
Image Anal Stereol 2014;33:75-81 doi:10.5566/ias.v33.p75-81
Short Research Communication

MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM
FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND
NON NEGATIVITY

PABLO GREGORIB,1, EMILIO PORCU2 AND JORGE MATEU3
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ABSTRACT

This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields
(GRF), tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can
be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between
some couples of locations are evident. We show some strategies in order to escape from these restrictions, on
the basis of rich classes of well known stationary or isotropic non negative covariance models, and through
suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.
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INTRODUCTION

A typical assumption in image analysis is that of
the white noise: a Gaussian error distorts the true value
of each pixel. Other reasonable approaches admit that
perturbations affecting nearby pixels can be correlated
in distinct manners (Winkler, 2006), and our work
deals with processes within this framework.

Although digitized images form lattices of pixels,
one can analyze the behavior of randomness in large
images, with an acceptable degree of approximation,
by considering images as continuous domains, hence
having at hand the tool of random field models,
from (space or space-time) Geostatistics (Cressie and
Wikle, 2011). Once the true value of the image is
subtracted, the noise can be reasonably modeled as a
zero mean Gaussian random field (GRF), which can
be completely determined by the so called covariance
function. A good estimation of the covariance function
leads to the understanding of the noising process
affecting the images taken by a particular device or
technology.

This step of estimation from sampled data is
a rather complicate task, since one needs to have
a rather dense (in the colloquial sense) set of
observations in the whole domain. This is unfeasible
in most of the cases, and the reason why additional
simplifying assumptions are imposed on the GRF.
As a consequence, such classes of GRFs may not

represent well the behavior of processes in some fields
of application.

One of these assumptions is weak stationarity
(Cressie and Wikle, 2011), which stands for GRF such
that the covariance among two locations depends only
on the (vector) difference of locations. In this case,
the covariance function can be written as a function
of one (lag) vector, and all couples of locations
with difference close to the lag serve to estimate the
covariance function at that jump vector.

Another assumption is isotropy (or radial
symmetry) (Schoemberg, 1938; Daley and Porcu,
2013): covariance among two locations depends
solely on their Euclidean distance. In this case, the
covariance function can be written as a function of
one non negative number, and all couples of locations
showing similar distance are used to estimate the
covariance function at that distance. There are several
natural phenomena where the spatial direction plays a
dominant role, and isotropy does not allow to take this
fact into account.

Throughout this paper, {Z(s) : s∈Rd} shall denote
the zero mean GRF, and C its covariance function,
defined as C(s1,s2) := cov(Z(s1),Z(s2)).

Any function K : Rd ×Rd → R is the covariance
function of some GRF if and only if it fulfills the
positive definiteness condition, i.e., if for every set of
locations {si}n

i=1 ∈Rd of any size n ∈N, and every set
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of coefficients {ai}n
i=1 ∈ R the inequality

n

∑
i=1

n

∑
j=1

aiK(si,s j)a j ≥ 0 (1)

holds, i.e., the matrix (K(si,s j))
n
i, j=1 is positive definite

for every choice of {si}n
i=1.

Since GRFs are completely determined by their
first and second order moments (Stein, 1999),
parametric models of zero mean GRFs can be given
by parametric families of positive definite functions.

Under the assumption of stationarity for the GRF,
we have that C(s1,s2) = C(s1 − s2,0) for all s1,s2.
In this case it is usual to make the abuse of notation
C(h) :=C(s1,s2) whenever s1− s2 = h.

If isotropy is also imposed, then C(s1,s2) =
C(s3,s4) if ‖s1−s2‖= ‖s3−s4‖. The abuse of notation
for this case is C(h) :=C(s1,s2) whenever ‖s1− s2‖=
h.

