
Image Anal Stereol 2014;33:65-74 doi: 10.5566/ias.v33.p65-74 
Original Research Paper 

UNSUPERVISED DATA AND HISTOGRAM CLUSTERING USING 
INCLINED PLANES SYSTEM OPTIMIZATION ALGORITHM 

MOHAMMAD HAMED MOZAFFARI AND SEYED HAMID ZAHIRI
 

1Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran 
e-mail: hamed.mozafari@birjand.ac.ir 
(Received September 25, 2013; revised January 22, 2014; accepted March 11, 2014) 

ABSTRACT 

Within the last decades, clustering has gained significant recognition as one of the data mining methods, 
especially in the relatively new field of medical engineering for diagnosing cancer. Clustering is used as a 
database to automatically group items with similar characteristics. Researchers aim to introduce a novel and 
powerful algorithm known as Inclined Planes system Optimization (IPO), with capacity to overcome clustering 
problems. The proposed method identifies each agent used in the algorithm to indicate the centroids of the 
clusters and automatically select the number of centroids in each time interval (unsupervised clustering). The 
evaluation method for clustering is based on the Davies Bouldin index (DBi) to show cluster validity. 
Researchers compare known algorithm on series of data bases from various studies to demonstrate the power 
and capability of the proposed method. These datasets are popular for pattern recognition with diversity in space 
dimension. Method performance was tested on standard images as a dataset. Study results show significant 
method advantage over other algorithms. 

Keywords: Davies Bouldin index, histogram; image processing, inclined planes system optimization, soft 
computing, unsupervised clustering 

INTRODUCTION 

Within the last decade, natural computing has been 
recognized as a novel approach to solve real life prob-
lems inspired by nature. In this field, scientists have 
proposed several algorithms such as Particle Swarm 
Optimization (PSO) by Kennedy and Eberhart (1995); 
Genetic Algorithm (GA) by Tang et al. (1996) and 
other algorithms to overcome problems of optimization, 
classification, data analysis and clustering (Lezoray, 
2003; Jackson et al., 2009). 

Clustering is a way of finding the hidden data struc-
ture and refers to a set of data with shared common 
properties as separate entities. A suitable clustering 
method helps classify a large group of N-data items 
with P-dimensional features, to be placed into smaller 
groups, where each group will share similar properties 
with its items, and dissimilarity with items in the 
other groups. Clustering algorithms are used in various 
fields of science to solve engineering problems specific 
to bioinformatics (Krikpatrick et al., 1983; Jain et al., 
1999; Xu and Wunsch, 2005; Dembele, 2008). 

Numerous clustering methods have been designed 
including: Hierarchical clustering, Fuzzy clustering, 
K-Nearest Neighbor (KNN) by Altman (1992) and K-
means by Sang (2012). Traditional clustering methods 

perform their duty perfectly up to a certain point and 
until some difficulties arise with unknown number of 
clusters in a database showing numerous dimensions. 
This rapid growth of scientific information will inevi-
tably pose problems with an expanded volume of 
scientific data (Zahiri, 2010). 

New clustering methods are mainly aimed at the 
compilation of past methods and heuristic algorithms. 
Various forms of heuristic algorithms were initially 
introduced decades ago. The most popular and famous 
algorithm was Simulated Annealing (SA) by Krik-
patrick et al. (1983), Artificial Immune System (AIS) 
by Farmer et al. (1986), Ant Colony Optimization 
(ACO) by Dorigo (1992), the Genetic Algorithm (GA) 
by Tang et al. (1996), and there were Particle Swarm 
Optimization (PSO) by Kennedy and Eberhart (1995) 
and Harmony Search (HS) by Geem et al. (2001). 

