 10.71 (0.05)

COMPARISON WITH OTHER
METHODS

Other models for this type of Bayesian image
restoration include Markov random field models.
In Besag (1986), the author presented an iterative
method for this type of image restoration where the
local characteristics of the underlying true image are
represented by a non-degenerate Markov random field.
The author calls his method iterated conditional modes
(ICM). As the name of the method indicates, the
estimation under the model is performed iteratively
where the possible parameters of the model and the
reconstructed point pattern are updated in turn. This
method is very flexible, though computationally quite
intensive and depends on a smoothing parameter
that cannot be directly estimated from the data. An
extenstion of this method is the maximum a posteriori
(MAP) method proposed in Greig et al. (1989). The
MAP method is a special case of the ICM method
where the estimated image is given by the image which
maximises the posterior density. In this case there
exists and efficient algorithm to calculate the estimate.
There is though still the problem of a smoothness
parameter that cannot be directly estimated from data.
Further discussion of models of this type can be found
in Chalmond (2003) and Winkler (2003).

In Hartvig and Jensen (2000), the authors proposed
three prior models of different complexity for a similar
type of restoration method as is described in this paper.
These models also reflect the idea, that pixels of one
colour tend to cluster rather than appear as single
isolated voxels. They, however, do not take the actual
spatial pattern of the neighbourhood into account.

In order to compare the method presented here
to the methods mentioned above, we have used our
method to reconstruct noisy versions of the image of
an ”A” by Greig et al. (1989), see Fig. 7(a). The same
image was used in Greig et al. (1989) and Hartvig and
Jensen (2000) to show the performance of the methods
mentioned above.

Fig. 7. The 64× 64 binary image of an ”A” by Greig
et al. (1989) (a), the same image corrupted with salt
and pepper noise with parameter q = 0.25 (b), the
estimated true image using the method described in
this paper with n = 3 (c), and the estimate using the
same method, but with n = 5 (d).

Table 4. Estimated classification errors for the
models described above based on five independent
reconstructions of noisy versions of the image in Fig. 7
(a). The results are given in percentage, standard
errors are given in parentheses. The different models
presented in Hartvig and Jensen (2000) (denoted HJ
in the table) are denoted as in the orignal paper. All
results except for the model presented in this paper are
reproduced from Hartvig and Jensen (2000) and Greig
et al. (1989).

Model Class. error

Our model, n = 3 7.7 (0.4)

Our model, n = 5 4.7 (0.3)
Model 1 in HJ, n = 3 10.0 (0.3)

Model 1 in HJ, n = 5 9.4 (0.2)

Model 2 in HJ, n = 3 7.6 (0.3)

Model 2 in HJ, n = 5 5.9 (0.8)
Model 3 in HJ, n = 3 7.6 (0.3)

Model 3 in HJ, n = 5 6.1 (0.3)

ICM 6.3 (0.4)

MAP 5.2 (0.2)

In Fig. 7, estimates under our method with noise
parameter q = 0.25 are shown. This is the same
amount of noise as was used in the other papers.
For comparability, we have added a two-pixel-wide
boundary of black pixels to the image before adding
the noise. This way, we can restore the whole original
image using both 3× 3 and 5× 5 configurations. The
resulting classification error based on five independent
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repetitions of the procedure is given in Table 4. For
comparison, we have also reproduced the results on
this image from Greig et al. (1989) and Hartvig and
Jensen (2000). In the case of the ICM and the MAP
methods, we only show the classification error for
the value of the unknown smoothing parameter which
gave the best results.

DISCUSSION

In the two first examples we have images of a
similar type, the only difference is the mean normal
measure of the boundary of the objects. In Example
1, the grains have isotropic boundaries which means
that the model is using the correct prior probabilities
for the configurations. In Example 2, on the other
hand, there are some configurations that have much
higher probability than suggested in the prior. The
configurations

[◦ • •
◦ • •
◦ • •

]

t
and

[ ◦ ◦ •
◦ ◦ •
◦ ◦ •

]

t

are, for instance, more likely to occur in the image than
the configurations

[ ◦ ◦ ◦
• • •
• • •

]

t
and

[◦ ◦ ◦
◦ ◦ ◦
• • •

]

t
.

