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ABSTRACT

Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules
is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive
Computer Aided Diagnosis (CADx) framework for detection of the lung nodules in computed tomography
images. The four major components of the developed framework are lung segmentation, identification of
candidate nodules, classification and visualization. The process starts with segmentation of lung regions from
the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach
based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally,
a combination of a rule-based procedure and support vector machine classifier (SVM) is utilized to classify
the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing
the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC) image
dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable
detection performance (Sensitivity: 0.80; Fp/Scan: 3.9). Furthermore, we visualize a range of anatomical
structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity
Projection (MIP) volume rendering method that will enable the radiologists to accurately and easily estimate
the distance between the lung structures and the nodules which are frequently difficult at best to recognize
from CT images.

Keywords: computed tomography (CT), computer-aided diagnosis (CADx), lung nodule detection,
segmentation.

INTRODUCTION

Lung cancer is a serious public health problem all
around the world. The mortality rate for lung cancer is
higher than other kinds of cancers and it is considered
as the leading cause of deaths among both men and
women (Siegel et al., 2012). Early detection of lung
cancer, which is typically manifested in the form of
pulmonary nodules, is an efficient way of improving
the survival rate, and has been attempted using X-
ray computed tomography (CT) (Sone et al., 2001).
However, CT scans generate a large number of images
that must be read by the radiologists who may have
to interpret up to 50 cases per day (Awai et al.,
2004). Considering this large amount of exhausting
work, diagnostic reading errors may be hard to avoid.
Therefore, it is necessary to develop a computer-
aided diagnosis (CADx) system to assist radiologists
with CT scan interpretation. CADx systems can aid
radiologists by providing a second-opinion and may
be used in the first stage of examination in the near
future (Awai et al., 2004).

Various CADx methods for lung nodule detection

have been proposed and some are developed and
successfully used in clinical processes (Gurcan et al.,
2002; Brown et al., 2005). Although much effort has
been devoted to it, the development of CADx systems
for lung nodule detection remains a difficult task. The
existing potential nodule detection approaches can be
roughly categorized into three main groups: intensity-
based (Messay et al., 2010), model-based (Dehmeshki
et al., 2007) and combination of geometric- and
intensity-based detection methods (Ye et al., 2009).
Intensity-based methods employ such techniques as
multiple thresholding, clustering, and mathematical
morphology, to identify nodules in the lung area.
For model-based detection methods, techniques such
as template-matching, object-based deformation, and
the anatomy-based generic model have been proposed
to separate spherical shaped nodules from elongated
structures such as blood vessels. Finally, the third
group of methods combines geometric and intensity
models to enhance local anatomical structure such as
spherical objects or vessels. A few examples of these
methods are briefly outlined below.
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As an early work in this field, Kanazawa et al.
(1998) proposed a nodule detection CADx which
segments lung regions by a fuzzy clustering algorithm
then analyzes the features of the segmented regions
using image-processing techniques and rule-based
classification. A template matching technique which is
based on genetic algorithm was proposed in Lee et al.
(2001) for detecting lung nodules in chest CT scans.
This method was validated on 20 clinical cases of a
private dataset and a rule-based classifier was used to
reduce the number of false positives (Fps). However,
the amount of FPs in that study was rather high (30
Fp/case) with detection rate equal to 72%. A similar
template-matching method which the authors called
it shape-based genetic algorithm template-matching is
proposed in Dehmeshki et al. (2007) for the detection
of spherical shaped nodules. In that work a 3D
geometric shape feature is calculated at each voxel
and then combined into a global nodule intensity
distribution. The detection rate was about 90%, with
14.6 Fp/scan which is rather high in comparison to
more recent methods.

Some studies utilize special filters to enhance
nodule like structures. For instance, Li et al. (2008)
proposed three selective enhancement filters for dots,
lines, and planes, which can simultaneously enhance
objects of a specific shape and suppress other objects.
In that approach, the CT image was blurred with a
Gaussian kernel that matched the size of the nodule
to be detected before calculating the eigenvalues of
the Hessian matrix which was used for selective
enhancement. In another similar work, a cylindrical
shape filter as a fast enhancement method for lung
nodules is proposed by Teramoto and Fujita (2013).
The Fp rate in that work was reduced using a
support vector machine (SVM) together with seven
characteristic shape parameters.