Genetic Algorithm (GA) was formed by observing 
the laws of natural selection and genetics based on 
Darwin’s theory of evolution. Simulated Annealing 
(SA) was designed by using the process of annealing 
in metallurgy. Artificial Immune System (AIS) was 
inspired by the biological immune system. Ant Colony 
Optimization (ACO) was simulated from the foraging 
behavior of real ants when they searched for food, 
and Particle Swarm Optimization (PSO) was deve-
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loped by simulating the social behavior in flock of 
birds at migration. Harmony Search (HS) algorithm 
mimics musician’s behaviors in the process of impro-
visation. Stochastic behavior and using randomized 
phenomena are a usual strategy for these algorithms 
to simulate natural characteristics similar to their actual 
pattern, while in some other algorithms like Central 
Force Optimization (CFO), there is no randomization. 
CFO is a deterministic and heuristic algorithm based 
on the metaphor of gravitational kinematics (Formato, 
2007; Mozaffari et al., 2013). 

Population-based methods are inspired by the 
social interactions dynamics between individuals. For 
instance, PSO simulates group cooperation in flocks of 
birds where each particle tries to move toward the 
best position by using its own previous experience 
guided by the neighboring particles. Sharing infor-
mation in population-based algorithms is a common 
strategy when each individual shares its information 
with others in order to guide the swarm to its goal of 
“optimum position”. This cooperation between particles 
is known as swarm intelligence, with a significant 
improving effect on the algorithms’ results (Kennedy 
and Eberhart, 1995; Mozaffari et al., 2013). 

In this paper, Inclined Planes system Optimization 
(IPO) algorithm is used to cluster a number of stan-
dard datasets. The IPO clustering process is evaluated 
in each time interval to determine the correct number 
of clusters with a validity criterion function. Various 
validity functions are designed by researchers such as 
Hubert and Levin, Likelihood, SSI, Marriot and others 
(Dimitriadou et al., 2002; Chou et al., 2004; Omran et 
al., 2005). 

Researchers used Davies-Bouldin index (DBi) as 
an objective and criterion for IPO algorithm clustering 
process (Davies and Bouldin, 1979). In another study, 
each of the IPO algorithm agents called “tiny ball” 
represented the number and position of cluster cen-
troids in the problem space. Algorithm was initialized 
step by step, where each ball length was randomly 
changed to find the best one by using minimum DB 
index and a threshold for each time interval. This 
process was repeated until terminated criterion was 
reached and the best DB index value occurred (Omran 
and Salman, 2005). 

In this study, performance of the proposed method 
is based on 4 standard datasets and 3 histograms from 
standard reference images to reveal its effectiveness 
on reliability and power of the method on clustering 
problems in similar applications. 

INCLINED PLANES SYSTEM 
OPTIMIZATION (IPO) 

The IPO algorithm design was built on the sliding 
motion dynamic along a frictionless inclined surface. 
Agents or “tiny balls” in this algorithm, similar to the 
particles in PSO or ants in ACO have the capacity to 
search the problem space and find the nearest optimal 
solution. These tiny balls reach a certain height for 
fitness.  

The IPO algorithm is designed to find the opti-
mum answer for engineering problems and inspired 
by the phenomena of “losing potential energy”. For 
instance, each ball has three specifications of position, 
height and angle in relation to other balls. The po-
sitions these balls assume create feasible solutions for 
the problem using the objective function to calculate 
the height for each ball.  

To estimate an inclined plane, IPO method uses 
straight lines to cross from the centroid of one ball to 
the centroids of other balls. To minimize the problem, 
formed angles between the straight lines and the 
horizontal line are calculated to find the direction and 
acceleration of each ball. The position of i-th ball 
from np balls system can be defined as shown in Eq. 1 
with a restriction. Here Xi is the decision variable, k is 
the coordinate number and nd is the space dimensions. 
The position of i-th ball in k-th dimension is presented 
by xi

