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ABSTRACT

In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers
as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper uses a model where
a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface
is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of
such surfaces: for the porosity profile, i.e., the local porosity in dependence on the distance from the section
plane and for the geometry of the sphere caps that are located above the section plane.
It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its
sphere density and the sphere radius distribution.
Comparison with empirically studied biofilms shows that the model is realistic.
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INTRODUCTION

Porous layers at surfaces of hard-sphere systems
are observed in various contexts. An example is
the liquid-gas interface as considered in Hansen and
McDonald (1986), p. 136, where the liquid is modeled
by a system of hard spheres. Another example is
the interface between a fluid and a porous substrate
which is modeled by a system of hard spheres, as
in the case of seabed, biofilms and various technical
applications, see Bondreau and Jorgensen (2001) and
Lewandowski (2000). Finally, fracture surfaces in
concrete are modeled in a similar way, where the hard
spheres stand for the aggregate particles (Stroeven,
1982; 2000).

For such interfaces, in particular the porosity
profile, i.e., the local porosity in direction of the normal
to the surface plane as a function of the distance from
the plane is of interest. The porosity is decreasing in
the direction gas to liquid or substrate to fluid. Thus a
gradient structure as in Hahn and Stoyan (1998) and
Hahn and Stoyan (1998) is given.

The present paper considers porous layers that
are generated by removing spheres from an originally
spatially homogeneous (or stationary) system of hard
spheres on one side of a plane. It gives formulae for
the porosity profile and for sphere-cap characteristics
in the general case of non-identical spheres.

It turns out that these characteristics only depend
on the first-order characteristics of the sphere system:
its sphere density and the sphere-radius distribution.

HARD SPHERE SYSTEMS AND
THREE BOUNDARY
STRUCTURES

The model of the sphere systems is the same as in
Mecke and Stoyan (1980) and Chiu et al. (2013), p.
428, the probably most general stochastic model for
a stationary (= statistically homogeneous) system of
spheres. There is a stationary marked point process Ψ

in R3,
Ψ = {[xn,yn,zn;ρn]} ,

where (xn,yn,zn) is the center of the nth sphere and the
positive mark ρn its radius. The intensity of Ψ is λ ,
which represents the sphere center density or the mean
number of sphere centers per volume unit. Finally, the
mark distribution function, i.e., the radius distribution
function, is denoted by F(r): the probability that a
randomly chosen sphere has a radius smaller than r
is F(r). The volume fraction of the sphere system is
denoted by p.

In a hard sphere system the spheres do not
intersect, i.e., it is

B((xn,yn,zn),ρn)∩B((xm,ym,zm),ρm)= /0 for m 6= n,
(1)

where B((x,y,z),ρ) is the sphere with center (x,y,z)
and radius ρ . The sphere points with maximum z-
coordinate are called north poles.

Fig. 1 shows a simulated system of hard spheres in
a box. Its irregular surfaces are closely related to the
geometrical structures discussed in the following.

225



STOYAN D: Sphere-system surfaces

Fig. 1. Computer-simulated system of hard spheres in
a box with periodic boundary conditions. The volume
fraction is 0.6, the porosity 0.4. The structure was
generated by means of the force-biased algorithm, see
Bezrukov et al. (2002)

Three structures connected with the hard-sphere
system are considered below which appear in the
neighborhood of the (x,y)-plane z = 0, which plays
the role of the dividing plane. The first two are the
boundaries of the following two sets:

– the up-cap plane set, the set-theoretic union of the
half space z ≤ 0 and all closed balls of Ψ with
centers (xn,yn,zn) below the (x,y)-plane (zn ≤ 0)
and radii ρn with ρn > |zn|. The space below the
plane united with the protruding caps in Fig. 2 can
be considered as a sample of an up-cap plane set;

– the up-down-cap set, i.e., up-cap plane set minus
the union of all spheres of Ψ with centers
(xn,yn,zn) above the (x,y)-plane (zn > 0) and radii
ρn with ρn > zn. Fig. 2 shows a simulated sample
of an up-down-cap set.

The upper (in the sense of z-axis) boundaries of these
sets are called up-cap plane and up-down-cap plane.

The third structure is

– the free-boundary set, the system of all spheres
with zn +ρn ≤ 0, see Fig. 3.

Fig. 2. Computer-simulated surface composed of
interconnected portions of the dividing plane and
protruding and indenting dome-like caps resulting
from a hard sphere system, cf. Stroeven (2000) In
the present paper it is called up-down-cap plane’.
Courtesy of M. Stroeven.

Fig. 3. Computer-simulated vertical section through a
free-boundary set. It consists of all spheres below the
(x,y)-plane. The upper horizontal line belongs to the
(x,y)-plane. The volume fraction of the hard-sphere
system is 0.6.

For the up-cap plane set two characteristics are
determined:

– the intensity λm(h) of the planar point process of
north poles of protruding caps higher than h (with
h > 0) projected onto the (x,y)-plane;

– the density profile, i.e., the area fraction am(h) of
the planar subset Ξh of the plane {z = h} generated
by intersection of the up-cap plane set with this
plane. The porosity profile is given by 1−am(h).

The ratio λm(h)/λm(0) yields the cap-height
distribution function H(h),

H(h) = 1−λm(h)/λm(0) for h≥ 0.

The characteristics for the up-down-cap plane can
be easily obtained from those of the up-cap plane.