Literature provides several flexible and rich
parametric models of isotropic covariance functions
for GRF, such as the Gaussian (or squared exponential)
model

C(h;α) = σ
2 exp(−αh2) , (2)

(α > 0), the Matérn class (Stein, 1999; Matérn, 1960)

C(h;α,ν) := σ
2(αh)νKν(αh) , (3)

(α > 0,ν > 0 and Kν a modified Bessel function
of second kind of order ν), which includes the
exponential model (ν = 1/2, for unidimensional
Ornstein–Uhlenbeck processes), the autoregressive
of the first order model (ν = 3/2) and even the
Gaussian model (when ν → ∞), several models of
piecewise polynomial functions with compact support
(Wendland, 2005), etc. All these families contain
exclusively non negative covariance functions. It is
obvious that previous models should not be used “as-
is” in applications where negative covariances are
natural (environmental processes, turbulences, etc.).

In a particular real life process under analysis, any
of these properties (or assumptions or features) might
be discredited either by the nature of the process or
due to suspicion after some graphical analysis of the
dataset. In order to escape from isotropy, stationarity
and non negativity, the common philosophy is to use
the mentioned parametric families as building blocks
for the construction of more sophisticated models.

In this paper we make a review on the attempts
for obtaining classes of covariance (or correlation)
functions, escaping from the typical restrictions
using rather simple strategies, such as projections

of the Euclidean space, generalized means, linear
combinations with negative coefficients, etc. of simple
ingredients. Our review does not pretend to be
exhaustive of the whole literature, but instead focuses
on the effort made in a line of research by this group
of authors (Porcu et al., 2007; Gregori et al., 2008;
Porcu et al., 2008; 2009). These new classes are hence
suitable for filling in some gaps in the modeling task.

In the following sections we describe the general
setting, a brief summary of other authors’ approaches,
and our contribution in the direction of relaxing each
of the considered assumptions. We end up by justifying
the past and future efforts that shall be devoted into this
line of research.

ESCAPING FROM ISOTROPY

Isotropic covariance functions can be written in
terms of functions ϕ defined on [0,∞), such as C(h) :=
ϕ(‖h‖) or, equivalently, C(h) := ϕ(‖h‖2). They are
sometimes referred to as radial functions.

Matheron (1965) proposes to start with an isotropic
covariance function C0, i.e., C0(h) := ϕ(‖h‖2), and
use a positive semidefinite quadratic form Q, given by
Q(h) := h>Mh (being M the matrix defining Q), in
order to define C := ϕ ◦Q and escape from isotropy.

The dimension d, up to which one can lift such
a function ϕ to a valid isotropic covariance function
C in Rd , depends highly on the behavior of ϕ . When
using Euclidean norms, isotropic covariance functions,
for each dimension, are perfectly determined by the
classical result of Schoemberg (1938), written in terms
of positive definite functions, but rephrased here in
terms of covariance functions.

Theorem 1 (Schoemberg, 1938). C(h) := ϕ(‖h‖2) is
a (isotropic by construction) covariance function in
Rd ...

– ... for a specific d if and only if there
exists a non negative bounded measure F such
that ϕ(t) =

∫
∞

0 Ωd(ts)dF(s), where Ωd(t) :=
Γ(d/2)(2/t)(d−2)/2J(d−2)/2(t) (being J(d−2)/2 the
Bessel function of the first kind). In other words,
ϕ it is the Fourier–Bessel or Hankel transform of
such an F.

– ... for all d ∈ N if and only if there exists a non
negative bounded measure F such that ϕ(t) =∫

∞

0 exp(−ts)dF(s) (or equivalently if and only if
ϕ is a completely monotone function). In other
words, ϕ it is the Laplace transform of such an F.
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Functions ϕ defining valid isotropic covariance
functions in Rd are said to form a class denoted by Φd
(Gneiting, 1999; Daley and Porcu, 2013). It is easy to
see that these classes are nested, Φ1 ⊃Φ2 ⊃ ·· · ⊃Φ∞,
where Φ∞ stands for the class of completely monotone
functions.

Matheron (1965) and Gneiting (2002) define
and use operators allowing to obtain new isotropic
covariance functions in one of theses classes by
transforming existing isotropic covariance functions
lying in another of these classes. Indeed:

Proposition 2 (Gneiting, 2002). The operators montée
and descente, defined as [ϕ 7→ Iϕ] and [ϕ 7→Dϕ] with:

Iϕ(t) :=
∫

∞

t uϕ(u)du∫
∞

0 uϕ(u)du
, Dϕ(t) :=

ϕ ′(t)
tϕ ′(0)

(4)

∀t > 0 and Dϕ(0) := 1, satisfy the following
properties:

– If ϕ ∈ Φd ,d ≥ 3 and the mapping [u 7→ uϕ(u)] is
integrable then Iϕ ∈Φd−2.

