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ABSTRACT

It was shown in Svane (2014b) that local algorithms based on grey-scale images sometimes lead to
asymptotically unbiased estimators for surface area and integrated mean curvature. This paper extends the
results to estimators for Minkowski tensors. In particular, asymptotically unbiased local algorithms for
estimation of all volume and surface tensors and certain mean curvature tensors are given. This requires
an extension of the asymptotic formulas of Svane (2014b) to estimators with position dependent weights.
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INTRODUCTION

Minkowski tensors (Schneider and Schuster, 2002;
Huget al., 2008) are generalisations of Minkowski
functionals (Matheron, 1975; Schneider, 1993). They
associate to a compact convex body X ⊆ Rd a
symmetric tensor, rather than a scalar. They carry
information about shape features of X such as position,
anisotropy, and eccentricity. For this reason they are
used as shape descriptors in statistical physics. For
instance, in Schröder-Turket al. (2010b), Minkowski
tensors are used to detect anisotropy in spherical bead
packs (see also Schröder-Turket al. (2011) for an
overview).

Since the data is often of digital nature, there is
a need for fast digital algorithms to estimate tensors.
In the special case of Minkowski functionals, local
algorithms are often chosen for this (Klette and
Rosenfeld, 2004) since they can be implemented based
on a linear filtering of the image (Ohser and Mücklich,
2000). The input is a black-and-white image, typically
a thresholded grey-scale image. The idea is to count
the number of times each n× ·· · × n configuration
of black and white pixels occurs in the image and
estimate the Minkowski functional by a weighted sum
of configuration counts.

Since Minkowski tensors generally depend on the
position of the underlying object, a local algorithm for
these tensors would need to take the position of each
n× ·· ·× n configuration into account. Such modified
algorithms are suggested in Schröder-Turket al. (2008;
2010a).

It is well known that local algorithms for
Minkowski functionals based on black-and-white
images are generally biased (Kampf, 2012; Svane,

2014a), even when the resolution goes to infinity. The
situation seems to be the same for most Minkowski
tensors. For this reason, and because most black-
and-white images arise as thresholded grey-scale
images, local algorithms based directly on grey-scale
images without thresholding were suggested in Svane
(2014b) for Minkowski functionals. The existence of
asymptotically unbiased algorithms for surface area
and integrated mean curvature in this situation was
also shown. In fact, only 1×·· ·×1 configurations are
needed for this.

The purpose of this paper is to extend the results
to prove the existence of asymptotically unbiased
estimators for surface and mean curvature tensors as
well. Larger n× ·· ·× n configurations are needed for
this in order to gain information about surface normals.
Moreover, position dependent weights are necessary in
order to get information about position.

The paper is organised as follows: We first describe
the model for grey-scale images we shall be working
with along with the generalised definition of local
algorithms based on n×·· ·×n configurations of grey-
values. In the next section, we show a slight extension
of the known theoretical results about the asymptotic
behaviour of local algorithms, which is required for
the study of these algorithms. This follows fairly easily
from the technical lemmas in Svane (2014b).

We apply this to the estimation of Minkowski
tensors. First we give their formal definition. In
the subsequent sections, local estimators for volume,
surface, and certain mean curvature tensors are
constructed and it is shown that they are asymptotically
unbiased, i.e., they converge when the resolution
tends to infinity and the point spread function (PSF)
becomes concentrated near the boundary. In particular,
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we obtain a complete set of estimators for the
Minkowski tensors in 2D. The algorithms require that
the PSF is known; at least the knowledge of what a
blurred halfspace looks like is required. Moreover, the
resolution has to be sufficiently high compared to the
support of the PSF. Finally, we show by an example
case how the formulas can be used to estimate all rank
2 tensors in 2D.

It should be emphasised that the focus of this
paper is only theoretical. We construct algorithms
for estimation of Minkowski tensors and show
convergence in an idealised setting. It is to our best
knowledge the first algorithm based on grey-scale
images without thresholding and the first to come
with a convergence proof. Whether these algorithms
perform well in finite, but high, resolution, or when
the digitisation model is only approximately valid, will
be the aim of future research, see also the discussion
section at the end of the paper.

LOCAL ESTIMATORS FOR GREY-
SCALE IMAGES

GREY-SCALE IMAGES
Let X ⊆ Rd be the compact set we are observing.

We assume that the light coming from each point is
spread out following a point spread function (PSF)
which is independent of the position of the point.
Hence the light that reaches the observer is given by
the intensity function

θ
X : Rd → [0,1] ,

where the intensity measured at x ∈ Rd is given by

θ
X(x) =

∫
X

ρ(x− z)dz .

In other words, θ X is the convolution 1X ∗ ρ of the
indicator function 1X for X with a PSF ρ . The PSF is
assumed to be a measurable function satisfying

(i) ρ ≥ 0 .

(ii)
∫
Rd ρ(z)dz = 1 .

We say that a PSF is rotation invariant if ρ(x) = ρ(|x|)
depends only on |x|.

A digital grey-scale image is the restriction of θ X

to an observation lattice L. A change of resolution
corresponds to a change of lattice from L to aL for
some a > 0. We assume that the precision of the
measurements changes with resolution in such a way
that the PSF corresponding to aL is

ρa(x) = a−d
ρ(a−1x),

see the discussion in Svane (2014b) Section 2.1. The
corresponding intensity function is denoted

θ
X
a (x) =

∫
X

ρa(x− z)dz = a−d
∫

X
ρ(a−1(x− z))dz .