k.  
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The proposed method of IPO tends to find mini-
mum location of objective function f(X) defined by the 
problem space. For each ball, IPO parameters are 
calculated in separate dimensions. The angle between 
the i-th ball and j-th ball at the time interval of t is 
calculated in the following equation, where fi(t) and 
fj(t) are the objective function values (heights) for the 
i-th and j-th ball in time t respectively. 
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Balls in IPO tend to go toward lower heights on 
each plane. To assign an acceleration value to each, 
balls with lower heights (fitness) are used. These acce-
lerations on various planes are added to obtain the total 
acceleration of each ball. In fact, the acceleration in 
each dimension is calculated separately for each ball  
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without consideration for the movement of other balls. 
It means acceleration is calculated between two se-
quential time intervals and later, the acceleration 
amount and direction are calculated as shown in Eq. 3 
and Eq. 4 below, where U(.) is the unit step function. 
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Here ɸij
k is the angle between the i-th ball and j-

th ball at t (time interval). For updating each ball's 
position at every time interval, the law of motion with 
constant acceleration is used where rand1 and rand2 
are two random weights with uniform distribution at 
interval [0, 1] to give a stochastic characteristic to IPO 
algorithm. It is important to notice that in heuristic 
algorithm adopting a natural phenomenon is followed 
by certain modifications on the relations. For example, 
gravitational constant in GSA (G0) is changed by 
adaptation at each time iterations. Thus, the term 1/2 

seems negligible in the law of motion with constant 
acceleration. 

As shown below, vi
k(t) is the velocity of ball i in 

dimension k, at time t. The k1 and k2 are two changing 
constants with time as seen in Eq. 7 and Eq. 8. The vi

k 
is defined as Eq. 6, where xbest

k is the ball with the 
lowest height (i.e., fitness) among other balls in all 
time iterations till the current time iteration for k-th 
dimension. 
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In the above equations c1, c2, shift1, shift2, scale1 
and scale2 are experimentally determined constants 
for each function (Mozaffari et al., 2013). The pseudo 
code for IPO algorithm is illustrated in Algorithm 1.  

 
Algorithm 1. Pseudo code for Inclined Planes system Optimization (IPO) algorithm 

 x  initial population 
 numofballs   number of balls 
 numofdimensions  number of dimensions 

repeat 
heights  fitnesses of balls 
bestx  position of ball with best fitness till now 
a(1 to numofballs, 1 to numofdimensions)  0 
for m  1, numofballs do 
  for n  1, numofballs do 
     dheight  heights(n) – heights(m) 
     if dheight < 0 then 
       for j  1, numofdimensions do 
       a(m, j)  sin(arctan(dheight / (x(m, j) – x(n, j)))) 
       end for 
     end if 
  end for 
end for 
k1  K1(t) 
k2  K2(t) 
for i1, numofballs do 
   for j  1, numofdimensions do  
        deltax(j)  bestx( j) – x(i,  j) 

x(i,  j)  x(i, j) + k1 • rand1 • a(i, j) + k2 • rand2 • deltax 
end for 

end for 
Balls going out of the problem boundaries should be returned to the initial boundaries  
until final criterion has met  
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UNSUPERVISED DATA-CLUSTERING 

The definition of clustering 

Data clustering is defined as a problem solving 
method with the capacity to divide and group a large 
dataset by their feature space and place those items 
with exactly similar characteristics in one group and 
those with the least similar characteristics in another 
group. Clustering problem, for P points {X1, X2, …, 
Xp}, which are in the n dimensional space and form 
the set of S, is to find k separated cluster C1, C2, ..., 
Ck,, where i is the index of i-th cluster and Ci ≠ . 
Clusters must satisfy these constraints:  
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Numerous methods have been proposed for solving 
the clustering problem. K-means is one of the more 
famous and widely used clustering methods in science 
and engineering fields compared to other methods. K-
means algorithm begins by specifying the numbers of 
randomly selected cluster centroids from a search 
space. Each particle in the problem space is later 
assigned to a cluster using the minimum distance 
between particle and all of the clusters centroids. In 
the next step, new cluster centroids are calculated by 
averaging each cluster items. This process continues 
untill cluster centroids become constant and reflect 
the result of K-means algorithm. K-means is a very 
useful clustering method except for solving a massive 
dataset. In that case estimating the numbers of centroids 
seem unfeasible and K-means offers less than optimum 
solutions (Dembele, 2008; Garcia-Escudero et al., 
2010). 