– If ϕ ∈Φd and ∃ϕ ′′(0) then Dϕ ∈Φd+2.

With these tools, Porcu et al. (2007) proposed
to project the whole Euclidean domain into arbitrary
Cartesian projections in order to abandon isotropy,
but preserving isotropic blocks. For that aim, let
us consider Rd = Rd1 × ·· · × Rdk with vector d ≡
(d1, . . . ,dk) determining the projected dimensions –
hence d1 + · · ·+ dk = d – and denoting Rd 3 h ≡
(h1, . . . ,hk) with hi ∈ Rdi . Now classes Φd are
generalized to:

Φd := {ϕ : [0,∞)k→ R :

C(h) = ϕ(‖h1‖, . . . ,‖hk‖) is a cov. fct. in Rd}, (5)

and their characterization follows easily: ϕ ∈Φd iff

ϕ(s1, . . . ,sk) =
∫

∞

0
· · ·

∫
∞

0

k

∏
i=1

Ωdi(siui)dF(u1, . . . ,uk)

(6)
for some non negative bounded measure F .

Now one has the possibility of applying montée
and descente operators by partial differentiation or
integration at a particular projection, getting a wider
range of possibilities. If δδδ = (δ1, . . . ,δk) ∈ {0,1}k, the
δδδ -montée and δδδ -descente are compositions of montées
and descentes in the proper dimensions (at indices j
where δ j = 1), and the properties of mapping between
classes Φd are generalized. Concretely, Iδδδ ϕ = (Iδ1

1 ◦
Iδ2
2 ◦ · · · ◦ Iδk

k )ϕ and Dδδδ ϕ = (Dδ1
1 ◦Dδ2

2 ◦ · · · ◦Dδk
k )ϕ ,

where I1
j and D1

j are, respectively, the montée and
descente operator with respect to the j-th variable, and
I0

j and D0
j are both the identity map, for j = 1,2, . . . ,k.

Proposition 3 (Porcu et al., 2007). Operators δδδ -
montée and δδδ -descente satisfy:

– If ϕ ∈ Φd and δδδ ∈ {0,1}k with 2 + 2δδδ ≤ d and
∃Iδ1

1 ◦ Iδ2
2 ◦ · · · ◦ Iδk

k ϕ(0) then Iδδδ ϕ ∈Φd−2δδδ .

– If ϕ ∈ Φd and ∃∂δδδ ′ϕ(0) ∀δδδ ′ ≤ 2δδδ (in the sense of
the limit) then Dδδδ ϕ ∈Φd+2δδδ .

The application of this technical result is fruitful,
as it allows for the definition of space-time covariance
functions isotropic only in the space block, but not in
the whole dimension domain.

Example 4. If we take f any non negative integrable
function in R2 we get a non negative bounded measure
F by definite integration, i.e., F(·) =

∫
(·) f dudv. Now

we can use the kernel Ω1(s) = cos(s) in order to define

ϕ(s, t) :=
∫

∞

0

∫
∞

0
f (u,v)cos(su)cos(tv)dudv , (7)

and get ϕ ∈ Φ(1,1) (see Eq. 6), i.e., C(h1,h2) :=
ϕ(|h1|, |h2|) is a valid non isotropic covariance
function in R2. If not of direct interest, it helps to define
a space-time covariance function which is isotropic
in (tridimensional) space and symmetric in time, but
non isotropic, seen as a function of four dimensions.
Indeed:

C((h1,h2,h3), t) := D(1,0)
ϕ(‖(h1,h2,h3)‖, |t|) , (8)

where ϕ is the function of Eq. 7, is such a covariance
function.