In applications, the PSF is typically the Gaussian
function (Köthe, 2008) or the Airy disk (Airy, 1835).
Another important example is ρB = H d(B)−11B
where B ⊆ Rd is a compact set of non-zero finite
volume H d(B). In this case, we measure at each z∈L
the fraction of z+B covered by X . Such PSF’s have
compact support, but are not continuous.

A BLURRED HALFSPACE
For u ∈ Sd−1 and α ∈ R, write

H−α,u = {x ∈ Rd | 〈x,u〉 ≤ α}

for the halfspace. The intensity function associated to
a halfspace in standard resolution will play a special
role in the following. Hence we introduce the separate
notation

θu(t) := θ
H−0,u
1 (tu) .

Note for later that

θ
H−0,u
a (ax) = θ

H−0,u
1 (〈x,u〉u) = θu(〈x,u〉) ,

independently of a.

Example 1. If ρ is the standard Gaussian

ρ(x) = (2π)−
d
2 e−

1
2 |x|

2
,

then

θu(t) =
∫

u⊥

∫ 0

−∞

ρ(tu− z− su)dsdz = Φ(−t) ,

where Φ is the distribution function for the standard
1-dimensional normal distribution.

A geometric interpretation of θu is illustrated in
Fig. 1.

u

Fig. 1. A grey-scale image of a halfspace. The function
θu measures how the grey-values change along the
horizontal line going from right to left.
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LOCAL ALGORITHMS IN THE GREY-
SCALE SETTING

Let L be a lattice in Rd spanned by the ordered
basis v1, . . . ,vd ∈ Rd and let Cv =

⊕d
i=1[0,vi) be

the fundamental cell of the lattice where ⊕ denotes
Minkowski addition, see (Matheron, 1975). As we
shall later be scaling the lattice, we may as well assume
that the volume det(v1, . . . ,vd) of Cv is 1. For c ∈ Rd ,
we let Lc = L+c denote the lattice translated by c and
aLc the scaling of Lc by a > 0.

Fix w ∈ L. A fundamental n×·· ·×n lattice block
is Cn

w,0 = (w+ nCv)∩L. More generally we consider
its translations Cn

w,z = z+Cn
w,0 by z∈Rd . We denote by

[0,1]C
n
w,0 the set of nd-tuples of points in [0,1] indexed

by Cn
w,0. A point in [0,1]C

n
w,0 is written {θs}s∈Cn

w,0
. The

restriction of θ X
a to aCn

w,z naturally defines a point in
[0,1]C

n
w,0 which we denote by

Θ
X
a (az;aCn

w,0) := {θ X
a (az+as)}s∈Cn

w,0
.

Definition 2. A local algorithm Φ̂
f
q is an estimator of

the form

Φ̂
f
q(X) = aq

∑
z∈Lc

f (ΘX
a (az;aCn

w,0),az) , (1)

where f : [0,1]C
n
w,0 ×Rd → R is a Borel function. We

assume that the support of f is contained in A×Rd

where A⊆ (0,1)C
n
w,0 is compact and that f is bounded

on compact sets.

The assumptions on f make the sum in Eq. 1 finite
and z 7→ f (ΘX

a (az;aCn
w,0),z) integrable whenever X is

compact.

We assume that the lattice is stationary random,
i.e., we consider the lattice Lc = L+ c where c ∈ Cv
is uniform random. Then the mean estimator is

EΦ̂
f
q(X) = aqE ∑

z∈Lc

f (ΘX
a (az;aCn

w,0),az) (2)

= aq−d
∫
Rd

f (ΘX
a (z;aCn

w,0),z)dz .

As a natural convergence criterion, we take the
following:

Definition 3. A local algorithm Φ̂
f
q(X) is called

an asymptotically unbiased estimator for Φ(X) if
lima→0 EΦ̂

f
q(X) = Φ(X).

THE RELEVANT SET-CLASSES
In order to prove the formulas, we need to make

some assumptions on X . First some notation. For a
closed set X ⊆ Rd , we let exo(X) denote the points
in Rd not having a unique nearest point in X . Let
ξX : Rd\exo(X)→ X be the natural projection taking a
point in Rd\exo(X) to its nearest point in X . We define
the normal bundle of X to be the set

N(X) =
{(

x, z−x
|z−x|

)
∈ X×Sd−1 |

z ∈ Rd\(X ∪ exo(X)), ξX(z) = x
}
.

For (x,u) ∈ N(X) we define the reach

δ (X ;x,u) = inf{t ≥ 0 | x+ tu ∈ exo(X)}> 0 .

Let H k denote the k-dimensional Hausdorff
measure. Following Kiderlen and Rataj (2007), we
introduce the class of gentle sets:

Definition 4. A closed set X ⊆ Rd is called gentle if:

(i) H d−1(N(∂X)∩ (B×Sd−1))< ∞ for any bounded
Borel set B⊆ Rd .

(ii) For H d−1-almost all x ∈ ∂X there exist two balls
Bin,Bout ⊆ Rd both containing x and such that
Bin ⊆ X, int(Bout)⊆ Rd\X.

The condition (ii) in the definition means that
for a.a. x ∈ ∂X there is a unique pair (x,u(x)) in
N(X) with (x,u(x)),(x,−u(x)) ∈ N(∂X). This class is
quite general, including for instance all C1 manifolds
and all polyconvex sets satisfying a certain regularity
condition (Kiderlen and Rataj, 2007).

We shall also consider the subclass of r-regular
sets:

Definition 5. A gentle set X ⊆ Rd is called r-regular
for some r > 0, if the balls Bin and Bout exist for every
x ∈ ∂X and can be chosen to have radius r.

Being r-regular is slightly weaker than being a C2

manifold.

