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ABSTRACT 

The goal of standard histomorphometry is to provide methods of qualitative description of tissue structure 
based on image data. Typical measurements include geometric areas, perimeters, length, angle of orientation, 
form factors, center of gravity coordinates etc. There are well-established procedures for deriving the 
aforementioned quantities from binary images. However, segmentation of in vivo images of trabecular bone 
poses a problem which has not been solved yet. Recent years have brought significant developments within 
an emerging field of “gray-level histomorphometry”. The general goal of gray-level histomorphometry is to 
provide procedures for measuring geometric areas, perimeters, length, angle of orientation, form factors, 
center of gravity coordinates etc. without the need for image segmentation. Although the field is not very 
mature yet, the collected results suggest that this approach opens new perspectives which should not be 
overlooked by the scientific community. In the present review we summarize the state-of-the-art within the 
3D gray-level histomorphometry. 
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INTRODUCTION 

World Health Organization (WHO) defines osteo-
porosis as "a systemic skeletal disease characterized 
by low bone mass, deterioration of trabecular archi-
tecture and increased fragility of bone" (WHO, 1994). 
Accordingly, the primary determinant of the risk of 
osteoporotic fracture is bone density assessed using 
densitometric methods like bone mineral density 
(BMD) or bone mineral content (BMC). Osteoporosis-
related decrease of bone mass influences especially 
trabecular bone, the bony tissue constituting interior 
of vertebral bodies or epiphyses of long bones.  

Although decreased value of BMD or BMC is, 
according to WHO, the primary symptom of osteo-
porosis, 55% to 70% osteoporotic fractures are ob-
served in patients with normal BMD, which thus do 
not conform to the diagnostic criterion recommended 
by WHO (Wainwright et al., 2005). It also follows 
from the laboratory experiments that only from 40% 
to 80% of the variance of the mechanical parameters 
values like Young's modulus or ultimate stress can be 
explained by the variance of the values of bone 
density. It is argued that the factor responsible for the 
unexplained part of the variance of the values of me-

chanical parameters is the spatial organization of 
bony tissue (microarchitecture) (Ciarelli et al., 1991; 
Latała et al., 2013).  

As reported by the Surgeon General of the USA 
(http://www.surgeongeneral.gov), about 10 million 
Americans over age 50 have osteoporosis, while 
another 34 million are at risk. Each year about 1.5 
million people suffer from an osteoporotic-related 
fracture. Hip fractures are associated with increased 
risk of mortality, which is 2.8–4 times greater among 
hip fracture patients during the first 3 months after 
the fracture, than among the individuals who do not 
suffer from a fracture. Due primarily to aging of the 
population, the number of hip fractures in the United 
States could double or even triple by the year 2040.  

Because osteoporosis influences especially the tra-
becular bone, there is a challenge to develop methods 
of trabecular bone characterization, which would be 
complementary to BMD, applicable in clinical diagno-
sis and thus based on 2D (DXA or radiographic pro-
jections) or preferentially on 3D (either CT or MRI) 
images of trabecular bone. 

Recent years have brought significant developments 
within an emerging field of “gray-level histomorpho-
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metry”. The goal of standard histomorphometry is to 
provide methods of qualitative description of tissue 
structure based on image data. Typical measurements 
include geometric areas, perimeters, length, angle of 
orientation, form factors, center of gravity coordinates 
etc. There are well-established procedures for deriving 
the aforementioned quantities from binary images. 
However, segmentation of in vivo images of trabecular 
bone poses a problem which has not been solved yet. 
This is the point where the gray-level histomorphometry 
comes into play.  

The general goal of gray-level histomorphometry 
is to provide procedures for measuring geometric 
areas, perimeters, length, angle of orientation, form 
factors, center of gravity coordinates etc. without the 
need for image segmentation. Although the field is 
not very mature yet, the collected results suggest that 
this approach opens new perspectives which should 
not be overlooked by the scientific community. In the 
present review we summarize the state-of-the-art within 
the 3D gray-level histomorphometry. Open problems 
and future perspectives of the field are also sketched. 

METHODS OF ACQUISITION OF 
3D TRABECULAR BONE IMAGES  

High resolution 3D images of trabecular bone can 
be acquired with micro computed tomography (micro-
CT). Commercially available microCT scanners offer 
images with resolution ranging from 1 micrometer at 
the cost of a large X-rays dose and long time of data 
acquisition. Although microCT scanners are appropriate 
only for in vitro experiments, the microCT image data 
provide gold standards for comparison with images  
 

acquired with clinical devices. 