Recognizing the recent decade of ever growing 
information and data base expansion, has made the 
need for a method capable of clustering massive 
amounts of information most urgent. Hence researchers 
have tried to find new methods to address the issue in 
a timely and cost efficient manner (Maulik and 
Bandyopadhyay, 2000; Tseng and Yang, 2001). 
Clustering methods consist of two concepts known as: 
“intra-class” and “interclass” distance. The “intra-
class” is the distance between particles of the cluster 
to its centroid, and “interclass” is the distance bet-
ween centroids of two different clusters (Omran et 
al., 2005). It is understandable that if a clustering 
algorithm attempt to minimize the first (intra-class) 
concept, the number of clusters would grow unin-
tentionally, and, if the second (interclass) concept is 
maximized, only the number of clusters will decrease 
more than expected. Thus, an optimum solution would 
have to include a tradeoff between these two concepts. 

The example illustrated in Fig. 1 helps to understand 
these concepts. In Fig. 1a, three types of 2-dimensional 
samples are shown along the clustering results with 
suitable clusters. In Fig. 1b, a clustering result shows 
a big interclass distance (D) causing a smaller number 
of clusters and in Fig. 1c, the number of clusters 
increases to more than expected due to a shorter inter-
class distance (D) or larger intra-class distance (d). 

In our study, we used Davies-Bouldin’s Index (DBi) 
to assess the IPO algorithm as an objective function 
by compromising the distance between inter-class and 
intra-class distances. A more detailed description of 
DBi is offered in the next section. 

 
(a) 

 
(b) 

 

(c) 

Fig. 1. (a) Shape of fine clusters. (b) A reduction in 
the number of clusters causes large intraclass distance. 
(c) A growth in the number of clusters causes a big 
interclass distance. 
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DAVIES BOULDIN INDEX 

One of the most important components of an un-
supervised clustering algorithm is the criterion used 
to determine the correct number of clusters with a 
proper fitness. For this reason, various validity functions 
and criteria have been designed to find the best number 
of clusters such as: Davies-Bouldin’s index (Davies 
and Bouldin, 1979); Fukuyama-Sugeno’s Index (Fuku-
yama and Sugeno, 1989); Xie-Beni’s Index (Xie and 
Beni, 1991) and (Hashimoto, et al., 2009). In this 
paper, DBi was found most suitable and reliable for 
our experiments when compared to several alternative 
validity functions as defined in Eq. 11 and Eq. 12. The 
following equation calculates the intra-class diversity 
of the i-th cluster where Si,q is the dispersion of the i-
th cluster, and Mi is its centroid; ci is the number of 
points in the cluster i, and q is a constant. Therefore, 
if q = 2, Si,q is the standard deviation for distance in 
the sample distance of a cluster with respect to the 
cluster centroid. 

Bouldin, 1979; Chou, et al, 2004; Hashimoto, et al., 
2009).  
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Here Ri,qt is the maximum value of DBi for i-th 
cluster with respect to other clusters; t and q are the 
same previously mentioned constants. 

IPO-CLUSTERING 
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The interclass distance of the two clusters i and j 
is measured by Eq. 10 as the distance between their 
centroids where Mi is the centroid for i-th cluster and 
t is a constant in case of t = 2. Thus, D becomes the 
Euclidean distance between centroids. 
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The IPO algorithm context was used to solve the 
clustering problem and the method structure was 
based on two parts: 1) IPO algorithm, and 2) 
objective functions on DBi. A single ball in IPO (Xi) 
represents kmax number of cluster centroid vectors 
(M), in which each cluster center is in nd dimension. 
In addition, each ball consists of a vector with kmax 
random entries in the range of 0 and 1 (ri, j where i = 
1, 2, …, np and j = 1, 2, …, kmax). Parameter kmax is a 
limitation defined by user value for maximum 
number of clusters. So, balls determine which cluster 
centroid is active or inactive; also, it includes the 
specification of cluster centroids in nd dimension. To 
assess which ball is active or not, a threshold is used 
and experimentally defined by user to determine a 
constant from 0 to 1 (Ti,j where i = 1, 2, …, np and j = 
1, 2, …, kmax). Fig. 2 illustrates an estimation of a 
single ball. If ri,j is bigger than threshold Ti,j, Mi,j in nd 
dimension, it is considered as an active cluster centroid; 
otherwise, it is an inactive cluster. 

where Mi = (m1i, m2i,...,mndi). 