The increased interest in automatic lung nodule
detection has resulted in the availability of public
image databases for the evaluation and validation of
algorithms. These include the Lung Image Database
Consortium (LIDC) image database (Armato et al.,
2004) and ELCAP Public Lung Image Database
made available by Cornell University. However, recent
studies mainly employed the images of the LIDC
database more than ELCAP. Some works which used
images of the LIDC database are as follows. A
nodule detection scheme which used a 3D active
contour method was proposed in Way et al. (2006).
A multi-threshold surface triangulation approach was
proposed in Golosio et al. (2009). A multiple-intensity
thresholding method combined with morphological
operations is proposed in Messay et al. (2010) where
nodule candidates were distinguished by a rule-based

classifier. As a final example of methods which
employed the LIDC database, authors in Tan et al.
(2011) proposed a CADx method which identifies
nodules based on nodule and vessel enhancement
filters and a novel feature-selective classifier based
on genetic algorithms and artificial neural networks is
then used for classification of the identified nodules.

Although the mentioned schemes have a sensitivity
about 65-80% with the number of false positives
per case of less than 10, most of them require
extensive computations. On the other hand, current
CT machines have the capability of generating lung
volume images within 30 second per scan. There
is a large gap between image acquisition time and
nodule detection time. Furthermore, in addition to
detection performance, visualization utilities such as
volume rendering and 3D to 2D projection speed up
the detection process by the radiologists. However,
among the above reviewed systems there are a few
comprehensive CADs described in the literature which
automate the whole process of nodule detection with
an acceptable time efficiency and and nodule/lung
visualization capabilities.

In this paper, we propose a new comprehensive
CADx framework for the detection of pulmonary
nodules in thoracic CT images. The paper introduces a
computationally efficient CADx system and provides
a complete description of all processing steps of its
architecture. The proposed framework automates the
whole process of lung segmentation and detection of
candidate nodules. Furthermore, it provides a suite
of 2D and 3D visualization tools which facilitate the
detection and validation task for radiologists. In order
to evaluate the capability of our method, the CADx
framework has been tested on CT images of 60 patients
from the publicly available LIDC database and its
detection and processing performance was compared
to 6 existing well-known CADx methods. To the
best of our knowledge, which derives from reviewing
the majority of papers on nodule detection problem
published in the last 15 years, the way we choose the
optimized set of threshold levels and an efficient set
of nodule candidate features has not been previously
reported. Furthermore, despite the promising advances
in the last 15 years, existing CADx solutions may
produce a considerable amount of false positives and
their sensitivity is usually below 90% (Chan et al.,
2008). Therefore, visualization of the different steps
of CADx methods seems to be important since it
may help radiologists in interpretation of CT scans.
Hence, our framework provides a suite of 2D, 3D,
and projected 3D illustrations from different steps of
the detection process which facilitate the detection and
validation task for radiologists.
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MATERIALS AND METHODS

The Lung CT images of the LIDC-IDRI
database (McNitt-Gray et al., 2007) are used in the
experiments. The Lung Image Database Consortium
image collection (LIDC-IDRI) consists of diagnostic
and lung cancer screening thoracic CT scans with
annotated lesions. It is a web-accessible international
resource for development, training, and evaluation
of CADx methods for lung cancer detection and
diagnosis. Note that the database consisted of CT
images taken from different scanners supplied by
different vendors. In this study, we used a sample of
60 CT scans which have been taken by GE medical
systems LightSpeed16 scanners. The number of slices
per scan ranged from 102 to 272 and the total number
of slices was 8573. Each slice has a size of 512×512
pixels with a 12-bit gray scale resolution in Hounsfield
Units (HU).

The dataset includes 222 annotated nodules
between 3 and 32 millimeters. The distribution of the
diameter sizes of the nodules is shown in Fig. 1.

Fig. 1. Distribution of the diameters of the nodules in
the dataset.

As it is obvious from the histogram shown in
Fig. 1, there are 11 nodules with diameter < 4 mm.
Since the proposed framework is aimed to detect
nodules with diameter ≥ 4 mm, the number of target
nodules is 211 out of 222. The distribution of nodules
per case is illustrated in Fig. 2. Since there are no
nodules in four cases of the dataset, the histogram in
Fig. 2 presents the distribution of nodules in 56 cases
that contain at least one nodule.

Fig. 2. Distribution of the nodules per case.

Fig. 3 illustrates maximum intensity projection
rendering of different pulmonary nodules presented in
the dataset.