Three-dimensional images of trabecular bone can 
also be captured with clinical CT scanners (Fig. 1). 
CT scans are currently used to assess mineral and 
volumetric density of the trabecular and cortical bone 
compartments (Lang et al., 1999) what requires calib-
ration of the image data with respect to a special 
phantom. The resolution of such images is however 
markedly worse than that of microCT. Actually, the 
best resolution achievable for axial skeleton is about 
200 micrometers in the plane of the scan, which is 
approximately the same as the thickness of trabeculae. 
The resolution in the direction perpendicular to the 
scan plane is even worse, equal to about 0.5mm. 
Better resolution up to 80 microns at tolerable radia-
tion doses can be obtained with peripheral CT (Muller, 
2003) but CT scanners of this type are designed to 
examine bones only at peripheral skeletal sites: the 
radius and the tibia. Safe dose of X-rays and the 
duration time of the image acquisition process are the 
factors limiting in-vivo CT resolution. 

Modern strong field clinical MRI scanners provide 
spatial resolution of trabecular bone images of up to 
100 microns in plane and slice thickness as low as 
250 microns. Using small scanners with high field 
strengths even higher spatial resolution can be obtained 
up to isotropic voxel sizes of 50 microns (Fig. 2). A 
serious disadvantage of high resolution MRI is a long 
acquisition time of up to 10–20 min. Fast gradients 
and dedicated coils with a small field of view are also 
required as well as a high signal-to-noise ratio. Due 
to those limitations as well as the motion artifacts in 
the axial skeleton, high resolution MRI is applicable 
only to peripheral sites. 

 

Fig. 1. Three perpendicular sections of a 3D CT image of a vertebral trabecular bone sample. 
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Fig. 2. Three perpendicular sections of a negative of a high resolution MRI image of a distal radius trabe-cular 
bone sample. Due to low proton content trabe-culae are seen as bright bars. 

Summarizing, 3D images of trabecular bone 
samples are now easily available. The examinations 
of peripheral sites deliver images with resolution 
comparable to the typical thickness of trabeculae. The 
resolution of the 3D images of axial skeleton and 
femoral neck is however markedly worse. Because 
the correlation between trabecular bone features at 
different skeletal sites is often mild, the methods must 
be worked out to quantify trabecular bone structure 
from low-resolution data. In the following chapter 
parameters used to characterize trabecular bone based 
on high-resolution images are first presented. 

HISTOMORPHOMETRY OF 
TRABECULAR BONE 

Before standard histomorphometry measurement 
procedures can be applied, image data must be seg-
mented yielding binary images with, by convention, 
white representing bone and black representing marrow 
space. The segmentation of a grey-level image of a tra-
becular bone sample is a separate problem. For high-
resolution data segmentation is usually performed on 
the base of a grey-level histogram by setting a thres-
hold at a minimum between two maxima correspon-
ding to bone and marrow phases. By contrast, there is 
no generally accepted segmentation algorithm, used to 
process low-resolution images of trabecular bone. 

The trabecular bone volume fraction (BV/TV) is 
a surrogate measure of the bone density and equals to 
the ratio of bone voxels to the number of all voxels 
within the image.  

Trabecular thickness (Tb.Th) is an average over 
local measurements of bony tissue thickness taken at 
randomly selected bone voxels. The local thickness at 
a given point of a trabecular bone is the diameter of 
the maximal sphere that contains above mentioned 
point and is included entirely within the tissue of 

interest (Hildebrand and Rüegsegger, 1997). Trabecular 
separation (Tb.Sp) is the thickness of the marrow 
phase. The trabecular number Tb.N can also be 
calculated with the above approach. For this purpose 
trabecular bone image is skeletonized and diameters 
of the maximal spheres fitting the background of the 
skeleton are found for randomly selected points. 
Then, Tb.N is taken as the inverse of the average of 
the diameters of the spheres. 

Estimates of Tb.Th, Tb.Sp and Tb.N are rarely 
calculated from the definition. As an alternative, a 
distance transform is applied to the phase of interest 
and then the values of the transform are sampled 
along the skeleton of the phase and used as estimates 
of the local thickness. 

Given the skeleton of the trabecular structure, node-
strut analysis (Garrahan et al., 1986) of the skeleton 
can be conducted. From the image of the skeleton the 
node number (N.Nd), termini number (N.Tm), node-
to-node strut count Nd-Nd CS, node-to-terminus strut 
count Nd-Tm CS, terminus-to-terminus strut count 
Tm-Tm SC and different ratios like the node-terminus 
ratio (Nd/Tm) are calculated to quantify the trabecular 
structure. Clearly, the method is sensitive to the 
features of the skeletonization algorithm and artifacts 
of skeletonization can bias the estimated values of the 
computed parameters, among which N.Tm can be 
especially severely influenced.  

