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ABSTRACT

Recently (Nagel and Weiss, 2005), the class of homogenemalom tessellations that are stable under the
operation of iteration (STIT) was introduced. In the preg®per this model is reviewed and new results for
the mean values of essential geometric features of STI€ltaens in two and three dimensions are provided
and proved. For the isotropic model, these mean values anpar@d with those ones of the Poisson-Voronoi
and of the Poisson plane tessellations, respectively.

Keywords: crack pattern, mean values, random tessellgtgpatial statistics, stochastic geometry.

INTRODUCTION tessellations. Since homogeneous Poisson-Voronoi
tessellations are always isotropic this comparison is
The geometry of several structures that are studiegstricted to the isotropic case. The proofs for the mean

in material science, biology and other sciences camalue formulas are given in the Appendix.
appropriately be modeled by random tessellations. . L
Examples are single-phase polyhedral microstructures, In this paper, a tessellation is assumed to be

foams, systems of cracks (joints, fissures) in roc a partition of the Euclidean space into bounded

craquelée of thin layers, systems of cells. Therg@nd convex polytopes — the so-called cells — with
SLhe additional condition of local finitenesge., any

are physical theories explaining the genesis o ) o
such structures and resulting in geometric model ounded subset of the space intersects a finite number

Sometimes such models are hardly treatables gsin of cells. Alternativgly, a tessellati_on is given by thg set
the case of the Gilbert model, see Noble (1967) or th8' &l boundary points of the cellse,, the boundaries
model by Grayet al. (1976),cf. Stoyanet al. (1995). etween the cells (which is a topologically closed set).
On the other hand, there are idealized mathematical

models which are easier to deal with theoretically, but

their goodness-offit in certain applications has to be  STIT TESSELLATIONS

checked thoroughlyct. Nagelet al., 2007).
The name STIT is an abbreviation for “stable with

for 'I;\;\l/g dor\:lveltléessstgtljalllt?gr?sd argatngmgg?:slon_r{]/ggoerizriespect to iteration”, and this will be explained below
. X . In this Section. We start with a short description of
tessellation and the Poisson plane tessellation (i

8TIT tessellations that was already given in earlier
3D) or Poisson line tessellation (in 2D), respectively . ]
(cf. Stoyanet al., 1995). A further model is the so- papers (Nagel and Weiss, 2005; Nagal., 2007).

called STIT tessellation, introduced in Nagel and

Weiss (2005). Although it arose as a result of purely DESCRIPTION OF THE MODEL
mathematical investigations, it will enrich the choice | gt Rd denote thed-dimensional Euclidean space.
of models. The simulations in Figs. 2 and 3 suggestjere we consider the cases— 2 andd = 3. A
that STIT tessellations can be potential models fohyperplane is &d — 1)-dimensional plane i ie, a
crack or fissure structures. plane inR?3 or a line inR?, respectively. A hyperplane

In the present paper, after a brief description of can be described by the signed distapag h from
the STIT model and a review of some key propertiesthe origin and by its unit normal vectarin the upper
new results for mean values of important parameter@alf-spacei.e,, a vectow in the upper unit half sphere
are presented. This is done for the homogeneou&? tinRY. We define thap > 0 if the intersection of
(i.e., spatially stationary) but not necessarily isotropich and the orthogonal line through the orighm,, is in
case. These mean values are compared with thbe upper half-space armu< 0 otherwise. A random
corresponding ones for Poisson plane (or linenyperplane has a random direction and a random
respectively) tessellations and for the Poisson-Voronaldistance to the origin.
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Let A be the measure on the set of hyperplanes thatheredW’ denotes the boundary of the $#&t andcl
is given by the topological closure of a set. Thiyga,W) is the
A(d(p,u)) =dpZ(du), 1 union of all the chords insidé&/ which are generated