As it can be seen from Fig. 3 the dataset
includes isolated, juxtavascular (vessel-connected) and
juxtapleural (pleura-connected) nodules of various
sizes.

The developed framework includes the following
major processing steps: segmentation of the lung
regions from the surrounding anatomy, multiple gray
level thresholding for extracting nodule candidates
and vessels inside the lung region followed by
morphological processing, 3D blob extraction,
computing features of the nodule candidates, rule-
based and SVM-based classification of the 3D blobs
and finally, 2D/3D visualization of the analyzed
scans. Fig. 4 shows the top level block diagram of
the proposed framework. The processing steps are
described further in the next sections.

3D LUNG REGIONS SEGMENTATION

Segmentation of the lung regions is the first stage
of the method’s processing pipeline. The goal of this
step is to separate the voxels corresponding to lung
tissue from the surrounding anatomy. The general
scheme of the lung segmentation algorithm is similar
to that described in Hu et al. (2001); Leader et al.
(2003). Having the input CT image, to accomplish the
lung segmentation task we generate and use four types
of 3D masks. These are the initial lung mask (Mi), the
body mask (Mb) , the secondary lung mask (Ms) and
the final lung mask (M f ). Fig. 5 illustrates examples of
generated masks during the segmentation process.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Maximum intensity projection renderings of
pulmonary nodules of different sizes (ordered by
diameter from top left to bottom right). (a) pleura-
connected 23.1mm, (b) vessel-connected 20.16mm,
(c) isolated 13.4mm, (d) vessel-connected 9.2mm, (e)
pleura-connected 8.3mm, (f) vessel-connected 6.9mm,
(g) isolated 6.2mm, (h) isolated 5.7mm, (i) isolated
4.2mm.

The procedure of the 3D lung segmentation is
depicted in Fig. 6. As it is shown in Fig. 6, first of
all, the optimal thresholding algorithm is applied to
the input CT images to generate the initial lung mask.
The optimal thresholding algorithm is an iterative
procedure which was adapted to separate the body
voxels (i.e., high density voxels of body and chest
which have higher Hounsfield values) from non-body
voxels (i.e., low density voxels of lung and surrounding
air which have lower Hounsfield values). The optimal
threshold is determined via an iterative procedure. Let
Ti be the segmentation threshold at step i. Ti is applied
to the input image to separate body- from non-body
voxels. Let µb and µn be the mean gray-levels of the
body and non-body voxels segmented with threshold
Ti. The new threshold (Ti+1) is calculated via:

Ti+1 =
µb +µn

2
, (1)

The iterative updating of the new threshold is repeated
until Ti+1 = Ti. The Hounsfield value of the air
is chosen as the value of initial threshold (T0 =
−1000 HU).

The initial lung mask (Mi) is generated by applying
the optimal threshold to the input image. In the next
step, the body mask (Mb) is generated. It is used to
mask out the all voxels corresponding to the body
including lung and chest. The body mask which is
shown in Fig. 5b is obtained as follows. Firstly, the
morphological hole filling algorithm is applied to
the complemented initial lung mask (¬Mi). Then, a
3D connected components labeling algorithm is used
to find out the connected components of the body
mask. By choosing the maximum component of the
resultant image which corresponds to the body voxels,
we obtain the body mask. Note that morphological
hole filling algorithm is carried out slice-by-slice in
2D fashion to reduce the computational time of the
method. Having the initial lung and body masks, as
it is shown in the Fig. 6, the secondary lung mask is
obtained via:

Ms = Mi∧Mb , (2)

where, Mi is the initial lung mask, Mb is the body
mask and “∧” is the logical “AND” operator. Next, the
final lung mask (M f ) is generated by applying the hole
filling algorithm on Ms. Finally, the segmented lung
image is obtained by superimposing of M f on the input
image, which will serve as region of interest (ROI) in
order to detect the pulmonary nodules.
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Fig. 4. Top level block diagram of the proposed CADx method.

(a) (b)

(c) (d)

Fig. 5. Examples of the masks which are generated and
used during the lung segmentation process. (a) Initial
lung mask, (b) Body mask, (c) Secondary lung mask,
(d) final lung mask.