ESCAPING FROM STATIONARITY

A standard way of building non stationary GRF
is through a deformation of the domain. If C is a
stationary covariance function in Rn, and u : Rd → Rn

is any map, then C ◦ u is in general non stationary in
Rd . See an application of this approach in Sampson
and Guttorp (1992).

Paciorek and Schervish (2004) build a non
stationary covariance in Rd using an isotropic
stationary covariance (given by a completely
monotone function), and a d× d matrix which allows
for spatially adaptive parameters.

Higdon et al. (1999) build non stationary RF using
spatially varying kernels Ks : Rd → R (where s is the
spatial location parameter) and white noise RFs ψ , as
Z(s) :=

∫
Rd Ks(u)ψ(u)du. In this case the covariance

function is C(s1,s2) :=
∫
Rd Ks1(u)Ks2(u)du, and the
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process can be chosen to be non Gaussian (Guttorp and
Schmidt, 2013).

In a similar way, Pintore and Holmes (2004) have
defined a procedure based on the spatial adaption of
spectral densities of parametric families of stationary
GRFs in order to get new non stationary GRFs.

The following classical statement is the key for
another strategy in the construction of classes of
covariance functions.

Theorem 5 (Bochner, 1933). A continuous function C
in Rd is a (stationary) covariance function if and only
if there exists a finite non negative measure F such that

C(h) =
∫
Rd

eih·ωωω dF(ωωω) . (9)

If C is integrable, the measure F is absolutely
continuous with respect to the Lebesgue measure, and
there exists a non negative function f with

f (ωωω) =
1

(2π)d

∫
Rd

e−iωωω·hC(h)dh , (10)

which is called the spectral density of C and, whenever
it exists, one has

C(h) =
∫
Rd

eih·ωωω f (ωωω)dωωω . (11)

New (parametric) classes of GRFs can be given
through (parametric) classes of non negative functions.
Fourier transforms of these classes are valid covariance
functions, and the limit to this methodology is the
availability of their closed form.

For well known families of covariance functions,
such as Gaussian or Matérn class, the spectral
density has a nice closed form. They become perfect
candidates for the definition of new classes under this
methodology, enlarging the family of models of GRFs
at hand.

As it was said before, new families of covariance
functions were proposed by Pintore and Holmes
(2004), based on a parametric family of spectral
densities and using the brilliant idea of adapting the
parameter of the spectral density to each different
location. A convenient inverse (similar to Fourier)
transform leads the way to non stationarity.

Proposition 6 (Pintore and Holmes, 2004). Let
{ fθ}θ∈Θ be a parametric family of spectral densities
(of a parametric model of stationary GRF). Let [s 7→
θ(s)] be any mapping of locations to parameters. Then
the construction

C(s1,s2) :=
∫
Rd

eiωωω·(s1−s2) f 1/2
θ(s1)

(ωωω) f 1/2
θ(s2)

(ωωω)dωωω

(12)

defines a valid (non stationary) covariance function if
and only if fθ(s) is absolutely integrable for all s.

An application of this result to the classical Matérn
family with parameter (α,ν), and adapting [s 7→ ν(s)]
yields a closed form for a non stationary GRF, with
ν(s) a spatially varying smoothness parameter. Indeed,
they obtain a model of the type K(s1,s2) = C(‖s1−
s2‖,α,ν(s1,s2)) for C as defined through Eq. 3.

This process is dubbed spatially adapted Matérn
family of parameter (α,ν(·)), and it can be preferred
to fit some specific data whenever the Matérn model,
with fixed smoothing parameter, seems inadequate.

In Porcu et al. (2009), the authors have analyzed
the role of the geometric mean f 1/2

θ(s1)
(ωωω) f 1/2

θ(s2)
(ωωω)

appearing in Eq. 12, and have found that a general ϕ-
mean (called Archimedean mean therein), i.e.,

Aϕ( f1, f2)(ωωω) :=

ϕ(0.5ϕ
−1( f1(ωωω))+0.5ϕ

−1( f2(ωωω))) (13)

for ϕ completely monotone, extends the previous
result and provides new examples, such as the closed
form of another spatially adapted Matérn family,
this time with parameter (α(·),ν), adapting the scale
parameter of the stationary Matérn class to have a
different behavior along the domain. This procedure
enlarges, in a similar way, the family of available
models for non stationary processes, giving more
chances to understand other types of covariance
structures. Namely, the authors propose a model of
the type K(s1,s2) = C(‖s1− s2‖,α(s1,s2),ν) for C as
defined through Eq. 3.