With these two measures, DBi appropriately 
calculates the closeness of the two clusters by Eq. 11, 
as the sum of their standard deviations is divided by 
the distance of their centroids. So DBi can be defined 
in Eq. 12 where small values of DBi show that clusters 
are well separated. Thus, IPO algorithm tends to reach 
the minimum value of DBi for the best result. Note 
that in Eq. 11, the worst separation of the clusters in 
each time iterations is selected by maximizing the 
value of DBi from each two clusters (worst case) in 
order to guarantee the best results for IPO algorithm. 
In the next section our proposed method of unsuper-
vised IPO clustering is further explained (Davies and  
 

 
Fig. 2. Shape of a ball in IPO algorithm. 

For better understanding, assume that a ball has 5 
cluster centroids for the maximum number of cluster 
limitation and it is in 3 dimensional spaces as shown 
in Table 1. For a threshold of 0.5, only the second, 
third and fifth cluster centroids are active. 

After assigning this structure to the balls in IPO 
method, K-Nearest Neighbor (KNN) method is applied 
to find clusters by using the number of clusters and 
their centroid positions as specified by balls. Datasets 

 

Table 1. Example for a ball in IPO method. 

0.3 0.6 0.8 0.1 0.9 6.1 3.2 2.1 6 4.4 7 9.6 5.3 4.2 5 8 4.6 8 4 4 
 Mi,1 Mi,2 Mi,3 Mi,4 Mi,5 
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are searched by KNN and clusters are determined. 
Afterwards, DBi is calculated for clusters, and its 
value is used as a fitness for IPO algorithm. By time 
iterations, IPO algorithm tends to reach a minimum 
value for DBi as an objective function. So, as time 
passes, the best cluster centroids are stored. This 
process continues until the termination criteria occur. 
The best ball obtained from the proposed method will 
hold the best cluster's number and center position. 

EXPERIMENTAL RESULTS 

To evaluate performance of the proposed method, 
we have used 4 well-known standard benchmarks and 
tested the IPO algorithm on 3 standard images. To 
compare data clustering results, three other algorithm 
results were used such as Particle Swarm Optimi-
zation (PSO), Gravitational Search Algorithm (GSA) 
by Rashedi et al. (2009) and Central Force Optimi-
zation (CFO). Also, Image histogram clustering results 
were compared with those of two other methods such 
as Genetic Clustering with Undefined K (GCUK) 
(Bandyopadhyay and Maulik, 2002) and Variable 
Length Improved Genetic Algorithm (VLIGA) (Katari 
and Satapathy, 2007). 

To illustrate and discuss the results of our experi-
ment, we have prepared the following two subsections. 
At first data clustering results are explained, and then 
clustering method results on image histogram are 
shown. 

IPO DATA CLUSTERING RESULTS 

A standard dataset consisting of 4 famous data are 
listed below: 

1. Iris: this is perhaps the most famous dataset in 
literature and in the field of clustering. The iris 
dataset consists of 150 instances with four numeric 
features, which contains three classes of 50 instan-
ces, where each class refers to a type of iris plant 
(Bache and Lichman, 2013). 

2. Wine: there are 178 instances in the wine dataset, 
characterized by 13 numeric features. The features 
are explained in the chemical analysis of three 
types of wine. There are also, three categories of 
data: 59 objects in class 1, 71 objects in class 2, and 
48 objects in class 3 (Bache and Lichman, 2013). 