It can be proved (Federer, 1959), that if X is
r-regular, then ∂X is a C1 manifold with H d−1-
a.e. differentiable normal vector field u. Thus its
principal curvatures k1, . . . ,kd−1, corresponding to the
orthogonal principal directions e1, . . . ,ed−1 ∈ T ∂X
where T ∂X is the tangent bundle, can be defined a.e.
as the eigenvalues of the differential du. Hence the
second fundamental form IIx on the tangent space
Tx∂X is defined for H d−1-a.a. x ∈ ∂X . For a tangent
vector ∑

d−1
i=1 αiei ∈ Tx∂X , IIx is the quadratic form

given by

IIx

(
d−1

∑
i=1

αiei

)
=

d−1

∑
i=1

ki(x)α2
i
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whenever dxu is defined. In particular, the trace is
Tr(II) = k1+ · · ·+kd−1. Note for later that r-regularity
ensures that k1, . . . ,kd−1 ≤ r−1.

The (d− 2)nd curvature measure of X is defined
(Federer, 1959) for r-regular sets by

Cd−2(X ;A) =
1

2π

∫
∂X∩A

Tr(II)dH d−1

for all Borel sets A⊆ Rd .

ASYMPTOTIC FORMULAS

FIRST ORDER FORMULAS
The following notation will be used in the proofs.

For a finite set S, |S| denotes the cardinality of S. Given
an interval I, we denote by IS the |S|-tuples {θs}s∈S of
points θs ∈ I indexed by S. Given a finite set S ⊆ Rd

we write

Θ
X
a (x;S) = {θ X

a (x+ s)}s∈S ∈ [0,1]S ,

Θu(t;S) = {θu(t + 〈s,u〉)}s∈S ∈ [0,1]S .

For x ∈ ∂X understood and u an outward pointing
normal, we also write Hu := H−〈x,u〉,u for the supporting
halfspace. Note that

θ
Hu
a (x+a(tu+ s)) = θ

H−0,u
a (a(t + 〈s,u〉)u)

= θu(t + 〈s,u〉)
Θu(t;S) = {θ Hu

a (x+a(tu+ s))}s∈S.

The proofs follow from the following lemma
shown in Svane (2014b), Lemma 7.1 and 7.2:

Lemma 6. Suppose X is gentle and ρ is a bounded
PSF. Let D > 0. Then for a.a. x ∈ ∂X,

lim
a→0

sup{|θ X
a (x+atu+as)−θu(t + 〈s,u〉)|,

t ∈ [−D,D],s ∈ B(D)}= 0,

where B(D) denotes the ball in Rd of radius D.

Theorem 7. Suppose X ⊆ Rd is a compact gentle
set, S ⊆ Rd is finite, and ρ is a bounded PSF. Let
f : (0,1)S×Rd → R be continuous and assume that
supp f ⊆ [β ,ω]S×Rd for some β ,ω ∈ (0,1). Then

lim
a→0

a−1
∫
Rd

f (ΘX
a (x;aS),x)dx

=
∫

∂X

∫
R

f (Θu(t;S),x)dtH d−1(dx) .

Proof. Let D > 0 be such that∫
|x|≥D

2

ρ(x)dx≤ β ∧ (1−ω) ,

and S⊆ B
(D

2

)
. This ensures that

supp f (ΘX
a (x;aS),x)⊆ ∂X⊕B(aD) .

Then the generalized Weyl tube formula in Huget al.
(2004), Theorem 2.1, yields

∫
Rd

f (ΘX
a (x;aS),x)dx =

d

∑
m=1

mκm

∫
N(∂X)

∫
δ (∂X ;x,u)

0

tm−1 f (ΘX
a (x+ tu;aS),x+ tu)dtµd−m(∂X ;d(x,u)) .

(3)

Here κm is the volume of the unit ball in Rm and the
µi are certain signed measures of locally finite total
variation.

Observe that∫
δ (∂X ;x,u)

0
tm−1 f (ΘX

a (x+ tu;aS),x+ tu)dt

≤ m−1amDm sup | f | , (4)

so that dominated convergence together with Kiderlen
and Rataj (2007), Eq. 8 yields

lim
a→0

a−1
d

∑
m=1

mκm

∫
N(∂X)

∫ aD

0
tm−1

f (ΘX
a (x+ tu;aS),x+ tu)dtµd−m(∂X ;d(x,u))

=
∫

∂X

(
lim
a→0

∫ D

−D
f (ΘX

a (x+atu;aS),x+atu)dt
)

H d−1(dx)

=
∫

∂X

∫ D

−D
f (Θu(t;S),x)dtH d−1(dx) .

The last equation follows from Lemma 6 and
continuity of f .

Assume X is compact gentle and ρ bounded. Let
A ⊆ (0,1)S be a compact set and g : Rd → R a
continuous function. Define the measures on A given
for any Borel set B⊆ A by

µ
X ,g
a (B) = a−1

∫
Rd
1B
(
Θ

X
a (x+atu;aS)

)
g(x)dx ,

and

µ
X ,g(B) =

∫
∂X

∫ D

−D
1B
(
Θu(t;S)

)
dt g(x)H d−1(dx) .
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Corollary 8. Let X be a compact gentle set and
let A ⊆ (0,1)S a compact set. Let g : Rd → R be
continuous and assume µX ,g(∂A) = 0. Then µ

X ,g
a

converges weakly to µX ,g. In particular, if h : A→ R
is continuous and f (Θ,x) = h(Θ)g(x), then

lim
a→0

EΦ̂
f
q(X) =

∫
∂X

∫ D

−D
h(Θu(t;S))dt g(x)H d−1(dx) .