by they; during the construction.
where @ is the element of the Lebesgue (length) , )
measure on the real axis, and is a probability Roughly, this (_:onstructlon can _b(_e understood as
distribution on the space of directions. 4 is the follows. The seW is subsequently divided at random
uniform distribution on’9-1 (and thus the measure times. After the first division at time; by y; the two
is invariant under all rotations of hyperplanes aroundcells’ Wny**andwny* arise. These two cells are
the origin) then it is called isotropic. Notice that for treated separately and independently. Each cell has a
the following construction it is not necessary thais  life time until it is divided by a random hyperplane.
isotropic. But in order to generate a tessellation withhe condition 'IFy; € W'] THEN' in the algorithm
bounded polytopes as cells it is assumed that not aflefines a rejection method€, not all they; do divide
random hyperplanes are orthogonal to one single plarfe cell) which yields that the life time of a calV’ is
(in R3) or to one single line (iR?), respectively. For exponentially distributed with the paramefe{(W']),
a setC c RY denote by[C] the set of all hyperplands and hence in the average small cells live longer than
that hitC, i.e, Cnh# 0. Thus, ifC is bounded, then larger ones. At the fixed tima this procedure stops

A([C]) is finite and and the state of the construction defirgs,W).
Ac(-) = 1 (-n[C) Fig. 1 illustrates the result of the construction
c A([C]) ’ of a non-isotropic tessellation with a small number

of horizontal and vertical edges. In Figs. 2 and 3

defines a probability measure ofC], ie, the simulations of isotropic STIT tessellations are shown.

distribution of a random hyperplane that Hits

Now letW ¢ RY be ad-dimensional compact and
convex domain in which the STIT tessellation will be
generated. Further assume that y;), j =1,2,... is
a sequence of independent and identically distributed i
(.i.d.) pairs, 1j, y; independent,t; exponentially
distributed with parametek([|W]) , andy; a random !
hyperplane with distributionA\y. For a (random) !
hyperplaney denote byyt! and y~! the two half- !

—————————————————————————

spaces generated lpy Fora > 0 the construction can
now be described by the following algorithm.

ALGORITHM (a,W,A)
0. j=0,T={OW)},R=0 b
1. UNTILT =0 FOR(T,W') € T DO

Fig. 1. llustration of the construction with horizontal

O =i+l and vertical segments only.
(iIF 14+ 1; <aTHEN
(@) IFy; € W] THEN SOME KEY PROPERTIES
T =T\ {@TW)h) u{(t+5Wn
%+1),(T+Tj,wfm%—l)} Here we summarize important properties of the

_ / g constructed tessellation. The proofs were already given
(b) BLSET = (TA{(r,W)}HU{(T+1;,W)} in earlier papers (Nagel and Weiss, 2003; 2005). If
(NELSET =T\ {(r,W)}, R=RU{W'} Y is a random tessellation dk? then it is meant
END that Y is the random closed set (RACS) of all cell

. . _ boundaries. BZ(Y) we denote the set of all cells Wt
The OUTPUT of the algorithm 'ﬂa’w.) =R This is a random and space-filling ensemble of convex
which is a set of random convex polytopes/ihif W

itself is a convex polygon. This can be considered as golytopes.
tessellation withiW. We denote (i) Existence: There exists a homogeneouse(
spatially stationary) tessellatio of the whole RY

Y(a,W)=cl [( U awf> \5\/\/] ) such that
W )

eRaW Y(aW)2Ynw, 3)
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respectively, fod = 3 denote by5, the mean total face
area per unit volume. Their values are

La=a if the construction is done iR?,
S/ =a if the construction is done iR3.

(ii) STIT: This tessellation is stochasticakyable
with respect to thdteration of tessellations — STIT
for short. For tessellations, the operation of iteration
(also referred to as nesting) is defined as follows. Let
Y1,Yo,... be a sequence of i.i.d. homogeneous random
tessellations and denot® = {Y1,Y2,...}. Further
assume thaYy is a homogeneous random tessellation
which is independent of/. For this definition it is
useful to consider the s€xY) of the cells (which are
convex polygons) off. Assume that these cells are

Fig. 2. Smulation of a 2D STIT tessellation (kindly =~ numbered and th&(Yo) = {ps, P2,...}. The iteration

provided by Joachim Ohser). of the tessellatiolYy and the sequenc# is defined as
1(Yo, %) =YoU |J (PN Yi) - )
k>1

This definition means that a cqdk of the so called
“frame” tessellatiorYy is — independently of all other
cells — subdivided by the cellgy, i = 1,2,... of the
tessellatiorYy which intersect the interior gby.