Trabecular bone pattern factor (TB.Pf) (Hahn et 
al., 1992) is another method of quantifying the structure 
of trabecular bone. For 3D datasets, the area of the 
bone-marrow interface (BS) and the volume of the 
bony tissue (BV) are measured. Then dilation is applied 
to the image resulting in thickening the trabecular 
structure by 1 voxel. The bone area BS' and the bone 
volume BV’ are calculated for the dilated image. The 
trabecular bone pattern factor is defined as: 
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Well connected networks result in low or even 
negative TB.Pf. Poorly connected networks result in 
high values of TB.Pf. 

Structure model index (SMI) (Hildebrand and 
Ruegsegger, 1997) indicates the relative prevalence 
of rods and plates in trabecular bone structures. An 
ideal plate, cylinder and sphere have SMI values of 0. 
3 and 4, respectively. For trabecular structure consisting 
of rods and plates of the same thickness SMI is in the 
range from 0 and 3. The calculation of SMI is based, 
like calculation of TB.Pf, on dilation of a 3D image. 
However, in contrast to TB.Pf, the measurement of 
SMI is based on differential analysis of the triangu-
lated bone surface. SMI is derived as follows: 
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The Euler number is an indicator of a 3D structure 
connectedness. The Euler number is a topologically 
invariant property of a three-dimensional structure. It 
is a measure of how many connections in a structure 
can be removed before the structure falls into two 
separate pieces. The components of the 3D Euler 
number are the three Betti's numbers: β0 is the 
number of objects, β1 is the connectivity, and β2 is the 
number of cavities entirely enclosed within the 
examined phase. The formula for the Euler number of 
a 3D object is: 

 210  . (3) 

Euler analysis provides a measure of connectivity 
density (E.Conn.D) which is equal to β1 divided by 
the analyzed volume (Odgaard and Gundersen, 1993). 

One of the most striking properties of trabecular 
bone is its structural anisotropy. Trabeculae are not 
aligned in random directions. They are rather aligned 
in a parallel way with the lines of major compressive 
or tensile stresses. Formally, structural anisotropy 
(fabric) is a second rank, positive definite tensor. 
There are a few approaches to define a fabric tensor. 
The most straightforward approach requires defining 
a vector field, which specifies locally the structure 
orientation. 

Let V be a unit vector describing the mean orien-
tation within a structure and g(x,y,z) be a vector 
describing local orientation. The error vector e(x,y,z) 
of g with respect to V is equal to e(x,y,z) = g-
(gT·V)V. The total error E is equal to the integral of e 

over the image volume. Minimizing E with respect to 
V yields an eigenequation V = V for V, where  is 
the covariance matrix of g (fabric tensor), i.e.: 

 , (4)   dgg jij,i

and  are the eigenvalues of the fabric tensor. The 
product gigj in Eq. 4 is integrated over the total vo-
lume of the image. 

One of the typical choices of the local orientation 
vector field is performed on the base of the volume 
orientation (VO) method (Odgaard et al., 1990) (Fig. 
3). The method works for binary images of binary 
structures. A local volume orientation is defined at 
any point within a trabecula as the orientation of the 
longest intercept through that point. For every point 
within the analyzed structure a single unit vector 
describing the local orientation is thus obtained. Then 
the components of this vector are inserted into Eq. 4 
defining the VO fabric tensor. 

 

Fig. 3. Measurement of the volume orientation in a 
sample point (grey disk). 

Another classical approach to characterize structural 
anisotropy is based on the mean intercept length 
(MIL) method (Whitehouse, 1974). The principle of 
the MIL method is to count the number of inter-
sections between a family of equidistant parallel lines 
and the bone/marrow interface as the function of the 
3D orientation  of the family of lines (see Fig. 4 for 
a 2D example). The mean intercept length is the total 
length LTOT of lines divided by the number of 
intersections NI(): 
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It is often assumed that the MIL data can be 
approximated with an ellipsoid. This ellipsoid may be 
expressed by the quadratic form of a second rank 
tensor - the MIL fabric tensor. Histomorphometric para-
meters can be calculated with both commercial software 
offered by the manufacturers of microCT scanners or 
with open source applications like BoneJ plugin (Doube 
et al., 2010) for ImageJ (http://rsb.info.nih.gov/ij/). 

 

(a) 

 
(b) 

Fig. 4. The principles of the MIL measurement: (a) a 
linear grid imposed onto the structure, (b) MIL is a 
function of orientation 

