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ABSTRACT

Shape analysis is of great importance in many fields such as computer vision, medical imaging, and
computational biology. In this paper we focus on a shape space in which shapes are represented by means of
planar closed curves. In this shape space a new metric was recently introduced with the result that this shape
space has the property of being isometric to an infinite-dimensional Grassmann manifold of 2-dimensional
subspaces. Using this isometry it is possible, from Younes et al. (2008), to explicitly describe geodesics, a
task that previously was not at all easy. Our aim is twofold, namely: to use this general theory in order to
show some applications to the study of erythrocytes, using digital images of peripheral blood smears, in the
treatment of sickle cell disease; and, since normal erythrocytes are almost circular and many Sickle cells have
elliptical shape, to particularize the computation of geodesics and distances between shapes using this metric
to planar objects considered as deformations of a template (circle or ellipse). The applications considered
include: shape interpolation, shape classification, and shape clustering.
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INTRODUCTION

Shapes play an important role in understanding
objects and shape analysis has impact in many
areas such as computer vision, medical imaging,
and computational topology. Historically, there have
been different geometrical characterizations of planar
shapes and, in particular, different approaches to
represent the continuous boundaries as curves, and
then study their shapes.

In this paper we consider the space of planar
shapes represented by simple closed plane curves with
the metric introduced in Younes et al. (2008). This
space has the property of being isometric to an infinite-
dimensional Grassmann manifold of 2-dimensional
subspaces. Therefore, explicit geodesics and distances
between shapes can be computed using Jordan angles
(Neretin, 2001). In fact, the representation of shapes
as elements of infinite-dimensional spaces with a
given metric is of interest at this time and has
important applications (Klassen, 2004; Huckemann,
2011; Srivastava, 2011).

Furthermore, erythrocytes shape deformations are
related to different illnesses, e.g., sickle cell disease
(SCD), that cause the hardening or polymerization of
the hemoglobin that contains the erythrocytes. The
cells are deformed and this results in a risk of various
complications, for example vaso-occlusive crisis. The

study of this deformation process using digital images
of peripheral blood smears offers useful results in the
clinical diagnosis of these illnesses.

The first aim of this paper is to apply the distance
and geodesics derived from the metric introduced
in Younes et al. (2008) in order to study different
applications related to the morphological analysis
of shape deformation of erythrocytes (which are
represented as planar curves). In particular, three
applications are presented here: interpolation between
shapes; supervised classification and unsupervised
clustering.

On the other hand, curve evolution of a simple
closed curve, whose points move in the direction
of the normal with a prescribed velocity, has been
applied to a wide variety of problems such as
smoothing of shapes, shape analysis and shape
recovery. The second aim of the paper consists on
considering geodesics between closed-template curves
and boundaries (curves) obtained as deformations
of these templates. The idea of describing objects
– such as cells or leaves – as deformations of a
template also appears in the literature. For instance,
in Granader and Manbeck (1993), the authors use
an ellipse with fixed eccentricity as template in an
application in the detection of defects in potatoes; and
in Hobolth et al. (2002), the planar objects considered
are deformations of a star-shaped template. Since
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normal cells are almost circular and many elongated
cells have elliptical shape, we will represent the shapes
of cells as deformations of ellipses and circles (radius
vector function). In fact, Fourier expansion of the
radius-vector function has already been used in many
applications; see for instance Lestrel (1997) for a
review of biological applications, and Loncaric (1998)
for a survey of the engineering literature. A statistical
application can be found in Hobolth et al. (2003), and
a review of several contour functions, including the
radius-vector function, appears in Kindratenko (2003).

The paper is organized as follows: In the following
section we give a basic résumé of the results obtained
in Younes et al. (2008). Next, we define planar shape
changes from a deformation of a template and we
apply the results cited in the previous section to
these particular curves. We consider the particular
case where the template curve is an ellipse or a
circle. Finally, we use the general results in Younes
et al. (2008) and the results of section of the
previous section, to solve different problems related
to the morphological study of shape deformation
of erythrocytes: interpolation between normal and
sickle cells; supervised classification and unsupervised
clustering. We also compare the advantages of using
the general theory or this theory, particularized to
deformation curves, in the study of erythrocytes.

THE SPACE OF PLANE SHAPES

In this paper we consider closed curves which are
boundaries of planar shapes. That is, we consider the
space of smooth planar immersed curves given by

M = {α ∈C∞(S1,R2) : |α ′(t)| 6= 0, ∀t ∈ S1} ,

where S1 is the unit circle and α ′(t) is the usual
parametric derivative of α . M denotes the space of C∞-
immersions α : [0,2π]−→R2 with α(0)=α(2π). The
tangent space TαM at α is the set of vector fields h on
α; i.e., h : S1 −→ R2.