3. Wisconsin Breast Cancer: In this dataset there are 
683 instances with 9 numeric features consisting of 
444 objects in class 1 (malignant) and 239 objects 
in class 2 (benign) (Bache and Lichman, 2013). 

4. Contraceptive Method Choice (CMC): this data-
set consists of 1473 samples, including 3 classes 

where samples are characterized by 9 features. 
There are 629 instances in class 1; 334 instances 
in class 2 and 510 instances in class 3 (Bache and 
Lichman, 2013). 

The problem setup for all algorithms is the same 
with a threshold of 0.6, where each algorithm runs 20 
times. For IPO, parameters are C1 = C2 = 1, Shift1 = 
Shift2 = 100, Scale1 = Scale2 = 0.002, and each algo-
rithm runs for 100 iteration. For GSA, Gamma and 
Alpha are 1 and 2 respectively and for CFO algo-
rithm, parameters are: Gamma = 2, Alpha = 2, Beta = 2, 
Frepinit = 0.5, DeltaFrep = 0.1 and MinFrep = 0.05. 
PSO parameters are C1 = C2 = 2. It should be noted 
that all of the parameters are at default values for 
each algorithm and no optimization process performs 
to find better parameters and agents in each algorithm 
with the same structure like balls in IPO. A compa-
rison study for these 4 methods is illustrated in Table 
2, showing the results are at best optimum points in 
20 times run. The number of times for each algorithm 
was found to be the true answer (the number of clus-
ters). However, this was not the optimum value of 
objective functions as shown in Table 3. 

In Table 2, IPO clustering method from each 
dataset shows better results compared to the three 
other methods with an exception of cancer data where 
none of the algorithms reaches the best number of 
clusters. In Wine data, PSO has a better fitness but 
reaches a wrong cluster number. In terms of the 
average results, PSO, as seen in Table 3, has better 
results compared to IPO method in Iris and Wine 
data. In Table 3, the proposed method shows better 
results for Wine and CMC data with respect to the 
number of times used to reach a true cluster number. 
As the final analysis, we can assert that, in Table 3, 
the IPO method has a slight change around the best 
results, and diversity is smaller than other algorithms, 
especially in CMC data.  

The time and speed of problem solving are also 
good criteria to compare these methods. In Table 4, 
the speed of each method on Iris data is illustrated in 
seconds and compared the number of particles used 
in calculation (Neval). 

In Table 4, we can see that IPO is a more powe-rful 
indication for its higher speed compared to other 
methods. The GSA is a rapid method whose results 
are near the proposed method in terms of speed. Fig. 
3 illustrates method comparison for convergence rate 
and trend for answers between methods. As we can see, 
IPO clustering method can reach a higher convergence 
to solve the clustering problems and offers better ans-
wers. 
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Table 2. Result comparison for the optimum value of objective function and cluster number. 

 Minimum of objective function DB index Number of optimum cluster centroids 
 IPO CFO PSO GSA IPO CFO PSO GSA 

Iris 0.2173 0.4367 0.2560 0.3288 3 2 3 6 
Wine 0.1798 0.298 0.1508 0.1848 3 5 4 6 
Cancer 0.5982 1.2687 0.7108 0.8943 3 4 3 10 
CMC 0.3338 0.6351 0.3472 0.3732 3 5 3 4 

Table 3. Result comparison for the number of times each method reaches the true answer. 

 
Times of the true cluster 

number in 20 runs 
Average of 20 runs Standard deviation of results in 20 runs

 IPO CFO PSO GSA IPO CFO PSO GSA IPO CFO PSO GSA 
Iris 11 9 15 0 3.6 3.6 3.5 5.15 0.7539 0.8208 0.9459 1.0894 
Wine 5 3 3 0 4.3 5.25 4.15 7.4 1.5252 2.2213 2.3681 2.0876 
Cancer 6 7 3 0 3.7 3.3 3.35 7.75 1.9494 1.3803 1.2680 2.3814 
CMC 15 10 13 0 3.2 3.55 3.5 5.9 0.6156 0.8256 0.7609 1.8035 

Table 4. Method comparison in terms of problem solving speed. 