GRAY-LEVEL METHODS FOR 
CHARACTERIZING TRABECULAR 
BONE STRUCTURE 

Before describing the concepts related to the gray-
level histomorphometry, other gray-level based methods 
of characterizing trabecular structure should be men- 
 

tioned. In particular, the gray-level images of trabe-
cular bone have been analyzed, using the methods 
developed for texture characterization. One of the 
possible approaches is based on the co-occurrence of 
matrix and its derived parameters (Haralick et al., 
1973; Veenland et al., 1997). Firstly, histogram equa-
lization is performed: the number of gray levels is 
reduced to some number N and gray-level intensities 
are redistributed in such way that the probability of 
occurrence for all gray-levels is equalized. Secondly, 
a matrix M(d,) is composed, so that its element 
Mi,j(d,) is equal to the number of the co-occurrences 
of gray levels i and j over a distance d, under an angle 
. To simplify calculations and avoid intensive inter-
polations the angle is typically chosen equal to integer 
multiples of /4. Normalizing the matrix elements for 
the total number of co-occurrences yields a probability 
matrix Pd,. From this matrix a number of parameters 
can be computed, for example homogeneity HOM, 
contrast CON, entropy ENT, correlation COR: 

 , (6) 
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where ,  with x = i,j. 
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Another approach to characterize textures of the 
images of trabecular bone is based on the run length 
method (Galloway, 1975; Cortet et al., 1999). The 
run method consists of counting the gray level runs in 
the image and expressing the statistical distribution of 
these runs. A gray level run is defined as a set of 
linearly adjacent pixels with the same gray level 
value. A gray level run is characterized by its gray 
level value i, its length j and its direction . For each 
direction matrix L is computed so that the element 
L,i,j of the matrix is equal to the number of the runs 
with a gray level i and a length j. Like for co-occur-
rence matrix, a number of parameters can be computed 
from L, among them short runs emphasis R,1, long 
runs emphasis R,2, gray level nonuniformity R,3 or 
run length nununiformity R,4: 
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where N is the maximal gray level and S is the size of 
an image. 

According to the method of differential measure-
ment of local variations (Cortet et al., 1999), the local 
variations of gray levels are first estimated by the use 
of a differential filter (e.g., Sobel's filter) that permits 
an approximation of the gradient vector G(x,y). Four 
component images are computed by convolving the 
original image with the Sobel's filter masks G0, G¼, 
G½ and G¾ in four directions (0, ¼, ½, ¾). A 
few parameters have been measured with this method, 
among them mean modulus in the horizontal direction 
V1, mean modulus in the vertical direction V2, diffe-
rential modulus of variations V3 or scattering modulus 
of variations V4: 

 , (14) 
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and asterisk denotes convolution and S is the image 
size. 

Yet another approach to the gray level analysis of 
trabecular bone images is based on computing fractal 
dimension of trabecular structure (Pelag et al., 1983; 
Cortet et al., 1999). Starting from an original image 
Im, an eroded E(Im) and dilated D(Im) versions of 
the image Im are obtained, using square structuring 
element  ×  in size. Then the surface area parameter 
A() is defined as a function of : 

 





2

)1(V)(V
)(A , (18) 

where . If A() can be 

assumed to be a power function of , that is , 

then the fractal dimension FD is equal to 2-. 
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0j,i
j,ij,i (Im)E(Im)D)(V 

 ~)(A

One may ask, how the above mentioned parameters 
are related to the well-known histomorphometric mea-
sures. Although the question is interesting, the answer 
may be difficult. In most cases multiple regression 
models are tested to check whether inclusion of texture 
parameters increases determination coefficient of 
parameters directly related to fracture risk e.g., 
fracture strength or apparent Young’s modulus as 
compared to bone density only. The published results 
are not however encouraging - the texture analysis 
improves the prediction of mechanical parameters by 
at most a few percent (Veenland et al., 1997; Cortet 
et al., 1999).  

GRAY-LEVEL HISTOMORPHOMETRY 

The first attempts to derive structural information 
from gray-level data were based on the concept of an 
autocorrelation function of either an original gray-
level image or - in the case of MR images - its bone 
volume fraction (BVF) transform (Wu et al., 1994). 
A 3D autocorrelation function (r) is defined in a 
usual way: 

zyxzyx

zyx

rzryrxzyx

rrr

,,),,Im(),,Im(

),,(




, (19) 

where Im(x,y,z) denotes either an original gray-level 
intensity or BVF value at a point (x,y,z) within an 
image and the brackets <·>x,y,z indicate spatial ave-
raging over all possible locations (x,y,z). 

(r) always possesses a global maximum at r 
= 0. For every profile of (r) passing through the 
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origin there are further maxima for a quasi-regular 
structure occurring at r equal to integer multiples of 
the structure's spatial period d. The trabecular thickness 
estimate Th along some profile of (r) is defined 
(Hwang et al., 1997) as twice the value of the shift r 
so that (r) = ½(). The trabecular spacing Sp 
along the profile is defined as Sp = d-Th. The struc-
tural anisotropy of trabecular bone sample can be 
assessed by measuring Th and Sp as a function of 
orientation. (r) can be determined for all the 
directions and subsequently sampled at the desired 
angular resolution by test lines through the origin of 
(r). Then an ellipsoid is fitted to the rose plot of 
Th() (or Sp()). This ellipsoid may be expressed 
by the quadratic form of a second rank tensor ETh (or 
ESp). Let ath, bth and cth denote the three eigenvectors 
of ETh so that |ath| ≤ |bth| ≤ |cth|. The degree of 
anisotropy ATh is defined as: 

that the autocorrelation-based parameters account for 
91% of the variation in Young's modulus of the 
samples. Although the autocorrelation-based approach 
is certainly en elegant one, it can be argued that it can 
lead to false conclusions about structural properties in 
cases of structures which are not strictly periodic 
(Tabor, 2009).  