Proof. For any bounded continuous h : A→ R,∫
A

hdµ
X ,g
a →

∫
A

hdµ
X ,g.

This follows from Theorem 7 by approximating h by
continuous functions on (0,1)S.

NOTATION

We next introduce some more notation that will be
used in order to keep formulas short in the statement
of the main second order theorem and its proof.
Moreover, we state a technical lemma proved in Svane
(2014b).

We will assume ρ to be continuous and compactly
supported. In this case all θu are C1 with (u, t) 7→ θ ′u(t)
continuous. We say that β ∈ (0,1) is a regular value if
θ ′u(t) < 0 for all t with θu(t) = β and all u ∈ Sd−1.
Since θu is decreasing, this ensures that θ−1

u (β ) is
uniquely determined.

For X ⊆ Rd r-regular, define the quadratic
approximation Qx to X at x ∈ ∂X by

Qx = {z ∈ Rd | 〈z− x,u〉 ≤ −1
2 IIx(πu⊥(z− x))}

where πu⊥ : Rd → u⊥ denotes orthogonal projections.

It is shown in Svane (2014b), in the proof of
Lemma 7.6, that for s ∈ Rd

θ
Qx
a (x+a(tu+ s)) = θu(t + 〈s,u〉)+aθ

Qx(t,s)+o(a)
(5)

where

θ
Qx(t,s) =−1

2

∫
u⊥

IIx(z)ρ(tu+ s− z)dz .

Again we use the notation

Θ
Qx
a (t;S) = {θ Qx

a (x+atu+ s)}s∈S ,

Θ
Qx(t;S) = {θ Qx(t,s)}s∈S .

Choose D as in the proof of Theorem 7. Given
A⊆ (0,1)S and x ∈ ∂X , let

tS
0 = inf{t ∈ [−D,D] |Θu(t;S) ∈ A} ,

tS
1 = sup{t ∈ [−D,D] |Θu(t;S) ∈ A} ,

tS
0 (a) = inf{t ∈ [−D,D] |ΘQx

a (t;aS) ∈ A} ,
tS
1 (a) = sup{t ∈ [−D,D] |ΘQx

a (t;aS) ∈ A} ,
tX ,S
0 (a) = inf{t ∈ [−D,D] |ΘX

a (x+atu;aS) ∈ A} ,
tX ,S
1 (a) = sup{t ∈ [−D,D] |ΘX

a (x+atu;aS) ∈ A} .

Finally, let

ψ
S
0 (x) = max

{
−

θ Qx(tS
0 ,s)

θ ′u(t
S
0 + 〈s,u〉)

| s ∈ S, tS
0 = ts

0

}
,

ψ
S
1 (x) = min

{
−

θ Qx(tS
1 ,s)

θ ′u(t
S
1 + 〈s,u〉)

| s ∈ S, tS
1 = ts

1

}
.

Lemma 9. Suppose that X is r-regular and ρ is
continuous with compact support. Let R > 0 and a
finite set S⊆ Rd be given.

For all a sufficiently small, t 7→ θ X
a (x+ a(tu+ s))

and t 7→ θ
Qx
a (x+ a(tu+ s)) are decreasing functions

for all x ∈ ∂X, s ∈ S, and t ∈ [−R,R].

There is a constant M > 0 such that for ν = 0,1
and a sufficiently small

sup
{∣∣∣ΘX

a (x+atu;aS)−Θu(t;S)
∣∣∣, (6)

x ∈ ∂X , t ∈ [−R,R]
}
≤Ma ,

sup
{∣∣∣tX ,S

ν (a)− tS
ν

∣∣∣ | x ∈ ∂X
}
≤Ma . (7)

Assume that A =×s∈S Is where Is are intervals and
all points in ∂ Is are regular values. Then for each
x ∈ ∂X and ν = 0,1,

sup
{∣∣∣ΘX

a (x+atu;aS)−Θ
Qx
a (t;aS)

∣∣∣ | t ∈ [−R,R]
}
,∣∣∣tX ,S

ν (a)− tS
ν(a)

∣∣∣ , (8)

are of order o(a) and

tS
ν(a) = tS

ν +aψ
S
ν (x)+o(a) . (9)

Proof. The lemma is essentially proved in Svane
(2014b). Note that the notation is changed. The first
statement is proved in Lemma 7.5 for θ X . The proof
for θ Qx is similar. Eqs. 6 and 7 are shown in the proof
of Theorem 3.2 and 5.2. Eq. 8 follows from Lemma 7.7
and Eq. 9 from Lemma 7.6.
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SECOND ORDER FORMULAS
Theorem 10. Suppose X is an r-regular set and ρ is
continuous and compactly supported. Let S ⊆ Rd be a
finite set and A =×s∈S Is where Is ⊆ (0,1) are closed
intervals such that ∂ Is consists of regular values for all
s ∈ S. Let f : A×Rd → R be C1. Then

lim
a→0

(
a−2

∫
Rd

f (ΘX
a (x;aS),x)dx

−a−1 lim
a→0

a−1
∫
Rd

f (ΘX
a (x;aS),x)dx

)
=
∫

∂X

∫ tS
1

tS
0

t f (Θu(t;S),x)dt Tr(IIx)H
d−1(dx)

+
∫

∂X

∫ tS
1

tS
0

(〈
∇

1 f (Θu(t;S),x),ΘQx
0 (t;S)

〉
+t
〈

∇
2 f (Θu(t;S),x),u

〉)
dtH d−1(dx)

+ ∑
ν=0,1

∫
∂X

(−1)ν f (Θu(tS
ν ;S),x)ψS

ν (x)H
d−1(dx) .