For a real number > 0 the tessellationrY
is generated by transforming all point&y) €
Y into (rxry). Accordingly, r% means that this
transformation is applied to all tessellations of the
sequence’.

Let Yo be a homogeneous random tessellation and
%,%5,... a sequence of sequences of tessellations
such that all the occurring tessellations (including
Yp) are i.i.d. Then the sequendg(Yp),l3(Yo),... of
rescaled iterations is defined as (Nagel and Weiss,
2003; 2005).

12(Yo) = 1(2Y0, 2%1),

Fig. 3. Smulation of a 3D STIT tessellation (kindly
provided by Joachim Ohser, Claudia Lautensack, and

Tatyana Sych). 13(Yo) = 1(1(3Y0, 3%1), 3%5)
—1 (51a00). 33).
where2 stands for “has the same distribution as.” The Im(Yo) = | ( lm-1(Yo), mﬁ"ml) :
tessellatiory does not depend af, and one can show m—1
that this formula holds for all compact and conwx m=3,4,...
dimensional set&/ ¢ RY. One possibility to construct _ ) o
alsoY is described in Mecket al. (2007). Here, m is the rescaling factor which is chosen

such that the results of tessellations do not degenerate
The directional distribution of the faces M  for m — «. We use the abbreviatioty(Yo) since
coincides with the distributioZ that was introduced it is assumed that all the other tessellations in the
in Eq. 1. The intensities or densities of othersequences?,%;,... are independent and have the
parameters of the random tessellation depend on tlgame distribution a%p. The tessellationm(Yo) is
value ofa in the construction above. Fal = 2 let generated by amfold iteration where all the used
La be the mean total edge length per unit area andessellations have the same distributionreé.
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Definition 1 A homogeneousrandomtessellationY is  face-to-face position (in Schneider and Weil (2000),

said to be stable with respect to iteration (STIT) if the German word “seitentreu” is used). This means
5 that for any two cell$C;, C, the intersectiorC; NCy
Y =In(Y) foralm=23..., is either empty or is am-dimensional face, & r <

d — 1, which is a face of the polytop€; and a
i.e, if its distribution is not changed by repeated  face ofC,. An example of two cells that are not in
rescaled iteration with sequences of tessellationswith 3 face-to-face position is shown in Fig. 4. One can
the same distribution. derive it from the construction that was described by

the algorithm above, and one can observe it in the

It was shown in Nagel and Weiss (2005) thatsimylation example in Figs. 2 and 3 that not all the cells

the tessellationy introduced in Eq. 3 is STIT. It of STIT tessellations are in a face-to-face position.
should be emphasized that the STIT property uniquelyy s on the boundary of a cell can appear additional
determines the distribution of a homogeneous randoTodes and edges. Therefore, it is essential to define

_tessel[atlon i the_ edge Ien'gth_ (qr surfac.e area arefully the notions of nodes, edges and faces for such
intensity and the directional distributio# are fixed. tessellations

Roughly, this means that the above given construction
yieldsthe only STIT tessellations fogz.

(iii) Sections are STIT: If a homogeneous STIT

tessellatior in RY is intersected by &-dimensional C

planeh, with 1 < k < d — 1, then the section profile 1

Y nh is again a homogeneous tessellation on this

plane. The operations of iteration and of intersection / \
commutej.e., C

|2(Yoﬂ h, %ﬂh) = |2(Y0, %) Nh

Fig. 4. Two cells C; and C; that are not in a face-to-

h h={YinhY>nh,...}. o - o .

where:1.0 inhYenh,...} face position. Their intersection is the bold line, and
Hence it is evident that Nhis a STIT tessellation thisis not a face of C; or of Cy.

if Y is STIT.

(iv) Poissontypical cell: For homogeneous random
tessellationg the nption _of th(_a distribu'_tion of_ the MEAN VALUES FOR STIT
random typical cell is defined via Palm distributions,
see Stoyamt al. (1995) or Schneider and Weil (2000). TESSELLATIONS
Intuitively, the typical cell can be understood as a
randomly chosen cell out of a finite number of cells,

e.g., out of the set of all cells which have their centroid THE PLANAR CASE (d = 2)
in a large ball around the origin. In such a choice all

these finitely many cells have an equal probability tof FoNr thelsakctle\?\;‘ gomgl(()eéin?sst\;]ve r(IecaII here results
be selected;e., no weighting with respect to their size. rom Nagel and Weiss ( ) for the planar case.