 
2

Th

Th
Th |c|

|a|
1A 
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Similar expression can be written for Sp.  

For structures, which are approximately isotropic 
within planes perpendicular to some axis (say z-axis) 
other parameters can be derived from autocorrelation 
function (Hwang et al., 1997). Having (r) deter-
mined one may calculate the following quantities: 

A fuzzy-set based approach was also proposed to 
quantify trabecular thickness (Saha and Wehrli, 2004) 
and structural anisotropy (Saha and Wehrli, 2004). 
This approach is based on the following definitions. 
A digital object O = (Z3; O) is a fuzzy subset of Z3, 
where Z is the set of all integers, Z3 represents a 3D 
digital grid and O : Z

3 → [0;1] specifies the mem-
bership value at each voxel. The membership value 
O is equal to the signal intensity within a voxel. In a 
binary image the distance between two points is the 
length of the straight-line segment joining them. In a 
fuzzy subset, membership values need to be 
accounted for in order to compute the length of a path 
or the distance between two points. The length of a 
path , O() in a fuzzy subset O is defined as the 
integral over fuzzy membership values along : 

 dt
dt

)t(d
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Then the transverse contiguity Tcon is defined as 
the ratio of the probability, so that a point from a voxel 
and a point from one of the voxel's eight nearest-
neighbors are both in bone divided by the probability 
that two points from the same voxel are both in bone. 
This ratio is approximately equal to: 

 
)0(ACF

)1(ACF
Tcon

transverse

transverse . (23) 

Tubularity is equal to the probability that two 
points from adjacent voxels in the longitudinal direction 
are both in a bone, divided by the probability that two 
points from the same voxel are both in a bone. The 
definition of tubularity Tub is: 

 
)0(ACF

)z,y,xIm()z,y,xIm(
Tub

allongitudin

z,y,x21 1


 , (24) 

The fuzzy distance between two points is the 
mini-mum length of all paths between the two points. 
Sup-port of a fuzzy subset is the set of points having 
a nonzero fuzzy membership. If a fuzzy object has a 
finite support then fuzzy distance transform (FDT) 
can be applied to the object. FDT is an operator applied 
to a fuzzy subset that assigns a value at each pixel 
location that is the smallest fuzzy distance between 
the location and a point on the boundary of the support 
of the fuzzy subset. Trabecular thickness can be esti-
mated by sampling FDT values along the skeleton of 
the fuzzy support of the structure of interest (Saha 
and Wehrli, 2004). Fuzzy subset-based estimates of 
trabecular separation can be obtained analogously 
(Krebs et al., 2009). 

where z1 and z2 refer to the locations of adjacent 
transverse sections. It has been shown in a study inclu- 
ding 23 distal radius specimens (Hwang et al., 1997) 

The definition of the length of a path in a fuzzy 
subset was also used to define a tensor of structural 
anisotropy. Structural anisotropy is measured in a 
number of candidate voxels. The fuzzy membership 
function is examined along sample lines, uniformly 
distributed over the angular space around a candidate 



TABOR Z ET AL: Gray-level histomorphometry 

voxel p, to find an edge voxel. Specifically, the object 

edge point on a sample line )  emanating from 
p, is computed which Euclidean distance from p, de-

noted by , is equal to the integration of 

the membership values along  until a non-object 
point (membership value = 0) is found: 

)p(
i

|| )p(
i

p(
i

)p(
i

||p


 
 


),p(T

0

)p(
i)p(

iO
)p(

i

)p(
i

dt
dt

)t(d
))t((||p|| , (26) 

where is the parametric location of the first 

(from p) zero membership point on . The location 
of the edge points is eventually corrected to ensure 
that the edge points found along mutually opposite 
sample lines are equidistant from the candidate voxel 
p. Finally, an ellipsoid is fitted to the rose plot of the 

distances  averaged over a number of candi-
date voxels and the tensor of structural anisotropy is 
then defined in a usual way. The idea of sampling 
signal along lines distributed uniformly over the 
angular space around skeleton voxels in the search 
for boundary voxels was also used to estimate tra-
becular thickness and separation (Liu et al., 2013).  