CANDIDATE NODULES SEGMENTATION
AND DETECTION

Having the region of interest (i.e., segmented lung
regions), the next step is to identify the nodule-like
structures inside the ROI. As it is shown on the top
level block diagram of the framework presented in
Fig. 4, the identification of the nodule candidates
starts with segmentation which employs a multiple
thresholding technique. Since the nodule density is
higher than that of lung tissue (Golosio et al., 2009),
internal isolated nodules can be easily isolated by
a proper single-threshold separation. Unfortunately,
internal nodules are not always isolated, as they
can establish connections with the vessels. If the
threshold is too low, juxtavascular or vessel-connected
nodules appear as connected to the vessels. On the
other hand, the threshold must not be too high. If
it becomes higher than the density of a nodule,
part of this nodule will be lost and its volume will
be underestimated. Another problem regarding the
threshold level is the segmentation of juxtapleural
nodules (i.e., nodules that are connected to lung wall
or parietal pleura). It often happens that the lung
segmentation procedure leaves part of the lung wall
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Fig. 6. Block diagram of the lung segmentation process. The operation starts with processing of the 3D input CT
image and results in 3D segmented output.

(pleura) inside the volume of interest, especially in
high-convexity regions. Juxtapleural nodules in these
regions will remain connected to part of the lung wall.
If the threshold is too low, juxtapleural nodules will
be connected to this layer. Using a multithreshold
procedure, solid nodules connected to the vessels as
well as low-density nodules can be detected. Fig. 7
illustrates a sample of vessel-connected nodule which
is segmented in multiple threshold levels.

Inspired by the method introduced in Armato et
al. (2001), we employed a specialized version of the
multiple-intensity thresholding approach. The authors
of Armato et al. (1999; 2001) applied 36 gray level
thresholds to the segmented lung volume. For each
threshold, they identified contiguous structures with
associated gray-levels greater than the threshold and
observed that single structures identified at lower gray-
level threshold value can disassociate into multiple

(a) (b) (c)

Fig. 7. Three-dimensional views of the isosurfaces corresponding to a nodule connected to a vessel, segmented
with thresholds of −450, −300 and −150 HU depicted in (a), (b) and (c) respectively.
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smaller structures at higher threshold values. In a
similar work Golosio et al. (2009), a wide range
of threshold values applied to CT images and the
connections between ROIs at different thresholds are
stored in a tree data structure.

Unlike mentioned methods, due to computational
time considerations, we used a limited range
of threshold values. The ten threshold levels in
Hounsfield unit which were selected by examination
of annotated nodules in the dataset are: −600, −550,
−500, −450, −400, −350, −300, −250, −200 and
−150. Each threshold operation was followed by 2D
morphological opening with a circular structuring
element of radius 1 to remove residual structures
such as vessels which may be attached to nodule
candidates. Applying these threshold levels Ti to
the ROI (segmented lung regions) leads to ten
corresponding candidate nodule masks (C1, ..,C10).
Each Ci is a 3D binary mask corresponding to the
voxels remaining after thresholding. In the next step,
3D blob extraction algorithm is applied to extract
information of connected components within each
Ci. At each candidate nodule mask (Ci) remaining
pixels are linked by means of a 3D 6-point connectivity
scheme. In this scheme, every voxel of interest (x,y,z)
within each mask ((x,y,z) ∈ Ci), which has the value
‘1’ is labeled in the same blob with the following
neighboring voxels: (x ± 1,y,z), (x,y ± 1,z) and
(x,y,z±1). Fig. 8 represents the scheme of the 6-point
connectivity.

Fig. 8. Six-point connectivity scheme for 3D blob
extraction. The pixel of interest is shown in gray.

Extracted blobs within each Ci are inspected
further to determine whether to keep or remove
detected nodule candidates. In this step the inspection
is based on a simple size criterion. Since the
effective nodule size range of the framework is set
to [4,30] millimeters, then the blobs with maximum
dimension size > 30 mm and minimum dimension
size < 4 mm are removed from each Ci using a
corresponding 3D bounding box. The efficiency of
this criterion is illustrated more specifically in Fig. 9.
Fig. 9a represents the maximum intensity projection
of extracted blobs in a sample Ci with the threshold
level −400 HU. In the figure, each blob is illustrated

with an identifying unique color and a white contour.
Applying the mentioned simple size criterion to Fig. 9a
resulted in the remaining nodule candidates presented
in Fig. 9b.