Here ∇1,∇2 are the gradients of Θ 7→ f (Θ,x) and
x 7→ f (Θ,x), respectively.

Proof. For r-regular sets, the generalized Weyl tube
formula reduces to∫
Rd

f (ΘX
a (x;aS),x)dx = a

d

∑
m=1

∫
∂X

∫ D

−D
tm−1

× f (ΘX
a (x+atu;aS),x+atu)dt sm−1(x)H d−1(dx) ,

where sm(x) is the mth symmetric polynomial in the
principal curvatures at x whenever these are defined.

Again, Eq. 4 shows that dominated convergence
applies to all terms with m≥ 2 and shows that all terms
with m≥ 3 vanish asymptotically.

For m = 2, consider∫ D

−D

∣∣∣t f (ΘX
a (x+atu;aS),x+atu)− t f (Θu(t;S),x)

∣∣∣dt

≤ 2D2 sup |∇ f |sup
{∣∣ΘX

a (x+atu;aS)−Θu(t;S)
∣∣

+aD | t ∈
[
tS
0 , t

S
1
]
∩
[
tX ,S
0 (a), tX ,S

1 (a)
]}

+2D sup | f |H 1([tS
0 , t

S
1 ]∆[t

X ,S
0 (a), tX ,S

1 (a)]) ,
(10)

where ∆ denotes the symmetric difference. By Eqs. 6
and 7, the right hand side is of order O(a).

For the m = 1 term, a similar argument shows that∫ D

−D

(
f (ΘX

a (x+atu;aS),x+atu)− f (Θu(t;S),x)
)

dt

(11)

is uniformly O(a). Hence another application of
dominated convergence shows that it is enough to
determine the limit of this for each x ∈ ∂X .

Another argument similar to that in Eq. 10 using
Eq. 8 shows that

lim
a→0

∫ D

−D
a−1
∣∣∣ f (ΘX

a (x+atu;aS),x+atu)

− f (ΘQx
a (t;aS),x+atu)

∣∣∣dt = 0 .

Thus it remains to compute

lim
a→0

∫ D

−D
a−1( f (ΘQx

a (t;aS),x+atu)− f (Θu(t;S),x)
)

dt .

The integrand is uniformly bounded on

G(a) =
(
tS
0 , t

S
1
)
∩
(
tS
0 (a), t

S
1 (a)

)
by differentiability of f and another application of
Lemma 9 (Eq. 6) with X replaced by Qx. Observe that

1G(a)(t)→ 1(
tS
0 ,t

S
1

)(t)
point-wise. Hence by dominated convergence and
Eq. 5,

a−1
∫

G(a)

(
f (ΘQx

a (t;aS),x+atu)− f (Θu(t;S),x)
)

dt

→
∫ tS

1

−tS
0

(〈
∇

1 f (Θu(t;S),x),ΘQx(t;S)
〉

+ t
〈

∇
2 f (Θu(t;S),x),u

〉)
dt

for a→ 0.

It remains to consider the integral over the sets[
tS
0 (a)∧ tS

0 , t
S
0 (a)∨ tS

0
]

and
[
tS
1 (a)∧ tS

1 , t
S
1 (a)∨ tS

1
]
.

(12)
The integral over the first interval is

∫ tS
0

tS
0 (a)

a−1
(

f (ΘQx
a (t;aS),x+atu)+ f (Θu(t;S),x)

)
dt

=
∫ tS

0

tS
0+aψS

0 (x)
a−1
(

f (ΘQx
a (t;aS),x+atu)

+ f (Θu(t;S),x)
)

dt +o(1) ,

by Lemma 9, Eq. 9. Since |t − tS
0 | ≤ Ma for all t ∈

[tS
0 (a)∧ tS

0 , t
S
0 (a)∨ tS

0 ],
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∫ tS
0

tS
0+aψS

0 (x)
a−1
(

f (ΘQx
a (t;aS),x+atu)

+ f (Θu(t;S),x)
)

dt

= −
∫ tS

0+aψS
0 (x)

tS
0

a−1 f (Θu(tS
0 ;S),x)dt +o(1)

= −ψ
S
0 (x) f (Θu(tS

0 ;S),x)dt +o(1) .

The second interval in Eq. 12 is treated similarly.

ESTIMATION OF THE MINKOWSKI
TENSORS

MINKOWSKI TENSORS
To a compact set X ⊆ Rd , one can associate the

generalized curvature measures Ck(X ; ·) defined on
Σ = Rd × Sd−1 for k = 0, . . . ,d − 1, see (Schneider,
1993) in the case of poly-convex sets and (Federer,
1959) for sets of positive reach. An extension to
general compact sets can be found in Huget al. (2004).

Let Tp denote the space of symmetric tensors
on Rd of rank p. Identifying Rd with its dual using
the Euclidean inner product 〈·, ·〉, one can interpret a
symmetric p-tensor as a symmetric p-linear functional
on Rd . Let xr denote the r-fold tensor product of x ∈
Rd and for two tensors a and b, let ab denote their
symmetric tensor product. For X ⊆ Rd , r,s ≥ 0, and
k = 0, . . . ,d−1 we associate the (r+ s)-tensors

Φ
r,s
k (X) =

1
r!s!

ωd−k

ωd−k+s

∫
Σ

xrusCk(X ;d(x,u)) ,

and for r ≥ 0 we define the volume tensors

Φ
r,0
d (X) =

1
r!

∫
X

xr dx .

These are the so-called Minkowski tensors introduced
in McMullen (1997) (see also, e.g., (Schneider and
Schuster, 2002; Huget al., 2008)).