),p(T )p(
i

|| )p(
i 

)p(
i

||p

It is clear from the above discussion that the 
estimation of both fuzzy trabecular thickness and 
structural anisotropy requires initial preprocessing of 
an analyzed image to create the fuzzy subset support. 
For that purpose the voxels of an analyzed image, 
which certainly are not bone voxels, must be detected 
first and then assigned zero membership function 
value. It is not obvious that such preprocessing step is 
always possible for every class of the images of 
trabecular bone. Moreover, it has been shown that 
under controlled conditions, regarding resolution and 
noise, the FDT-based approaches do not outperform 
brute-force methods based on direct thickness measure-
ment on binarized images (Petryniak and Tabor, 2012). 

Other approaches to the thickness measurement 
have also been proposed, e.g., based on the concept 
of granulometry (Tabor and Petryniak, 2012; Moreno 
et al., 2012a). The problem is however still far from 
being solved. It should be noted that similar problems 
are addressed also within other fields of biomedical 
engineering, and the problems related to accurate thick-
ness estimation are well recognized (Dougherty and 
Newman, 1999; Prevrhal et al., 2002; Sato et al., 2003). 

Two histomorphometric parameters, which globally 
characterize the shape of trabecular elements are 
trabecular bone pattern factor (Tb.Pf) and Structure 
Model Index. Definitions of both of them can be 

reformulated to be applicable directly to gray-level 
images. The following notation is used (Tabor, 2011) 
in the derivation of the gray-level estimates of SMI. 
Im is an image of some structure (e.g., trabecular bone) 
and Im(x) denotes gray-level intensity at a point x. Im 
eroded by a structuring element  is denoted Im. V 
and S are the structure volume and the structure sur-
face area, respectively. V and S are the volume and 
the surface area of the eroded structure. Consider a 
discrete, binary image of some structure (black back-
ground, white structure). Let the structure be eroded 
by an eroding element  approximating a ball with a 
unit radius (e.g., a 3×3 pixels square in 2D). Then 

εVV  , which is the number of white pixels in the 
difference image Im-Im, approximates the structure 
surface area S. Similarly,  approxi-mates up to 
a multiplicative constant dSV/dr. Hence one has: 

εSS 

 
εV/V1

εS/S1
6

S

V

dr

dS
6SMI

2
V

VV




 . (27) 

Because we also have and 

, we finally get: 




 dV)xIm(V




 dV|)xIm(|S

 



























dV)xIm(

dV)xIm(

1

dV|)xIm(|

dV|)xIm(|

1

6SMI . (28) 

The operators on the right hand side for Eq. 28 
involve summations over signal intensities and gra-
dient magnitudes in image voxels and thus - in con-
trast to triangulation-based definition of (Hildebrand 
and Ruegsegger, 1997) - can be directly applied to 
gray-level images. It has been shown (Tabor, 2011) 
that SMI definition, given in Eq. 28 is equivalent to 
standard approach if applied to binary data (corre-
lation between a standard and an alternative approaches 
equal to 0.97). Eq. 28 has not been however tested on 
low-resolution medical data so far, although it has 
been shown that this approach is robust with respect 
to noise and resolution decrease (Tabor, 2011). Other 
triangulation-free definitions of SMI were also pro-
posed (Ohser et al., 2009) but their form renders their 
direct application to gray-level data. 

The above sketched approach can be also applied 
to derive a definition of Tb.Pf, applicable to gray-
level images. Note that formally, translating the struc-
ture surface by a small extent dr in its normal direction, 
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Tb.Pf can be defined as the ratio of the derivative of 
structure surface S with respect to dr and S, that is 
Tb.Pf = d(ln(S))/dr, where an approxi-mation for S 
has been given above. 

The MIL measurement can be generalized to gray-
level images (Tabor and Rokita, 2007; Tabor, 2009; 
2012; Moreno et al., 2012b). The MIL measurement 
involves counting the number of intersections between a 
family of parallel, equidistant lines and the bone-mar-
row interface. The inter-line distance d is usually consi-
dered to be a user-adjusted parameter. The MIL mea-
surement can be generalized to gray-level images if a 
limit  is taken. Indeed, assume that the inter-
face between two phases contains only lines with slope 
 and the total length L (Fig. 5). Then the number 
N() of intersections between a family of lines cha-
racterized by the slope  and the boundary is equal to: 

0d 

 
Fig. 5. The MIL measurement for a boundary compo-
sed entirely of a single line with slope . The distance 
s between the successive intersections is equal to 
d/sin(). 