Next, all ten nodule masks are inspected by the
simple size criterion and the final mask is obtained by
applying logical “OR” operation being applied to each
Ci via:

C f =C1∨C2...∨C10 , (3)

where C1 to C10 are candidate nodules’ masks obtained
from the different threshold levels inspected by the
simple size criterion and “∨” is logical “OR” operator.
The reason behind applying logical “OR” operation
is to keep both low density nodules, which remain in
masks obtained from low threshold levels, and vessel-
connected nodules which usually appear in masks
obtained from high threshold levels. Furthermore, this
procedure greatly reduces the computational load of
the subsequent feature calculation and classification
because it reduces the number of total candidates. As it
can be seen from Fig. 9b, there are a significant number
of false positives in the inspected nodules masks Ci
and consequently in the final candidate nodules mask
C f . Therefore, in order to decrease the number of
false positives, the remaining blobs presented in the C f
are inspected further by extraction of more powerful
features (listed in Table 1) and classifying with the help
of the SVM classifier. The key details of the feature
extraction and classification steps are described in the
next subsection.

FEATURE EXTRACTION AND
CLASSIFICATION
The nodule masks obtained with different

threshold levels were inspected and integrated into
a single nodule mask C f through Eq. 3. The next step
is to reduce the number of false positives through a
classification step which categorizes the remaining
candidate nodules into “nodule” or “non-nodule”
classes. To achieve such a reduction, a set of 17 2D
and 3D features is computed for each segmented and
labeled candidate nodule in C f . They can be grouped
into the following four types: 3D geometrical, 3D
intensity-based, 2D geometrical and 2D intensity-
based features. All 3D and 2D features are taken
from Hardie et al. (2008); Messay et al. (2010).
Furthermore, the 2D features computed are based on
intensity and geometrical information from the slice
with largest area situated inside the bounding box. The
details of features employed in this study are listed in
Table 1.

It is obvious that in real practice the selection of
an optimal subset from the original set of features
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Table 1. The list of optimal subset of features that were selected for the classification of candidate nodules
presented in C f .

No. Feature Comments
3D features:
1 Volume number of voxels of the candidate
2 MinDim minimum dimension size of the bounding box
3 MaxDim maximum dimension size of the bounding box
4 Eccentricity1 = MaxDim/MinDim –
5 Compactness1 =Volume/∏

3
i=1 Dim(i) Dim1=Width, Dim2=Height and Dim3=Depth

6 Compactness2 =Volume/MaxDim3 –
7 DistanceToCenter distance to the center of projected lung
8 MinIntensity minimum intensity of candidate
9 MaxIntensity maximum intensity of candidate
10 StdIntensity standard deviation of candidate’s intensity
2D features:
11 Area pixel count of surface with maximum size
12 Circularity = 4πArea/P2 P is the perimiter of maximum surface
13 Eccentricity2 = MaxDim/MinDim length and width of 2D bounding box
14 DistToCenter2 distance to center of current slice
15 MinIntensity2 minimum intensity of area
16 MaxIntensity2 maximum intensity of area
17 ST DIntensity2 standard deviation of area’s intensity

in an exhaustive manner is a tedious task. In this
work we have selected features with the help of a
greedy forward method (Guyon, Elisseeff , 2003).
It is known that this method does not guarantee an
optimal set of features. However, it resulted in a
subset with reasonably high efficiency. Following the

cited feature selection method, we take a fraction of
original sample of patients containing 15 annotated
nodules and 720 non-nodule objects for performing the
feature selection procedure. The objects of both classes
were segmented according to the described candidate
nodule identification procedure. The nodule- and non-

(a) (b)

Fig. 9. (a) The maximum intensity projection map of a sample candidate nodules mask (Ci). (b) The maximum
intensity projection map of the same nodule mask after inspection with the simple size criterion.
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nodule objects were characterized by different subsets
of an original set of features and the optimal subset of
features is selected based on classification results of
nodule- and non-nodule objects. The original feature
set consisted of 85 features selected from previous
studies reported in Hardie et al. (2008); Messay et
al. (2010); Tan et al. (2011). In order to illustrate
the effect of the feature selection procedure let us
present two scatter plots presenting the separation
of objects in feature space using a multidimensional
scaling method (see Fig. 10). The left scatter plot
of the figure presents objects’ separation using the
optimal subset of features including 17 features listed
in Table 1 while the right one gives picture of objects’
separation using a non-optimal subset of the features
including 9 features. The figure represents relative
distances of the multidimensional feature vectors in
a reduced 2 dimensional view. As it is obvious from
the Fig. 10a the nodule and non-nodule samples which
were described with optimal subset are more separable
than the samples described with 9 features presented
in Fig. 10b.