The Minkowski tensors satisfy the McMullen
relations (McMullen, 1997) on convex sets,

2π ∑
s

sΦ
r−s,s
k−r+s = Q∑

s
Φ

r−s,s−2
k−r+s

where k ≥ 0, r ≥ 0, and Q is the metric tensor. All
tensors in the sum that have not been defined above
should be interpreted as 0.

Below we shall define estimators for Φ
r,0
d , Φ

r,s
d−1,

and Φ
r,0
d−2. The McMullen relations show that in

dimension d = 2, all tensors are linear combinations
of multiples of these by powers of Q. Hence, in 2D we
obtain a complete set of estimators for the Minkowski
tensors.

VOLUME TENSORS
It is easy to see that the volume tensors can

be estimated unbiasedly from black-and-white images
even in finite resolution just using a Riemann sum:

Φ̂
r,0
d (X) = ad 1

r! ∑
z∈aL∩X

zr.

If only a grey-scale image is given, one may threshold
the image at level β ∈ (0,1) and apply this estimator.
This yields the estimator

Φ̂
r,0
d (X) = ad 1

r! ∑
z∈aL

1{θ X
a (z)≥β}z

r.

This is asymptotically unbiased for all sets with
H d−1(∂X)< ∞ since

EΦ̂
r,0
d (X) =

1
r!

∫
Rd

zr1{θ X
a (z)≥β} dz ,

and |1{θ X
a ≥β}−1X | ≤ 1∂X⊕B(aD), where D is such that∫

|z|≤D
ρ(z)dz≥ β ∧ (1−β ) .

SURFACE TENSORS
In this section we define local algorithms based

on 2× ·· · × 2 configurations for the surface tensors
Φ

r,s
d−1(X). As in the case of volume tensors, the

position dependent part is obtained by multiplying the
weights by xr. To estimate the direction of surface
normals, note that the grey-values change most rapidly
in the normal direction while they are almost constant
in the tangent direction. Thus the normal direction can
be estimated locally from how fast the grey-values
change along the lattice directions. This is the intuition
behind the algorithm below and the reason why 2×
·· ·×2 configurations of grey-values are needed.

We assume that X is a gentle set. Hence the surface
tensors take the form

Φ
r,s
d−1(X) =

1
r!s!

2
ωs+1

∫
∂X

xru(x)sH d−1(dx) .

Identifying Rd with its dual, it is enough to determine
all evaluations on a basis v1, . . . ,vd ∈ Rd ,

Φ
r,s
d−1(X)(vi1 , . . . ,vir+s) =

1
r!s!

2
ωs+1

1
(r+ s)!

× ∑
σ∈Σr+s

∫
∂X

r

∏
k=1
〈x,viσ(k))

〉

×
r+s

∏
l=r+1

〈u(x),viσ(l)〉H
d−1(dx) ,
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for all choices of i1, . . . , ir+s ∈ {1, . . . ,d} where Σr+s is
the set of permutations of r + s elements. Hence it is
enough to estimate

1
r!s!

2
ωs+1

∫
∂X

r

∏
k=1
〈x,vik〉

r+s

∏
l=r+1

〈u(x),vil 〉H
d−1(dx)

(13)

for each tuple i1, . . . , ir+s. As basis we choose the
vectors v1, . . . ,vd spanning L. Let V = max{|vi|, i =
1 . . . ,d}.

The estimation requires some assumptions on the
PSF :

(i) ρ is rotation invariant ρ(x) = ρ(|x|). In this case,
θ(t) := θu(t) is independent of u and

θu(t;S) = {θ(t + 〈u,s〉)}s∈S .

(ii) θ is strictly decreasing on θ−1(0,1). In this case
the inverse exists on (0,1) and we denote this by
ϕ .

(iii)The lattice is so fine compared to the support
of ρ that θ−1(0,1) contains an interval of the
form [ϕ(ω)−V,ϕ(β )+V ] where 0 < β < ω < 1.
This ensures that ϕ is well-defined on the interval
θ([ϕ(ω)−V − ε,ϕ(β ) +V + ε]) for some small
ε > 0.

Note that (i) and (ii) are satisfied for both the Gaussian
and the Airy disk.

Under these conditions, observe that

ϕ(θu(t + 〈vi,u〉))−ϕ(θu(t)) = 〈u,vi〉 . (14)

for t ∈ [β ,ω]. Let S = {0,v1, . . . ,vd} ⊆C2
0,0 and

A = [β ,ω]× ×
s∈S\{0}

θ([β −V − ε,ω +V + ε]) .

Define the weight function

f
(
{θs}s∈S,x

)
= 1A

(
{θs}s∈S

) 1
r!s!

2
ωs+1

r

∏
k=1
〈x,vik〉

×
r+s

∏
l=r+1

(
ϕ(θvil

)−ϕ(θ0)
)
. (15)

This requires that ϕ is known or, equivalently, the
blurring of a halfspace θ . Note that for a sufficiently
small, 1A

(
{θ X

a (z+as)}s∈S
)

reduces to θ X
a (z) ∈ [β ,ω].

Applying Theorem 10 to the local estimator with
weight function given by Eq. 15 yields:

Corollary 11. Let X be a gentle set and suppose ρ

satisfies Condition (i)–(iii). If f is as in Eq. 15, then

lim
a→0

EΦ̂
f
d−1(X) =

2(ϕ(β )−ϕ(ω))

ωs+1r!s!

×
∫

∂X

r

∏
k=1
〈x,vik〉

r+s

∏
l=r+1

〈u(x),vil 〉H
d−1(dx) .

Since ϕ is strictly decreasing, (ϕ(β )− ϕ(ω)) > 0.
Dividing by this factor thus yields an asymptotically
unbiased estimator for (13).