Now, let YP denote a homogeneous Poisson Ina planar tessellation where the cells are compact
hyperplane tessellation iiR? with intensity La (if  convex polygons the set of the nodes is given as the
d=2) or S, (if d = 3) respectively and directional set of all vertices of these polygons. All nhodes of a
distributionZ. AndY is assumed to be a homogeneousSTIT tessellation are so-calleb-shaped nodes with
STIT tessellation with the same parameter and thexactly three emanating edges. In order to define the
sameZ. If one considers the interior of the cells or, edges of the tessellation consider the network of all
more intuitively, the single isolated cells neglectingcell boundariesi.e., the union of all segments which
additional nodes or edges on their boundaréstie  are faces of cells. Obviously, all the nodes are located
following paragraph (v)), one can show (Nagel andy the network. Aredge of the tessellation is a linear
Weiss,.2003) that the distributiqns qf the interiors Ofsegment in this network between two nodes but with no
the typical cell ofy” and ofY are identical. node in betweeri €., no node is in the relative interior

(v) Cells are not face-to-face: In Voronoi of this segment). Thus, an edge of the tessellation is
tessellations as well as in hyperplane tessellations aradways an intersection of two cells. In Fig. 4 the bold
in several other tessellation models the cells are in bne illustrates one such edge of the tessellation.
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We will use the following notation for mean the faces and edges of the tessellation consider the 2-

values. network of all cell boundaries,e., the union of all 2-
) faces of cells. Further, the 1-network is defined as the
La — mean total edge length per unit area, ynjon of all 1-faces (edges) of the cells. Obviously, the
edge length intensity, - set of nodes is a subset of the 1-network which is itself
Uy — mean length of the typical edge, a subset of the 2-network. Agtge of the tessellation
Uz, A2 — mean perimeter and mean area, respjg g linear segment in the 1-network between two
of the typical cell, _ nodes but with no intermediate nodés( no node
No — mean number of nodes per unitarea, js in the relative interior of this segment). face of
N1 — mean number of edge midpoints per the tessellation is a two-dimensional convex polygon
unit area, . which is a subset of the 2-network and is bounded by
N2 — mean number of cell centroids per  edges of the 1-network and has no edges in its relative
unitarea, interior. Hence, a face of the tessellation is always the
No1=Np2 — mean number of edges emanating jntersection of two cells.

from the typical node

= mean number of cells which

We consider the following mean values.

contain the typical node, Mean ...
N2o=Nz1 — mean number of nodes Ly — total edge length per unit volume,
= mean number of edges on edge length intensity,
the boundary of the typical cell. g, — total face area per unit volume,
face area intensity,
For two directionsiy, up € .7+ denote byjug, up] = Y1 — length of the typical edge,
|sin/(uy, )| the area of the parallelogram which is U2, A2 — perimeter and area, resp.,
spanned by these two unit vectors. For the directional of the typical face,

distribution# as in Eqg. 1 we denote

7= / / (U1, Up) 22(dur) 2 (dup) .

In the isotropic casd,e., when%Z is the uniform

distribution, we havé = 2.

Us,B3,A3,V3 — total edge length, mean width,
surface area and volume, resp.,
of the typical cell,

No,N1,N2,N3 — number of nodes, of edge
midpoints, of face centroids,
of cell centroids, resp.,
per unit volume,

Mecke (1984) showed that all the mean values No1,No2,Nos  — number of edges, of faces, of cells,

introduced above for planar homogeneous random
tessellations can be expressed by three parameteré\!lZ: Ni3
namely Ng, N> and La. For the particular case of
homogeneous STIT tessellations with edge IengthNZO:N21

intensityLa and directional distributio? it is

1
No=L2{ and szél_,iz.

resp., that meet in the typical node,
— number of faces, of cells, resp.,
that meet in the typical edge,
— number of nodes, of edges, resp.,
on the boundary of the typical face,
Ns3o,N31,N32  — number of nodes, of edges, of
faces, resp.,
on the boundary of the typical cell.