According to the isotropic prior, however, these
configurations are all equaly likely to occur. If we
compare the results in Table 1 and Table 2, we see
that the classification error in Example 2 is very
similar to the classification error in Example 1 for the
same amount of noise and the same type of model.
This suggests that it is not necessary to know the
mean normal measure of the boundary of the object
precisely for our model to perform in a close to
optimal way. Further, it can be seen from Table 4 that
our method performs better or equally good as other
similar methods, even though the ”random” set in the
image in Fig. 7 is far from being isotropic which is
assumed in the prior.

It is also clear from the results in Table 1-4
that the model using 5× 5 configurations is superior
to the model using 3 × 3 configurations for all our
examples. This is not surprising since the true images
are quite regular with large patches of either black
or white pixels. One might suspect that the model
using 3× 3 configurations would be more appropriate
for images where the object Z consists of relatively
small, disconnected components as in the example of
simulated fMRI data in Hartvig and Jensen (2000).
In this example, the 3× 3 configurations give better
results than the 5× 5 configurations for all three prior

models discussed in the paper. In our prior model, only
informative configurations have a positive probability.
That is, a boundary configuration has a positive prior
probability if and only if there exists a line going
through the centre of at least two pixels that separates
the black and the white points and hits only points of
one colour. If, however, the components of Z are very
small compared to the resolution of the image, only
very few boundary configurations will be of this type
for large configurations. We would therefore expect
similar results as in Hartvig and Jensen (2000).

Another consideration is whether it is of
interest to consider larger configurations than 5 × 5
configurations. As one can see from Appendix A,
the model is already quite complicated if we use
5 × 5 configurations. We think, therefore, that it
is computationally not feasible to consider larger
configurations. Further, and maybe more importantly,
very large configurations will tend to remove any finer
details in the original image.

The model presented in this paper is very local
in nature. The estimated restored value in a given
pixel only depends on the image values in a small
neighbourhood around that pixel. For this reason,
there is no obvious way how to derive the joint
posterior distribution over the entire image from the
posterior distribution of the marginals in the small
neighbourhoods and it is the former that is needed
for estimating the unknown global parameters in the
model. We have chosen to use the contrast function
from Hartvig and Jensen (2000), as this seems a
sensible choice with a close relation to maximum
likelihood estimation. As noted in Woolrich et al.
(2005), the difference between the parameter estimates
using this contrast function and those that could
be obtained if the joint posterior were available is
not known. Our method seems, however, not very
sensitive towards small changes in the parameter
estimates. We can also see from Table 1-3 that we
get fairly good parameter estimates by maximising the
contrast function if the noise in the image is moderate,
especially for the larger image in Example 3. For
higher levels of noise, the accuracy in the parameter
estimates seems to depend on the accuracy of the prior
for the informative configurations. Furthermore, the
accuracy of the parameter estimates depends heavily
on the resolution of the grid on which the contrast
function γ is maximised. It might therefore be of
interest to use a finer grid of possible parameter values
for the maximisation of γ . As can be seen from Table 1-
3, it might especially be of interest to use a finer grid
for the noise parameter q as the remaining parameters
p0 and p1 are estimated with less accuracy if the
estimate for q is inaccurate.
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APPENDIX A

Using the methods described in Jensen and
Kiderlen (2003), we have constructed all informative
5× 5 configurations and calculated the vectors a and
b which are needed for the calculation of the prior
probabilities of the informative configurations. The
results are given in Table 5. We have omitted both the
index for the resolution of the grid and the index for
the size of the configuration to save space in the table.