For r-regular sets, a formula for the first order
bias is given by Theorem 10. Using 3 × ·· · × 3
configurations instead, we can make the first order
bias vanish. Let S = {0,±v1, . . . ,±vd} ⊆ C3

v,0 where
v = v1 + · · ·+ vd . Consider the weight function

f
(
{θs}s∈S,x

)
= 1A

(
{θs}s∈S

) 2
ωs+1r!s!

r

∏
k=1
〈x,vik〉×( r+s

∏
l=r+1

(ϕ(θvil
)−ϕ(θ0))+

r+s

∏
l=r+1

(ϕ(θ0)−ϕ(θ−vil
))

)
(16)

where

A = [β ,1−β ]× ×
s∈S\{0}

θ([β −V − ε,1−β +V + ε]).

Then Theorem 10 yields:

Corollary 12. Let X be an r-regular set and suppose
ρ satisfies Condition (i)–(iii). If f is as in Eq. 16, then

EΦ̂
f
d−1(X) =

2(ϕ(β )−ϕ(ω))

ωs+1r!s!

∫
∂X

r

∏
k=1
〈x,vik〉

×
r+s

∏
l=r+1

〈u(x),vil 〉H
d−1(dx)+o(a) .

Remark 13. More generally, u is determined by its
coordinates in the basis v1, . . . ,vd given in Eq. 14. This
can be used in a similar way to find estimators for
integrals of the form∫

∂X
f (x,u(x))H d−1(dx) .

Remark 14. Since Tr
(
Φ

0,2
d−1(X)

)
is just the surface

area of X up to a constant factor, the above also
yields a new surface area estimator. Taking larger
configurations into account than the surface area
estimators in Svane (2014b), one may hope for a
better precision. On the other hand, this new estimator
requires more knowledge about the underlying PSF
and is hence harder to apply in practice.
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Remark 15. It is known that asymptotically unbiased
local surface area estimators from black-and-white
images do not exist (Svane, 2014a). Tensors of
the form Φ

r,1
d−1 can be estimated, but in general,

asymptotically unbiased local estimators for Φ
r,s
d−1 are

not expected to exist for s > 0.

MEAN CURVATURE TENSORS

We can obtain estimators for tensors of the form
Φ

r,0
d−2 in a similar way. Again, the position dependence

is obtained simply by multiplying the weights by
xr. The remaining mean curvature tensors involving
surface normals seem to be harder to get a hold
of, since the dependence on surface normals in the
asymptotic mean is more involved.

Let β ∈
(
0, 1

2

)
and let g : [β ,1− β ]→ R be a C1

function satisfying g(x) =−g(1− x). Define

f (θ0,x) = g(θ0)xr. (17)

This defines a local estimator Φ̂
f
d−2. Theorem 7 and 10

yield:

Corollary 16. Suppose X is a compact r-regular set
and ρ is continuous with compact support and satisfies
Condition (i)–(ii). With f as in Eq. 17

lim
a→0

EΦ̂
f
d−2(X) = 2πr!(c1 + c2 + c3)Φ

r,0
d−2(X)

+ r!
∫

ϕ(β )

−ϕ(β )
t g(θ(t))dt QΦ

r−2,0
d (X) ,

where the constants c1,c2,c3 ∈ R are as in Svane
(2014b) Section 6.2.

This follows by rewriting the limit in Theorem 10
exactly as in Svane (2014b). The QΦ

r−2,0
d (X)-term

comes from the ∇2-term by an application of the
divergence theorem. We have already shown how to
find asymptotically unbiased estimators for volume
tensors, so this can be corrected for.

Estimators for which c1+c2+c3 6= 0 are suggested
in Svane (2014b) Section 6.2. For instance, this is
satisfied for both g(θ) = (θ − 1

2)1[β ,1−β ](θ) and
g(θ) = 1[β , 1

2 ]
(θ)−1[ 1

2 ,1−β ](θ) and for suitable values
of β .

RANK TWO TENSORS IN 2D

As an example of how to use the formulas of
this paper, we consider the estimation of the rank 2
Minkowski tensors in R2. These are at the moment
the Minkowski tensors of positive rank that are most

commonly used in shape analysis, see, e.g., Schröder-
Turket al. (2008). By the McMullen relations, the
essential ones are

Φ
0,0
k (X)Q, k = 0,1,2,

Φ
2,0
k (X), k = 0,1,2,

Φ
0,2
1 (X).

All other rank 2 tensors are linear combinations of
these. The first three reduce to the estimation of
the intrinsic volumes Φ

0,0
k (X) = Vk(X), see Schneider

(1993), which is already considered in Svane (2014b).
Of the remaining four, the estimation of Φ

0,2
1 is the

most involved, since it requires an estimate for the
normal directions.

We assume that the the unknown object X is
observed on the standard lattice Z2, which is the case
in most applications, and we assume the resolution to
be a−1. Moreover, we take a common model for the
PSF, namely the Gaussian ρ(x) =

(√
2π
)−de−

1
2 |x|

2
.

As noted in Example 1, θu(t) = Φ(−t) and this
function clearly satisfies (i)–(iii). In particular we have
ϕ = θ−1 = −Φ−1. Since Φ−1(0,1) = R, we have a
free choice of β and ω in (iii). In this example, we
shall take β = 1−ω = 0.1. This yields Φ−1(0.9) =
−Φ−1(0.1)≈ 1.28.