For the free-boundary set the following
characteristics are determined:
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– the density profile, i.e., the area fraction a f (h) of
the planar subset of the plane {z = −h} generated
by intersection of the free-boundary set with this
plane;

– the distribution function Fh(r) of the radii of the
spheres belonging to the free-boundary set with
centers in the plane z=−h. (This is only of interest
for random spheres since in the case of constant
radius R also the spheres with center at z=−h have
radius R.)

RESULTS

Theorem 1. The intensity λm(h) for the up-cap
plane is given by

λm(h) = λ

∞∫
h

(r−h)dF(r) for h≥ 0 , (2)

where λ denotes the spheres center density and F(r)
the radius distribution function. The same formula
holds in the planar case, for a marked point process
{[xn,yn;ρn]} describing a system of discs and a up-cap
line related to {y = 0}.
Proof. Clearly, λm(h) can be expressed in terms of the
marked point process Ψ as

λm(h) = E

(
∑

[x,y,z;ρ]∈Ψ

1[0,1](x)1[0,1](y)1[h−r,0)(z)1[h,∞)(ρ)

)
,

(3)
since it equals the mean number of sphere centers with
(x,y) in the unit square [0,1]2 and z-coordinate and
radius ρ satisfying

z≤ 0 and h− z≤ r .

The Campbell theorem for marked point processes
(Chiu et al., 2013) yields

λm(h) = λ

∫ ∫
1[h−r,0](z)dz1[h,∞)(r)dF(r)

= λ

∞∫
h

(r−h)dF(r) .

In the planar case all goes analogously, in the
expectation in Eq. 3 only one 1[0,1] term appears. 2

Clearly, Eq. 2 holds also without the hard sphere
condition (Eq. 1). In the particular case of constant
radii R it is

λm(h) =

{
λ (R−h) for 0≤ h≤ R
0 otherwise.

(4)

Theorem 2. The area fractions for the up-cap
plane and the free-boundary set are

am(h) =
π

3
λ

( h/2∫
0

4r3 dF(r)+

∞∫
h/2

(r−h)2(2r+h)dF(r)
)

for h≥ 0 , (5)

and

a f (h) =
π

3
λ

∞∫
0

h2(3r−h)dF(r) for h≥ 0 . (6)

Proof of Eq. 5. Determining am(h) is equivalent to
determine the mean number of spheres hitting the
point (0,0,h), In fact, hitting happens if ‖(x,y,z)−
(0,0,h)‖ ≤ ρ . Since the spheres are hard, only one
sphere can hit a given point and the mean number is
thus equal to the probability of hitting the point (0,0,h)
by one of the spheres. This probability is equal to the
area fraction of the stationary random closed set Ξh
(the horizontal section set) because of equation (6.34)
in Chiu et al. (2013), which says, applied to the case
considered here, that “area fraction am(h) = P(o ∈
Ξh)”, where o is the origin of the plane. Consequently,

am(h)=E

(
∑

[x,y,z;ρ]∈Ψ

1(‖(x,y,z)− (0,0,h)‖ ≤ ρ)1(−∞,0](z)

)
,

where ‖ · ‖ is the Euclidean norm. The Campbell
theorem yields

am(h) =

= λ

∞∫
0

0∫
−∞

∞∫
−∞

∞∫
−∞

1(‖(x,y,z)− (0,0,h)‖ ≤ r)dxdydzdF(r)

= λ

∞∫
h

V (r,h)dF(r) ,

where V (r,h) is the volume of the cap of height r− h
(with r ≥ h) of a sphere of radius r. Well-known
formulas for sphere cap volume yield

V (r,h) =
π

3
(r−h)2(2r+h).

The proof of Eq. 6 is analogous. Now the volume
V (r,h) is replaced by the volume of a sphere of radius
r minus a cap of height 2r−h. 2
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In the particular case of constant radii R it is

am(h) =

{π

3
λ (R−h)2(2R+h) for 0≤ h≤ R

0 otherwise .
(7)

and

a f (h) =

{π

3
λh2(3R−h) for 0≤ h≤ 2R

p otherwise .
(8)

Fig. 4 shows 1− a f (h) for R = 1 and λ = 0.143.
For this intensity λ the porosity of the hard-sphere
system is 0.6.

1 2

0.6

h

af (h)

Fig. 4. Density profile a f (h) for the free boundary of
a hard sphere system with constant spheres of radius
R = 1 and porosity 0.4.

Eq. 8 is derived in Khalili et al. (2014) without
explicit use of point-process methods.

DISCUSSION

Fig. 4 resembles Fig. 5.6 a in Hansen and
McDonald (1986) which shows the density profile
at the liquid-gas interface of the Lennard-Jones fluid
(with identical spheres of radius R) near the triple
point. However, while in Fig. 4 for the transition from
density 0 to density 0.6 only 2R length units are
needed, in its counterpart in Hansen and McDonald
(1986) they are 8R. By the way, Hansen and McDonald
(1986) also discuss density profiles of Lennard-Jones
fluids against a hard wall, which is much more
complicated than the case considered in this paper.

Khalili et al. (2014) carried out experiments with
natural packings of glass beads of (approximately)
equal diameter in a container and with sedimented
sand grains. With advanced physical measurement
methods (laser technique and computerized

tomography) they determined the porosity profile (i.e.,
1−a f (h)) and found a good agreement with Eq. 8 for
the case of constant radii (Fig. 5.)
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Fig. 5. Comparison of porosity profiles predicted from
Eq. 8 with experimental porosity measurements within
biofilms. The figure is a modification of Fig. 6 of Khalili
et al. (2014). Courtesy of Arzhang Khalili.
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