In the examples presented above, we have used
an isotropic prior for the boundary configurations. For
x ∈ X , the prior probabilities for 5× 5 configurations
are in this case given by

P
(

A
)

=































































































































































p0, Ct =

[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

t

p1, Ct =

[• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

]

t
0.5858c, Ct in group nr. 1, . . . ,4
0.2462c, Ct in group nr. 5, . . . ,8
0.2295c, Ct in group nr. 9, . . . ,12
0.1781c, Ct in group nr. 13, . . . ,20
0.1400c, Ct in group nr. 21, . . . ,24
0.1044c, Ct in group nr. 25, . . . ,32
0.1005c, Ct in group nr. 33, . . . ,36
0.0738c, Ct in group nr. 37, . . . ,44
0.0596c, Ct in group nr. 45, . . . ,52
0.0447c, Ct in group nr. 53, . . . ,60
0.0392c, Ct in group nr. 61, . . . ,68
0.0346c, Ct in group nr. 69, . . . ,76
0.0250c, Ct in group nr. 77, . . . ,84
0.0198c, Ct in group nr. 85, . . . ,92
0, otherwise.

Here, A is the event Z ∩ (tL5 + x) = Ct . The prior
probabilities for the informative configurations have
been calculated up to a multiplicative constant c by
inserting the vectors a and b in Table 5 into the right
hand side of Eq. 3. The unknown constant c can be
expressed in terms of p0 and p1 by

c =
1− p0− p1

32
.
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Table 5. The 92 groups of informative 5 x 5 configurations.

No. Config. Twin Config. Twin Config. Twin Config. Twin a b

1
[• • • • ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

1
0

) (

0
−1

)

2
[◦ • • • •
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •

] (

0
−1

) (

−1
0

)

3
[• • • • •
• • • • •
• • • • •
• • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

0
1

) (

−1
0

)

4
[• • • • •
• • • • •
• • • • •
• • • • •
• • • • ◦

] [ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
0

) (

0
1

)

5
[• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (

1
4

) (

1
−4

)

6
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] (

4
−1

) (

−4
−1

)

7
[◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] (

−1
4

) (

−1
−4

)

8
[• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

4
1

) (

−4
1

)

9
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (

2
1

) (

−1
−2

)

10
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •
• • • • •

] (

1
−2

) (

−2
1

)

11
[◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ • • •

] (

1
2

) (

−2
−1

)

12
[• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• • • ◦ ◦

] (

2
−1

) (

−1
2

)

13
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (

1
1

) (

0
−1

)

14
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] (

1
0

) (

−1
−1

)

15
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
• • • • •
• • • • •
• • • • •
• • • • •

] (

1
−1

) (

−1
0

)

16
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ ◦ • • •
• • • • •
• • • • •
• • • • •
• • • • •

] (

0
−1

) (

−1
1

)

17
[◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ • • • •

] (

0
1

) (

−1
−1

)

18
[◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ • • •

] (

1
1

) (

−1
0

)

19
[• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
• • • ◦ ◦

] (

1
0

) (

−1
1

)
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Table 5. The 92 groups of informative 5 � 5 con�gurations (continued).

No. Config. Twin Config. Twin Config. Twin Config. Twin a b

20
[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • ◦
• • • • ◦

] (

1
−1

) (

0
1

)

21
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] (

3
2

) (

−2
−3

)

22
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •

] [◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

] (

2
−3

) (

−3
2

)

23
[ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] (

2
3

) (

−3
−2

)

24
[ • • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (

3
−2

) (

−2
3

)

25
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •
• • • • •

] (

1
1

) (

−1
−3

)

26
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦

] [• • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (

3
1

) (

−1
−1

)

27
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •

] [◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •
• • • • •

] (

1
−1

) (

−3
1

)

28
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •
• • • • •

] (

1
−3

) (

−1
1

)

29
[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

] (

1
3

) (

−1
−1

)

30
[ ◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •

] (

1
1

) (

−3
−1

)

31
[ • • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦

] (

3
−1

) (

−1
1

)

32
[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦

] (

1
−1

) (

−1
3

)

33
[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] (

4
3

) (

−3
−4

)

34
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] (

3
−4

) (

−4
3

)

35
[ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (

3
4

) (

−4
−3

)

36
[ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

4
−3

) (

−3
4

)

37
[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • • ◦
• • • • ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

1
2

) (

0
−1

)

38
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •

] [◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [• • ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦

] (

1
0

) (

−2
−1

)
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Table 5. The 92 groups of informative 5 x 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin Config. Twin a b

39
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •

] [◦ ◦ ◦ • •
• • • • •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •

] (

2
−1

) (

−1
0

)

40
[◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [◦ • • • •
◦ • • • •
◦ • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] (

0
−1

) (

−1
2

)

41
[◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [• • • • •
• • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

0
1

) (

−1
−2

)

42
[• • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ • •

] [◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

2
1

) (

−1
0

)

43
[• • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • •
• • ◦ ◦ ◦

] [• • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
0

) (

−2
1

)

44
[• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • ◦
• • • • ◦
• • • • ◦

] [• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
−2

) (

0
1

)

45
[• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •

] [• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (

2
3

) (

−1
−3

)

46
[• • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] (

1
3

) (

−2
−3

)

47
[• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦

] [◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] (

3
1

) (

−3
−2

)

48
[• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •

] [◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
2

) (

−3
−1

)

49
[◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •

] (

3
−2

) (

−3
1

)

50
[• • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
−1

) (

−3
2

)

51
[• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (

2
−3

) (

−1
3

)

52
[◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] (

1
−3

) (

−2
3

)

53
[• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [• • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] (

1
2

) (

−1
−1

)

54
[• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦

] [• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] (

2
1

) (

−1
−1

)

55
[◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •

] [• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] (

1
1

) (

−1
−2

)

56
[◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

] (

1
−1

) (

−2
1

)

57
[• • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦

] [• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

2
−1

) (

−1
1

)
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Table 5. The 92 groups of informative 5 x 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin Config. Twin a b

58
[ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •

] [• • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
1

) (

−2
−1

)

59
[ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •

] (

1
−2

) (

−1
1

)

60
[ • • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
−1

) (

−1
2

)

61
[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

1
3

) (

0
−1

)

62
[ • • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

] (

0
1

) (

−1
−3

)

63
[ • ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦

] [◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (

1
0

) (

−3
−1

)

64
[ • • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
1

) (

−1
0

)

65
[ ◦ ◦ ◦ ◦ •
• • • • •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •
• • • • •
• • • • •

] (

3
−1

) (

−1
0

)

66
[ • • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • •
• ◦ ◦ ◦ ◦

] [ • • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
0

) (

−3
1

)

67
[ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] (

0
−1

) (

−1
3

)

68
[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦

] [• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
−3

) (

0
1

)

69
[ • • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

] [◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (

1
4

) (

−1
−2

)

70
[ • ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦

] [◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦
• • • • •

] (

4
1

) (

−2
−1

)

71
[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • •

] [• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] (

1
2

) (

−1
−4

)

72
[ • • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
• • • • ◦
• ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

4
−1

) (

−2
1

)

73
[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦

] [• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (

1
−2

) (

−1
4

)

74
[ ◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] (

1
−4

) (

−1
2

)

75
[ ◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ •

] [• • • • •
◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] (

2
1

) (

−4
−1

)

76
[ ◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •
• • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •

] (

2
−1

) (

−4
1

)
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Table 5. The 92 groups of informative 5 x 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin Config. Twin a b

77
[• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] (

3
4

) (

−1
−2

)

78
[• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] (

4
3

) (

−2
−1

)

79
[◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •

] (

4
−3

) (

−2
1

)

80
[• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (

3
−4

) (

−1
2

)

81
[◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] (

1
2

) (

−3
−4

)

82
[◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] (

2
1

) (

−4
−3

)

83
[• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

2
−1

) (

−4
3

)

84
[◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] (

1
−2

) (

−3
4

)

85
[• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (

1
1

) (

−2
−3

)

86
[• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (

2
3

) (

−1
−1

)

87
[• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] (

3
2

) (

−1
−1

)

88
[• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
1

) (

−3
−2

)

89
[◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] (

1
−1

) (

−3
2

)

90
[• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [• • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
−2

) (

−1
1

)

91
[◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] [◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] (

2
−3

) (

−1
1

)

92
[• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [• • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
−1

) (

−2
3

)
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