Having the feature set listed in Table 1, the next
step is the classification of candidate nodules. We
adopted a SVM classifier that separates the data
into two categories by constructing an N-dimensional
hyper-plane in feature space. The radial-based kernel
(RBF) (Burges , 1998) is selected empirically as the
kernel function to train the SVM. The RBF function
defined via Eq.4 is applied to the training set samples
in the instance-label form (xi,yi) ,where xi ∈ Rn and
yi ∈ {−1,1}.

K(xi,x j) = exp
(
−γ

∥∥xi− x j
∥∥2
)
, γ > 0 . (4)

To avoid possible bias introduced by selection
of specific samples for training and test sets, the
training was carried out using a 5 fold cross-validation
procedure. The validation procedure was as follows.
First, the original dataset was broken down to 5
groups each containing 12 cases (60 cases and 211
nodules in total). The estimated class probabilities of
the nodule candidates of each group were determined
using the trained classifier on the remaining 4 groups.
This procedure was repeated 5 times. Cross-validation
enables an estimation of expected classification results
of a data set that is independent of the data that were
used to train the model. However, after validating
the method all of the 60 scans are used to train the
framework to prepare the framework for handling
totally independent and new test cases. In other words,
in real practice, new CT scans (test sets) which are
totally independent from the training scans will be

given to the framework which was already trained with
60 training scans.

(a)

(b)

Fig. 10. The multidimensional scaling representation
of the candidates belonging to nodule and non-nodule
classes. (a) samples described with 17 features listed
in Table 1 (b) same samples described with a sub set
of features listed in Table 1 including 9 features.

Once all of the nodule candidates were classified,
we applied a simple threshold (Tprob ∈ [0,1]) on the
estimated class probabilities of the nodule candidates
and scored the true positive (Tp), false positive (Fp)
and false negative (Fn) events utilizing the positional
information of nodules provided in the ground truth.
The sensitivity of the classifier at each level of Tprob is
computed as:

Sensitivity =
Tp

Tp+Fn
. (5)

The experimental results including classification
results of the nodule candidates are reported in the next
section.
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RESULTS

The experimental results are organized in
two parts. In the first part, the overall detection
performance of the framework is reported.
Furthermore, this part includes the manner of
parameters determination. In the second part, the
performance of the framework is compared to other
present well-known CADx systems. Finally, we
demonstrate a few screen shots of the processed CT
images which emphasize the visualization capabilities
of the framework.

DETECTION PERFORMANCE AND
PARAMETER DETERMINATION

The nodule detection performance of the proposed
framework is measured and presented using FROC
curves. A FROC curve is defined as the fraction
of Tp nodule candidates, which are passed from
estimated class probability threshold Tprob, versus
the average number of Fps. As a result of several
experiments we noticed that the performance of the
framework is affected by several parameters. Although
finding the optimal combination of the whole set of
control parameters is usually tedious and in some
cases practically impossible, several experiments have
been carried out to find the best combination of the
major influencing parameters empirically. In addition
to the nodule feature set, other major parameters that
influence both time- and detection performance are:
the number of intensity threshold levels Pt applied to
segmented lung in order to generate nodule candidate
masks and the size criterion Ps that determines the
range of the target nodules inside the dataset.

To determine the best value of Pt , we used
four different sets of thresholds (Si) including 1,
5,10 and 20 threshold levels respectively. The first
set includes one threshold level (S1 = {−450}),
the second set includes five threshold levels (S1 =
{−200,−300,−400,−500,−600}), the third set (S3)
includes 10 threshold levels starting from −600 to
−150 in 50 intensity increments and finally S4 includes
20 threshold levels starting from −1000 to −50 in
50 intensity increments. Note that the number of
threshold levels in each set determines the number of
candidate nodules’ masks which should be generated
and processed in order to identify the nodules. Thus,
the nodule detection performance is a function of Si.
The 211 nodules of the dataset (nodule size ≥ 4 mm)
were detected repeatedly each time by applying a set
of threshold levels Si. Consequently, the sensitivity
and average Fp per case of the detection component
for each threshold set were computed. Fig. 11 shows

FROC curves representing the detection performance
of the framework for each threshold set.

Fig. 11. FROC curves representing the detection
performance of the framework as a function of
threshold level numbers (Pt) used for generating
candidate nodules masks (size criterion is fixed to
nodule size ≥ 4 mm ).