ESCAPING FROM
NON NEGATIVITY

As it has been mentioned in the introduction,
most of the classical examples of covariance functions
are parametric families of non negative functions.
However, a classical example of oscillatory covariance
function is C(h) := c(α‖h‖)−νJν(α‖h‖), based on the
Bessel function of the first kind Jν , which is valid for
ν ≥ (d−2)/2,α > 0 (Yaglom, 1987).

Other families of covariance functions attaining
negative values have been obtained in Gneiting (2002),
starting from families of non negative compactly
supported covariance functions of Wendland (1995),
and applying the turning bands operator of Matheron
(1973) (see Fig. 1).
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Fig. 1. Gneiting family obtained by using the turning
bands operator on a Wendland’s class.

Usual ways of creation of new covariance
functions from existing ones are, for instance, linear
combinations with non negative coefficients – or
mixtures – pointwise products, and pointwise limits.
But in all these cases, if the ingredients are non
negative so the result is.

The intuitive way that we have explored is the
consideration of linear combinations of the form Cλ =
(1− λ )C0 + λC1 with C0 and C1 non negative. For
λ ∈ [0,1] we have a convex combination, and we
lie on the cone of non negative covariance functions.
Outside [0,1], we intend to leave that cone, but stay
inside the covariance functions class. We have been
inspired by Ma (2005), where the author deals with
linear combinations of specific families using a tool:
the non negativity of the spectral density. We posed
the general problem and got the following result.

Proposition 7 (Gregori et al., 2008). If C0 and C1
are continuous integrable covariance functions, then
Cλ := (1−λ )C0 +λC1 is a valid covariance function
if and only if

(1−max(1,M))−1 ≤ λ ≤ (1−min(1,m))−1 (14)

where m := infω f1(ω)/ f0(ω), and M :=
supω f1(ω)/ f0(ω), and f0, f1 are the spectral
densities of C0, C1, respectively, .

This result can be applied to families having a
known analytic expression of the spectral density, and
whose dependence on the frequency ω comes through
its norm (for instance, Gaussian and Matérn), and the
optimization computation of m and M results feasible.

Example 8. Fig. 2 shows particular linear
combinations of two (non negative) Gaussian
covariance functions which finally attain negative
values. Fig. 3 shows realizations of GRF with
covariance which is linear combination of Gaussian
covariances.

Fig. 2. Cλ (u) := (1− λ )e−0.5u2
+ λe−u2

for λ = 2
(cont), 1.75 (dashed) and 1.5 (dotted).

A very similar result is found for the space-
time model Cλ (h, t) := (1 − λ )C0s(h)C0t(u) +
λC1s(h)C1t(u).

CONCLUSIONS

As far as space or space-time sampling in large
size lattices or continuous domains, such as in image
analysis, becomes more and more feasible, more
complex models, not restricted to be stationary or
isotropic, or even to have only non negative values, can
be used in applications.

Besides, specific applications or datasets might
suggest that stationarity, or isotropy should be rejected,
and may give hints on which one of the mentioned
models of this survey might be used in order to explain
the data.

We think that models free of such restrictions have
chances of success in data explanation, and defend that
their conception should be based mainly on the nature
of the process, but also on simplicity, in the sense of:

– simple operations – such as linear combinations,
projections, integral transforms – and

– acting on simple restricted models – such as
isotropic, stationary, well behaved families – such
as the Matérn one.
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Fig. 3. Realizations of zero-mean GRFs with covariance function (upper left) C0, (upper right) C1, (lower left)
0.5C0 + 0.5C1 and (lower right) 2C0−C1, where C0 and C1 are Gaussian covariance functions with α =

√
0.1

and
√

0.2 respectively (see Eq. 2). Only the last case has a covariance with negative values, which is translated
into a realization with negative correlation among nearby locations.
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