Thus the well-known mean value formulas yield  Also for the three-dimensional case, Mecke (1984)

for the remaining parameters

2 _ 4
Ul_m7 U2_|_A_Z7
Nl: %L%‘Z7

No1=No2=3, Npo=N21=6.

THE SPATIAL CASE (d = 3)

In a tessellation ifR2 where the cells are compact

Ap =

L3¢’

showed that all these mean values can be expressed by
a system of 7 parameters, namely

N0> N3a N = N1+N25 LV> S/a

T = NozNo, Z =NoUy = NgU3 .

The parametell can be interpreted as the mean
multiple number of nodes per unit volume, and the
parametel as the mean totahultiple edge length per
unit volume. The multiplicity of a node or of an edge
is given by the number of the adjacent cells.

convex polytopes the set of the nodes is given as the A planeh in R3 can be parametrized hyandh™,
set of all vertices of these polytopes. In order to definas it was already used in Eq. 1. Denoteﬁ‘ﬁ& the
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upper unit half-sphere i3, and identify the line$” Finally, denote by%, the directional distribution
with the unit vector that is defined by the intersectionof the edges in a STIT tessellatiolf, more
u=hn ﬂf. Thus the directional distribution?  precisely, the length-weighted directional distribution
can also be understood as a distribution.#. We of edges or directional distribution in a typical

abbreviate edge point, respectively. The corresponding directional
- distribution for a Poisson plane tessellation is denoted
Zzz// [u, U] Z(duy) Z(duy) , by %F. If Y and YP are homogeneous STIT and
S Poisson plane tessellations respectively which have
(3= /// [U1, Uz, U3] Z (duy ) Z(dup) Z(dug) , identical directional distribution of their faces then
K1 =% . (11)

where the integration is ove?”+2 and[ug, up] denotes
the area of the parallelogram spannedibandu, and A proof is given in the Appendix.
[u1, U2, U] denotes the volume of the parallelepiped

spanned by, u, andus.

In the isotropic case we havg = 11/4 and{s = COMPARISON WITH OTHER
/8. TESSELLATIONS

For a homogeneous STIT tessellation with face
area intensityS, and directional distributionZ the
mean values are as follows.

Now the mean values of different random
homogeneous tessellations are compared: the STIT
tessellations, Poisson-Voronoi tessellations and the
No=S 3, (5) Poisson line (inR?) or Poisson plane (inR3)
tessellations, respectively. This will be restricted to

Ne =1 4., ) the isotropi - -
e isotropic case. The notation for STIT will be as
N = 19 S%} (3, (7) above, the values for the Poisson-Voronoi tessellation
Ly = 35 Z ®) are indicated by an upper ind&kand those ones for
' the Poisson line or plane tessellations by the upper
T=4S) s, (9)  indexP, respectively.
Z=3% 0. (10)

o _ _ THE PLANAR CASE (d = 2)
The proof is given in the Appendix. Hence, the . .
known formulas for mean values of homogeneous [N the planar and isotropic case we have the
tessellations (see Mecke, 1984) vyield for gTITParametef = 2/ In order to make the tessellations

tessellations comparable we assume thidt = N5 = NY which also
7 implies that the mean areas of the typical cells of all
N, = 25 &3, N, = =S¢, three tessellations are the same. Then we obtain with
6 the results in Mecke (19843f( the references to Miles
1 % and Santal6 therein)
U = — =
P28 2N§ = No = N§,
3
7S (3 7S (3
A = A = A,
U, ~ 18& . 3 &
S & 25, & U = Uz = Yy,
12 1 6 1 3P _ _ VIV
As = gg, V3 = gg, 2Ur = U = F U,
Not=4, No2=6, Noz=4, L = La = LY,
Ny = Nis =3, NG =N§, =4, No1= Noz2 = NY; = N, =3,
Noo — Nz — 2, NS, =N5 =4, Noo = No1 = N3y = NY; = 6.
Since the distribution of the typical cell of a STIT
Ngo = 24, N1 = 36, Nz, = 14. tessellation is the same as that one of a Poisson
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line tessellation, also the respective mean valugs For the typical cell:

and L coincide. On the other hand. The numbers NP. — 8 Naw — 24
No, N1, Nij, i,j = 0,1,2, that express some features 30 = %> 0 =
of the mutual arrangement of the cells are conform for

P _ _
STIT and Poisson-Voronoi. N3; =12, N33 =36,

P _ —
THE SPATIAL CASE (d = 3) N3z =6, Na2 =14,
In the three-dimensional and isotropic case th

parameter values aré = m/4 and {3 = /8. In

analogy to the planar case we assume that N?f’ =

NY, ~27.071,
NY, ~ 40.606,

NY, ~ 15535.