 )sin(
d

L
)(N  . (29) 

Because for the binary images the magnitude of 
the gradient G is also constant along the phase inter-
faces, it can be normalized without loss of generality 
to the unit length. Hence one has: 

 |aG|
d

L
)(N  , (30) 

where a is a unit vector with orientation equal to . 
The absolute value of the scalar product aG  is 

taken because the MIL measurement is invariant with 
respect to the change of the gradient direction G by . 
For a square region of size S the total length of lines 

characterized by the slope  and shifted by d is equal 
to S2/d. Thus for a boundary model as above, MIL() 
is equal to: 

 
|aG|L

S
)(MIL

2


 . (31) 

For the case of an interface composed of lines 
with arbitrary slopes we have: 

 


 













|aG|

1

d|aG|

d
)(MIL , (32) 

where   denotes averaging of an argument over 

the region of interest . The definition of MIL given 
in Eq. 32 can be directly generalized to gray-level 
images. An efficient method to calculate MIL based 
on the above presented gray-level approach has been 
published in Moreno et al., 2012b. 

Besides MIL, there are other methods to quantify 
structural anisotropy from gray-level images but it 
appears that a method based on calculating the gray-
level structure tensor has been studied most frequently. 
Interestingly, it has been shown that in 2D MIL and 
GST tensors are related through an analytical formula 
(Tabor, 2009): 

 , (33) 1
GST21 GST)det(KGSTKMIL 

where K1 and K2 are some constants. Consequently, 
the principal orientation and principal values of one 
of the tensors can be computed while the principal 
orientation and principal values of the other tensor 
are known. The estimation of GST is however 
computationally much less expensive than the 
computation of MIL. Unfortunately, there are some 
drawbacks of computing GST if the resolution of an 
analyzed image is not isotropic (Tabor, 2010) or the 
quality of the data is too low (Tabor et al., 2013). For 
example (Tabor, 2010), GST can demonstrate false 
anisotropy and wrong orientation if the voxel size is 
not isotropic, as is the case of in vivo CT data. In 
spite of these drawbacks it has been shown (Tabor et 
al., 2013) that GST performs significantly better than 
MIL when applied to clinical data. 

Other approaches to quantify structural anisotropy 
include deriving an equivalent to an inertia tensor, 
where the signal intensity plays the role of mass 
(Varga and Zysset, 2009; Vasilić et al., 2009) or the 
Hessian matrix (i.e., the matrix of second derivatives) 
of the signal intensity (Eberly et al., 1994) but the 
usefulness of these methods for the assessment of 
structural anisotropy is not still well recognized. 
Interestingly, the principal values of inertia tensor can 
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be used to locally estimate thickness of structural 
elements and classify their shape into either rods or 
plates (Vasilić et al., 2009). The method, which is a 
direct development of the concept of digital topolo-
gical analysis (Wehrli et al., 2001) works well for 
gray-level data with quality substantially better than 
clinically achievable. 

COMPARISON OF STANDARD AND 
GRAY LEVEL HISTOMORPHOMETRY 
METHODS 

Comparison of standard and gray level image-
based measurements has been demonstrated in a few 
articles only. Autocorrelation function-derived surrogate 
measures of trabecular thickness and separation, intro-
duced by Hwang et al. (1997) were not compared 
against standard measures. Fuzzy distance transform 
(FDT) - based estimate of Tb.Th, introduced in the 
work of Saha and Wehrli (2004b) was compared with 
standard methods in the work of Petryniak and Tabor 
(2012). This study was based on microCT images of 
25 samples of distal radius trabecular bone, acquired 
with a resolution equal to 34 μm. The mean (standard 
deviation) values of standard Tb.Th and FDT-based 
Tb.Th were equal to 110 ± 10 μm and 79 ± 10 μm. 
The values of Pearsons coefficient of correlation 
between standard Tb.Th and FDT-based Tb.Th was 
equal to 0.99. The slope of standard Tb.Th vs. FDT-
based Tb.Th plot was equal to 1.03 ± 0.04, what 
suggested that the difference between the two measures 
corresponded to some shift only. These authors also 
tested how the FDT-based estimate of Tb.Th, calculated 
for low-resolution, noisy images is related to gold 
standard measurement, based on microCT data. They 
reported quite high correlation coefficient (about 0.8) 
even for 5-fold decreased reso-lution and an intensive 
noise. A comparison between microCT and clinical 
CT data was not however demon-strated so far.  

FDT-based estimates of trabecular separation were 
compared vs. standard estimates in the work of Krebs 
et al. (2009). It was shown that both methods are 
strongly correlated (correlation coefficient equal to 
0.99), when applied to high resolution data (microCT 
images, 82 micron pixel size) and the results of both 
measurements span the same range. A substantial 
overestimation of FDT-based estimate of Tb.Sp was 
however found, compared to gold standard microCT, 
when applying FDT-based method to HRCT images 
(resolution equal to 156×156×400 μm) of trabecular 
bone. In this case the coefficient of correlation dropped 
down to 0.94, standard measurements spanned range 
from 399 to 140 μm, while FDT-based measurements 
spanned range from 795 to 1596 μm. 