Assume that we want to estimate the tensor
Φ

0,2
d−1(X). For this we need to estimate each coordinate

in the standard basis e1 = (1,0), e2 = (0,1). These are
given for i, j ∈ {1,2} by

Φ
0,2
d−1(X)ii = Φ

0,2
d−1(X)(ei,ei)

=
1

4π

∫
∂X
〈u(x),ei〉2H 1(dx) ,

and for i 6= j,

Φ
0,2
d−1(X)i j = Φ

0,2
d−1(X)(e1,e2)

=
1

4π

∫
∂X
〈u(x),e1〉〈u(x),e2〉H 1(dx) .

To estimate Φ
0,2
d−1(X)i j, we first measure the grey-

value θ(m,n) at each pixel indexed by a(m,n) ∈ aZ2.
To compute the contribution to the estimate from the
pixel a(m,n) ∈ aZ2, consider the 3× 3 pixel square
centered at this point. Take the grey-values in pixels
directly above, under, and next to as shown in Fig. 2.
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a(m,n)

· · ·

· · ·

· · ·

θ(m,n) θ(m+1,n)

θ(m,n+1)

θ(m−1,n)

θ(m,n−1)

Fig. 2. A 3 × 3 pixel square and the measured grey-
values.

Apply the weight function fi j to these values where

f11
(
θ(m,n),θ(m+1,n),θ(m,n+1),θ(m−1,n),θ(m,n−1)

)
=

1
4π(Φ−1(0.9)−Φ−1(0.1))

1[0.1,0.9](θ(m,n))

× ∑
l=±1

(Φ−1(θ(m+l,n))−Φ
−1(θ(m,n)))

2,

f22
(
θ(m,n),θ(m+1,n),θ(m,n+1),θ(m−1,n),θ(m,n−1)

)
=

1
4π(Φ−1(0.9)−Φ−1(0.1))

1[0.1,0.9](θ(m,n))

× ∑
l=±1

(Φ−1(θ(m,n+l))−Φ
−1(θ(m,n)))

2,

f12
(
θ(m,n),θ(m+1,n),θ(m,n+1),θ(m−1,n),θ(m,n−1)

)
=

1
4π(Φ−1(0.9)−Φ−1(0.1))

1[0.1,0.9](θ(m,n))

× ∑
l=±1

(Φ−1(θ(m+l,n))−Φ
−1(θ(m,n)))

× (Φ−1(θ(m,n+l))−Φ
−1(θ(m,n))) ,

are the weight functions from Eq. 16. The estimator for
Φ

0,2
d−1(X)i j is then given by summing the contributions

from all pixels:

Φ̂
0,2
d−1(X)i j = a ∑

(m,n)∈Z2

fi j(θ(m,n),θ(m+1,n),θ(m,n+1),θ(m−1,n),θ(m,n−1)) .

Since the remaining tensors Φ
2,0
2 , Φ

2,0
1 , and Φ

2,0
0

do not depend on surface normals, only 1 × 1
configurations are necessary in the estimators. The
respective (tensor-valued) weight functions are

f 2,0
2 (θ(m,n),a(m,n))

=
a2

2
(m,n)21[0.5,1](θ(m,n)) ,

f 2,0
1 (θ(m,n),a(m,n)) =

a2

2(Φ−1(0.9)−Φ−1(0.1))

× (m,n)21[0.1,0.9](θ(m,n)) ,

f 2,0
0 (θ(m,n),a(m,n)) =

a2

2π

(
c−1(

θ(m,n)− 1
2

)
(m,n)2

×1[0.1,0.9](θ(m,n))−Q1[0.5,1](θ(m,n))
)
.

Here the constant c is given by

c = 2!
∫ −Φ−1(0.1)

Φ−1(0.1)
t Φ(−t)dt ≈−0.961 .

The reason for this scaling is that for our PSF, the
constant c = 2(c1 + c2 + c3) in the notation of Svane
(2014b). The tensor (m,n)2 may also be interpreted as
the 2×2 matrix (m,n)T (m,n).

The estimator is again given by summing these
weights over all lattice points:

Φ̂
2,0
k (X) = ak

∑
a(m,n)∈aZ2

f 2,0
k (θ(m,n),a(m,n)) .

Note that while the estimators with k = 1,2 converge to
the true value, Corollary 16 does not show convergence
for k = 0, since the Gaussian does not have compact
support.

DISCUSSION

The paper shows that, contrary to black-and-white
images, there is information enough in digital grey-
scale images to extract some of the surface and mean
curvature tensors based only on local information. This
extends the known results for Minkowski functionals
from Svane (2014b). The new finding is that position
dependent surface integrals can also be estimated by
allowing the weight function to depend on position.
Moreover, by considering 2× ·· · × 2 configurations,
it is possible to locally determine directions of surface
normals.

However, the new estimators are no longer simple.
While the estimators for surface area could be based on
an image thresholded at two different levels, detailed
information about the PSF is needed for the surface
tensors.

The results of this paper are only asymptotic based
on a limiting procedure in which the lattice distance
and the PSF are shrunk at the same rate. Whether
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or not this is realistic will depend on the way the
blurring arises, see the discussion in Svane (2014b).
For intrinsic volumes, only the convergence of the PSF
was essential, but when taking larger configurations
into account, an assumption on the convergence of
resolution is necessary.

It still remains to investigate how the algorithms
work out in finite resolution. For this, simulation
studies could provide an idea about their performance.
To apply the algorithms in practice would require
a set-up that matches the assumptions. In particular,
one needs to know the PSF or at least what a
blurred halfspace looks like. The latter might be tested
experimentally or by fitting a PSF. Moreover, the PSF
has to be rotation invariant and the resolution needs to
be high compared to the blurring, cf. Condition (iii).

It is still unknown whether the lower Minkowski
tensors can be estimated in a similar way - even in the
basic case of Minkowski functionals.
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