As pointed out in (iv) above, the distributions of
®he interiors of the typical cells of the STIT tessellation
and of the Poisson plane tessellation coincide if their
v ) e intensitiesS; = Sc,’ and their directional distributions
N3 which also implies that the mean areas of theyre the same. Hence it is obvious that also the other

typical cells of all three tessellations are the samemetrical’ (or scale dependent) values, Ag, Bs, Us

The formulas given in Mecke (1984) (partially with ~gincide.
references to Miles and to Santald) yield the following

results. Per unit volume: On the other hand, the cells of the STIT tessellation
are not ’face-to-face’. Hence on the faces of the
STIT cells are further edges and nodes. The mean
valuesN;j with i > |, i = 2, 3, are some quantitative

expression for that, and thus they provide some
information about the mutual arrangement of the

6 NP =Ny ~ 0887 NY,

4 NP =N, ~ 0887 N,

7 NP ~ Y s :
3 N2 =N =~ 0901 Ny, cells within a tessellation. The results clearly show
that in this respect isotropic STIT and Poisson
§ =S ~0853 g, Voronoi tessellations are rather close together and that
b v significant differences appear to the mean values for
2 Ly =Ly =~ 0829 L. isotropic Poisson plane tessellations.
Typical cell: These results can be generalized also for
V3P — Vs = VY some homogeneous but not necessarily isotropic
87 tessellations which are generated by an affine
AP = A; ~ 0853 AY, transformation of an isotropic one.
B =B; ~ 0.829 BY,
APPENDIX
S U =U; ~ 0829 UY. ,
_ Now the proofs are given for the Egs. 5-11 for
Typical face: homogeneous (but not necessarily isotropic) STIT
S AP = A ~ 0946 AY, tessellations. This will be based on the following facts.
o 5 v i) A STIT tessellation has a Poisson typical cell, see
12 U; =Uz = 0920 U, . (iv) in the section on key properties.
Typical edge: ii) If Y is a STIT tessellation, then it is identically

05 UP =U; ~ 0935 UY.

mean values of.
Ng’1:6, No1 = Ng’l =4,

distributed as(2Y, 2%/). The calculation of mean
values ofl (2Y, 2%/), where the effect of iteration
Adjacent to the typical node: is taken into account, provides equations for the

i) If Np, Ly, Sy are the mean values oY,

Ng’zzlz, Noo = N(Yz =6, then the respective mean values off 2are
No/8, Lv/4, Sy /2.

Ng3:8> Nos = N5/3 =4. The Poisson plane tessellation wit, and

In the typical edge: directional distribution# hasN§ = N§ = S {3/6.

NGZ=4, Niz = N =3.
For the typical face:

Eg. 6.

35

Due to (i) it isVs = V4" and hencé\Ns = N, and thus

In order to show Eq. 8, observe that the network
N,=4, Np=30~5143, N), ~5228. of edges ofl(2Y, 2%) consists of edges of the
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frame tessellation'? and edges of2 px N 2Yk) nested parallel to the edge and thus by the corresponding
into the frame cell 2 k = 1,2,..., cf. Eq. 4, pointinyf. The probability measur# is defined on
and, additionally, further edges which are generateg’ﬂf_ Let beA C yf. ThenLy Z1(A) is the mean total

by the intersection of the two-dimensional faces ofength of all those edges df which directions belong
2px with two-dimensional faces of . In order to  to A. ForYP the analogous value is; %7 (A). Let 1{-}
calculate the length intensity of those edges that argenote the indicator function that is 1 if the condition
newly generated by iteration consider independent anieh brackets{ } is fulfilled and O otherwise. For the
stationary processeaB;, ®, of two-dimensional faces Poisson plane tessellation with face area interSjty

in R3 with distributionsPy, P,, directional distributions it can be calculated that

K1, #» and intensitie§f,1), Sf,z) (with 0 < S(Vl), Sf,z) <

), respectively. Analogously to Theorem 1.1. and
Lemma 3.2 which were shown for fibre processes by ($)2 . .