Another method of calculating Tb.Th and Tb.Sp 
from gray-level images was proposed in the work of 
Liu et al. (2013). The method, which uses a star-line 
tracing technique is claimed to effectively deal with 
partial volume effects of in vivo imaging where voxel 
size is comparable to trabecular thickness. Although 
the authors presented some numerical results of their 
computations, no comparison with standard methods 
of estimating either Tb.Th or Tb.Sp was actually 
presented. 

In the work of Tabor (2011) standard and gray-
level based methods of computing structure model 
index SMI were compared, based on a set of 25 
microCT images of distal radius trabecular bone, 
acquired with resolution equal to 34 μm. The mean 
(standard deviation) values of standard SMI and a 
gray level-based SMI were equal to 2.38 ± 0.38 and 
2.31 ± 0.42. The values of Pearsons coefficient of 
correlation between standard SMI and gray level-
based SMI was equal to 0.97. Based on Bland-
Altman analysis, the authors demonstrated that both 
methods are equivalent within 95% limits of agreement. 
It was also tested how the gray level-based estimate 
of SMI, calculated for down-scaled, noisy images is 
related to gold standard measurement, based on 
microCT data. It was found that the SMI estimate 
(either standard or gray-level based) grows with 
growing voxel size but quite high correlation coeffi-
cient (about 0.8) even for 5-fold decreased resolution 
and intensive noise was observed. A comparison 
between estimates of SMI from microCT and clinical 
CT data was not however done. 

Standard and gray level-based methods of estima-
ting structural anisotropy were compared in a few 
articles (Tabor, 2009; 2012; Tabor et al., 2013). In 
the case of two-dimensional data the equivalence of 
MIL and GST was proven analytically, as already 
mentioned (Tabor, 2009). The equivalence of both 
methods in 3D was tested based on a set of 25 
microCT images of distal radius trabecular bone, 
acquired with resolution equal to 34 µm (Tabor, 
2012). It was shown that the coefficient of correlation 
between corresponding eigenvalues of standard and 
gray level-based fabric tensor was very high, and 
exceeded 0.98. The principal anisotropy directions 
were calculated for the MIL and the GST fabric 
tensors. It was reported that the coefficient of 
spherical correlation between the first anisotropy 
direction of the MIL fabric tensor and the third 
anisotropy direction of the GST tensor was equal to 
0.78, the coefficient of spherical correlation between 
the second anisotropy directions of the MIL and the 
GST tensors was equal to 0.97 and the coefficient of 
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spherical correlation between the third anisotropy 
direction of the MIL fabric tensor and the first aniso-
tropy direction of the GST tensor was equal to 0.94. 
The Pearson’s coefficient of correlation between degree 
of anisotropy (equal to the ratio of the largest and the 
smallest eigenvalues of the fabric tensor) of GST and 
degree of anisotropy of MIL was equal to 0.90. 

Comparison between structural anisotropy para-
meters calculated for microCT and for CT images of 
trabecular interior of whole vertebral bodies was re-
ported in the work of Tabor et al. (2013). CT images 
were acquired with resolution 137 µm × 137 µm, slice 
thickness 0.75 mm and reconstruction interval equal to 
0.1mm. It was found that the correlation between 
eigenvalues of MIL and GST calculated for microCT 
data is not as good as in the case of small samples 
and did not exceeded 0.89. Correlation between GST 
parameters estimated for high and low-resolution data 
was mild (absolute value of the correlation coefficient 
not larger than 0.62). Even worse low results were 
found for the MIL method (absolute value of the corre-
lation coefficient not larger than 0.50). A comparison 
between structural MIL anisotropy parameters esti-
mated from microCT and GST parameters calculated 
for clinical CT data was not done yet. 

CONCLUSION 

Problems related to gray-level histomorphometry 
attach increasing attention of scientific community. 
The current research is focused primarily on develo-
ping robust gray-level methods of quantifying structural 
anisotropy and it appears that the gold standard MIL 
approach will be replaced by a novel standard in a 
near future (Moreno et al., 2012a). The methods of 
estimating other histomorphometric parameters from 
gray-level data are much less developed. Gray-level 
data-based methods of estimation of trabecular thick-
ness and separation, presented so far, require substantial 
pre-processing, which involves either image segmen-
tation or determining bone-marrow interfaces - steps 
difficult to accomplish in the case of in-vivo data. 
Gray-level data-based methods of estimation of struc-
ture model index or trabecular bone pattern factor, 
although existing, have not been tested on data 
characterized by quality comparable to achievable in-
vivo. Gray-level data-based methods of estimating 
other parameters, e.g., Euler number density have not 
even been proposed. The solution to the above listed 
problems is extremely important because the incorpo-
ration of accurate structural information is crucial for 
the success of emerging patient-specific finite element 
analyses of fracture risk (Trabelsi and Yosibash, 2011). 
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