Algorithm 
methods 

Amount of time for solving 
in second 

Neval
Number of cluster 

in this run 
Objective function value 

in this run 
IPO 12.1262 4000 3 0.3316 
CFO 63.0232 4040 4 0.4304 
GSA 12.4574 4000 3 0.4744 
PSO 22.1909 8040 3 0.2834 

Table 5. The results of clustering methods on standard images. 

IMAGE VLIGA GCUK IPO-Clustering 
DB 0.5203 ± 0.0120 0.5309 ± 0.032 0.2237 ± 0.0382 

LENA 
K 5-7 4-8 4-8 

DB 0.4262 ± 0.011 0.4623 ± 0.0019 0.3331 ±0.0447 
CAMERAMAN 

K 4-6 3-6 3-7 
DB 0.5292 ±0.034 0.5343 ±0.025 0.2432 ±0.0326 

PEPPER 
K 4-8 4-9 4-8 

 
 

 
Fig. 3. Study comparison for the best fitness (x axis: 
iteration, y axis: fitness). 

IPO IMAGE HISTOGRAM CLUSTERING 

Image is a dataset used for experimental activities 
to evaluate clustering methods. In this section, resear-
chers explain the proposed method and present results 
on a series of standard images. These grayscale images 
are Lena, Cameraman and Peppers. Using IPO clus-
tering, we can find the best number of clusters on an 
image dataset, where each ball is reconstructed similar 
to the previous section and data clustering IPO structure. 
Image is a matrix, with a reduce computational cost 
for using an image histogram instead. An image histo-
gram is a chart that shows the distribution of inten-
sities in a grayscale or color image. You can use the 
information in a histogram to choose an appropriate 
enhancement operation. For example, an image histo-
gram shows the highest and the lowest levels of inten-
sity in an image which can be used as a criterion for a 
better separation in clustering algorithms.  
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Figs. 4–9 illustrate three standard grayscale images 
with their histograms. The comparison results of 
three methods on standard images are shown in Table 
5. The parameters of IPO remain the same as seen in 
previous section. The IPO and two other methods 
were tested 20 times on each image histogram. 

After clustering image histograms, images are 
clustered by using histogram threshold by values of 
cluster centroids. As we can see in Table 5, IPO has a 
better result for value of objective function in all cases. 
IPO method can find the number of cluster centroids 
in near optimum range in comparison to VLIGA and 
GCUK methods. So, in terms of fitness, the IPO 
clustering has offered significantly better results than 
the two other methods. In Figs. 10–12, the illustrated 
image results reveal a fine clustering by using the 
IPO method. 

 
Fig. 4. Image, Lena with 512×512 dimensions. 

 
Fig. 5. Histogram of image, Lena. 

 
Fig. 6. Image, Peppers with 512×512 dimensions. 

 
Fig. 7. Histogram of image, Peppers. 

 
Fig. 8. Image, Cameraman with 512 * 512 dimensions. 
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Fig. 9. Histogram of image, Cameraman. 

 
Fig. 10. The results of IPO-clustering on Lena image. 

 
Fig. 11. The results of IPO-clustering on Cameraman 
image. 

 
Fig. 12. The results of IPO-clustering on Peppers 
image. 

CONCLUSION 

This study investigated the application of Inclined 
Planes system Optimization algorithm on data 
clustering and grayscale histogram images. Hybrid of 
IPO algorithm, DBi and KNN method were combined 
to find optimum number of clusters in available data. 
Several famous data benchmarks and few standard 
image datasets were used to illustrate the proposed 
method results. Histogram of images was used to reduce 
the amount of the data and increase the calculation 
speed. In terms of data clustering, the proposed IPO 
method was compared with other well-known methods. 
Four optimization algorithms were used in terms of 
image clustering and the results of 2 similar image 
clustering methods were compared with the proposed 
IPO method. In conclusion, researchers found the 
results of IPO method compared with other similar 
methods were more powerful in most cases.  
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