Mecke (1981), one can assert also for processes of T//[u,v]-l{spamu,v) €A} Z(du) Z(dv),

LU21 ()

faces inR3 that (13)
s where spafu,v)* is the normal vector of the plane
// '8(Y) Hou6, (A) Pu(0g1) Po(de2) which is spanned by andv. It describes the direction
. 56/2) ' .I Sin(uT, 1 — v of the line which appears as the intersection of two
o B()[sin(uTy$1 — V)| x hyperplanes with normal vectousandyv, respectively.
x H2(av) U, (dy) Py(d) Now consider the edges of the tessellation

1«2 . 1(2Y,2%). Those are (a) the edges of the fram¢é 2
- S\(/)SE/)/ |sin(u—v)| %1(du) %Z2(dv) ,  (12) a(nd (b) t%e edges of & N 2Yk (i.e, the cut-outs of
o 2Y%in 2py), k=1,2,..., and, additionally, (c) those
whereTy$ = ¢ —y, up denotes the normal direction gqges that are generated by iteration when a face of
to ¢ in the origino (given thato € ¢), iy the area vy intersects a face of¥. There are always two cells
measure jointed byp, Lg,ng, the length measure ggjacent to any face of the frame tessellation, and into
corresponding t@, N ¢» andB a Borel set of volume  gach of these cells independent tessellations are nested

1inR®. Any face of the frame tessellatioryzhas two  in_ With (i) this yields three items that correspond to
sides where independent tessellations of the sequengg, (b), (c), namely

2% abut against. Hence the length intensity of the
newly generated edges is twice the value of Eq. 12 with LvZ1(A)

Ty =T =R ands)) = §7) = . This yields ~ B+ B
4 4

Ly Lv s/\? s, \2
w=Fgee(3) e 23
and this implies Eq. 8. x//[u,v] -1{sparju,v)* € A} Z(du)Z(dv).
This equation also shows that the edge length (14)

intensity 2- (S//Z)Z-Zz of those edges which are

additionally generated in iteration by the intersection  SinceS, = $ is assumed we obtain
of pairs of two-dimensional faces isy/2. In any L

of these edges exactly three cellsl¢2Y, 2%) are LyvZ1(A) = _Vﬁl(A) + Lo ZE(A) .
meeting. Further, sincé = NoU, for Y, for 2Y the 2

value of the mean total multiple edge length per unitand thus withLy = 2LY follows %, = %Y.

volume is'g - 2Up = Z. Thus, due to stability under  Now consider the nodes 6f2Y, 22). There are
iteration, 2 7 L the nodes of the frame tessellatiol 2nd the nodes
z=214%43.2Y of the cut-outs(2px N 2Yy) which appear when %
4 4 2 is nested into the cell g, k= 1,2,..., of the frame,
which implies Eqg. 10. and additionally, 'new’ nodes that are generated by
Proof of Eq. 11: LetY andYP be homogeneous iteration. These 'new’ nodes appear on the edges of
STIT and Poisson plane tessellations respectivel{l€ frame % and on the faces of 2 A complete
which have identical directional distribution® of ~Jescription is given by the following three cases.
their faces. The direction of an edgelRd is described (a) New nodes on the edges of the framé: They
by the unit vector (in the upper half space) that isare generated by an intersection of these edges with a
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face of a nested¥. Since there are exactly three cells  The mean value formulas in Mecke (1984), in
adjacent to each edge o¥¥Zhe intersection formulas particularNgNoz = N + Ng — N3 = 2Nz andNg — Nj +
for homogeneous tessellations, (11) and (iii) yield theN, — N3 = 0 together with Eqs. 5 and 6 amdy; = 4
intensity {.e., mean number per unit volume) of new yield
nodes of type (a) as

1 7
No = =Ng+2Ng—Ng= =N
2 60+ 0 0 60,

S\/ 3
3- > -3 . and hence Eq. 7.
(b) New nodes on the faces of2vhich appear as the REFERENCES
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