As it can be seen in Fig. 11, considering a fixed
Fp per scan in the curves, as the number of threshold
values increases the higher detection sensitivity values
are achieved. For instance, considering Fp = 3.9 as
cut-off point, the sensitivity values of the curves Si
are 0.60, 0.74, 0.80 and 0.81 respectively. Since there
are no significant differences between the sensitivity
values of S3 and S4, considering the time efficiency
of the detection process, S3 is selected as the optimal
threshold set of the framework. Therefore, the optimal
value of the parameter Pt is the number of members
of S3 which consisted of 10 threshold levels and
leads to detection of 169 nodules out of 211 (i.e.,
sensitivity is equal to 0.80 with average 3.9 Fp/case).
However it is important to note that, from diagnostic
point of view the cost of less sensitivity (too many
false negatives) could be much more than the cost of
less specificity (too many false positives). Anyhow, if
higher sensitivity is desired, this can done by tuning the
class probabilities threshold Tprob and consequently the
sensitivity could be raised up to 88% with average 10
false positives per case.

Regarding the computational time of the nodule
detection process, it is important to note that
computational time is dependent to several parameters
such as the image size, the complexity of the
algorithms being used and the processing capabilities
of the hardware. However, in our case, the average
computation time required for detection of nodules per
case takes about 80–100 seconds on a computer with
Intel Core2 Duo Processor E6600 with 2.4 GHz clock
speed.
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In order to determine the optimal value of the other
major parameter, i.e., the nodule size criterion or Ps,
the nodule detection procedure is executed repeatedly
with three different size criterion: nodule size≥ 3 mm,
nodule size ≥ 4 mm and nodule size ≥ 5 mm. The
number of target nodules in each size criterion is 222,
211 and 173 nodules respectively. Fig. 12 shows FROC
curves representing the detection performance of the
framework for each size criterion.

Fig. 12. FROC curves representing the detection
performance of the framework as a function of target
nodule size (Ps).

As it is clear from the Fig. 12, the curves
representing the nodule size≥ 5 mm and≥ 4 mm yield
better detection performance. Although, the detection
performance of the curve corresponding to the size
criterion ≥ 5 mm is slightly better than the one which
corresponds to the size criterion≥ 4 mm. Nevertheless,
since the CADx systems are expected to demonstrate
acceptable performance in the case of smaller size
nodules, we have fixed the size criterion of our
framework to nodule size ≥ 4 mm.

PERFORMANCE EVALUATION AND
VISUALIZATION RESULTS
In this section, the proposed framework is

evaluated by a comprehensive comparison of its
performance to the existing methods on lung nodule
detection. The comparison is based on the following
factors: dataset size (number of patients and nodules
count), applied size criterion, sensitivity and average
Fp per case. Table 2 provides evaluation information
on which our method is contrasted with 6 existing
methods. Making an exact comparison of different
methods is a difficult task since some of the mentioned
methods used private datasets generated by various
modalities rather than the LIDC public dataset.
Nevertheless, the mentioned factors together provide

a reliable comparison basis which allows ranking of
different methods.

As it is confirmed by the information provided
in the Table 2, considering the assumed parameter
settings, the proposed framework provides better
detection results than most of present methods from
the sensitivity point of view. However, some methods
provide slightly better performance than our method.
The discussion regarding these differences is presented
in the next section.

We conclude this section by illustrating graphical
outputs of the framework produced in different
phases of the processing pipeline. Fig. 13a shows
MIP representation of a sample CT image in the
segmented form which is segmented by the lung
regions segmentation component. Fig. 13b represents
identified nodules on the same image processed by
the nodule segmentation and identification component.
Finally, Fig. 14 shows corresponding 3D rendered
output of the image shown in Fig. 13b. Note that
there is no smoothing or any other post processing
in Fig. 14. It is constructed by extracting and plotting
isosurface data from the volume data which is prepared
within the framework’s processing pipeline. Using
the visualization tool, the radiologists can navigate
through the 3D lung structure and nodules, and find the
corresponding points in the MIP representation which
increases their ability for more accurate diagnosis.

DISCUSSION

For the last 15 years, considerable efforts have
been devoted to the problem of automated lung nodule
detection. Despite these efforts, research works aimed
at a robust and computationally efficient CADx system
are still on the way. In this paper, we proposed a new
comprehensive CADx framework for segmentation
and detection of pulmonary nodules in CT images.
Utilizing an optimal set of thresholds, the proposed
nodule detection method resulted in an acceptable
level of the detection sensitivity (0.80). Meanwhile,
using an optimal set of simple features and a SVM
classifier the rate of average false positives is decreased
to 3.9 Fp per case. The validity of the method is
assured by a 5-fold cross-validation method.

We explored the rate of changes in the performance
of nodule detection component which is a function of
several major parameters. These parameters are: the
candidate nodule feature set, the number of applied
threshold levels and the applied target nodule size
criterion. Although, finding the optimal feature set for
classification is difficult , we used a greedy forward
feature selection algorithm which resulted in a set of

23



ALILOU M ET AL: Detection of pulmonary nodules in lung CT images

Table 2. Results of comparison of the proposed framework with previously published studies of lung nodule
detection.

CADx Number of Number of Number of Applied Sensitivity Fp/patient
system patients all nodules detected nodules size criterion (percent)
(Tan et al., 2011) 125 259 172 ≥ 3 mm 66.4 3
(Golosio et al., 2009) 84 148 117 ≥ 4 mm 79 4
(Messay et al., 2010) 84 143 118 ≥ 3 mm 82.5 4
(Gurcan et al., 2002) 34 63 53 ≥ 3 mm 84 5.5
(Riccardi et al., 2011) 154 385 189 ≥ 5 mm 49 4
(Rubin et al., 2005) 20 195 148 ≥ 3 mm 76 3
Proposed framework 60 211 169 ≥ 4 mm 80 3.9

(a) (b)

Fig. 13. (a) The MIP representation of a sample image processed with lung regions segmentation component. (b)
same image processed with nodule identification component.

17 computationally simple features. Furthermore, the
optimal values of the threshold and size parameters
(i.e., Pt and Ps) were determined empirically.

Although the proposed CADx solution can detect
the nodules with high precision, we provide a 2D/3D
visualization tool which enables the radiologists a
more accurate diagnosis. The visualization capabilities
accelerate the process of analyzing CT images which is
carried out by radiologists. In this respect, we provided
a set of 2D, 3D and projected 3D (MIP) graphical
outputs in different steps of the processing pipeline.
Fig. 13 and Fig. 14 represent sample illustrations of
these graphical outputs.

Making an exact comparison with the present
CADx systems is difficult due to variability in the
image datasets as well as differences in the labeling

and scoring methods and variation in validation and
ground truth standards. Furthermore, some methods
were using internal or private datasets which are
not publicly available. Nevertheless, it is important
to make a relative comparison. In this respect,
the performance of the proposed framework is
evaluated by comparing it with 6 present CADx
methods/systems. The comparison is made based on
several factors as it is shown in Table 2. According
to information provided in Table 2, considering the
assumed parameter settings, the proposed framework
provides better detection results than most of present
methods since it is able to detect 0.8 of the nodules
(sensitivity) with 3.9 average Fp/case. However,
there are still two methods proposed in Gurcan
et al. (2002); Messay et al. (2010) which have
better sensitivity in comparison to our method. The
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Fig. 14. A 3D rendering of the image shown in Fig. 13b which is produced by the nodule identification component.
The 7 identified nodules are shown in green.

mentioned methods demonstrate a sensitivity equal to
82.5 and 84 respectively, which are slightly better than
the proposed method. In the other hand, they produce
in average 4 and 5.5 Fp per case respectively.

Although the detection results of the proposed
framework are promising, the method still has some
drawbacks. For instance, over- or under-estimation of
the nodules’ volume can be considered as a drawback.
The threshold-based segmentation of the structures
may over- or under- estimate the volume of the
interested structures depending to the threshold level.
In order to resolve this drawback, a future work
direction is segmentation refinement of the detected
nodules which can be carried out by utilizing gradient-
based reshapable agents which is proposed in Alilou
and Kovalev (2013). Furthermore, since the framework
is able to detect solid nodules without determining the
type of the detected nodules (i.e., whether a detected
nodule is malignant or benign), a future research
option might be investigating a solution which enables
the framework to deal with the ground glass opacity
and part solid nodules and to train the method to
be able to distinguish between benign and malignant
nodules.

CONCLUSION

We have proposed a new framework for
segmentation and detection of solitary pulmonary
nodules in CT images. The proposed framework
demonstrated acceptable level of detection
performance (sensitivity = 0.80, Fp/case = 3.9) in
comparison with 6 existing CADx methods. In
addition to this detection performance and time
efficiency, the method offers extra visualization
capabilities. Hence, the developed framework could
be considered as a potential CADx tool for physicians
in the clinical processes.
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