If h,k ∈ TαM, we consider the Riemannian metric
Gα(h,k) defined as Younes et al. (2008)

Gα(h,k) =
1

l(α)

∫
S1

ḣ(s)• k̇(s)ds ,

where ḣ(s) means derivative with respect to arc length,
ḣ(s) • k̇(s) is the usual product in R2, and l(α) is the
length of α .

The space of planar shapes will be the set
M modulo translations, rotations, scalings, and
reparameterizations of the curve (Di f f (S1)). However

we consider first the pre-shape space Md , where the
division by the group of diffeomorphisms Di f f (S1)
has not been considered. The group generated by
translations, scalings and rotations is called the group
of similitudes, abbreviated as sim; then, the pre-shape
space is defined as

Md =
M

sim
,

and we associate to Md the restriction of the metric Gα .

We prefer to use this apparently complex metric
rather than the much simpler metric G0

α(h,k) =∫
S1 h(s)•k(s)ds (used, for instance, in Klassen (2004))

because the latter presents some problems – for
example, a geodesic starting at a point can degenerate
to a curve of vanishing length and geodesics cannot be
computed explicitly. Moreover, as we will see next, Md
with this metric has the property of being isometric to a
Grassmannian, and then distances and geodesics using
this metric can be computed efficiently.

THE BASIC MAPPING
Let V be the vector space of all C∞ mappings

f : S1 −→ R, with the norm

|| f ||2 =
∫ 2π

0
( f (x))2 dx .

Then, given two functions e, f ∈ V and assuming
that our plane curves are curves in the complex plane
C, the basic mapping is defined as

Φ : (e, f )−→ α(t) =
1
2

∫ t

0
(e(x)+ i f (x))2 dx . (1)

From this definition it follows that a curve α(t) =
Φ(e, f ) will be a closed curve (α(0) = α(2π)) if and
only if ||e|| = || f || and 〈e, f 〉 =

∫ 2π

0 e(x) f (x)dx = 0.
Moreover the length of α is given by

l(α) =
1
2

∫ 2π

0
(e(x)2 + f (x)2)dx =

1
2
(
||e||2 + || f ||2

)
.

Let us now consider the Grassmannian Gr(2,V ) of
unoriented 2-dimensional subspaces of V defined by
an orthonormal pair (e, f ) ∈V 2 with ||e||2 + || f ||2 = 2
(that is, l(α) = 1); and let Gr0(2,V ) be the subset of
Gr(2,V ) defined by e, f with {t /e(t) = f (t) = 0} =
/0 (α need not be an immersion if e and f vanish
simultaneously). f Although the mapping Φ has been
defined on V ×V , it can be restricted to orthonormal
pairs in V ×V ; and then modified so as to divide out by
rotations to get a new map (which is still denoted Φ)
defined on Gr0(2,V ) (Younes et al., 2008). Then the
magic of the map Φ is shown in the following result:
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Theorem 1 Φ defines an isometry

Φ : Gr0(2,V )−→Md

when Gr0(2,V ) is given with its natural metric and Md
is given with the metric Gα .

Given two functions e and f which define a
point in the Grassmann manifold Gr0(2,V ), from the
basic mapping Φ, we obtain a closed curve that is
taken as the representative of its equivalence class
in Md . On the other hand, given a curve α ∈ M we
obtain the functions e and f , which correspond to the
representative of α in Md , from the following result:

Proposition 1 Let α ∈M and let θα(t) be the tangent
angle function of α; it follows that

e(t) =

√
2|α ′(t)|

l(α)
cos
(

θα(t)
2

)
,

f (t) =

√
2|α ′(t)|

l(α)
sin
(

θα(t)
2

)
.

(2)

Proof 1 From the definition of tangent angle function

α
′(t) = |α ′(t)|eiθα (t) = |α ′(t)|

(
ei θα (t)

2

)2
. (3)

On the other hand, from Eq. 1, we have

α
′(t) =

1
2
(e(t)+ i f (t))2. (4)

Finally using the Euler formula and comparing Eqs. 3
and 4 we obtain the result. �

As was said before, the curve given by Φ(e, f )(t)
will be the representative curve of α ∈ M in Md .
Since Φ(e, f )(0) = 0, the representative elements of
Md satisfy that α(0) = 0 and l(α) = 1.

COMPUTATION OF DISTANCES AND
GEODESICS IN Md

In order to compute distances and geodesic lines
between any pair of shapes (closed planar curves)
in the pre-shape space, we will consider the basic
mapping and the distances and explicit geodesics in
the Grassmannian given in Neretin (2001) and Younes
et al. (2008).

The geodesic distance between α = Φ(e1, f1)
and β = Φ(e2, f2), is the distance between the two
dimensional subspaces W1, generated by {e1, f1}, and
W2, generated by {e2, f2}.

The singular value decomposition of the
orthogonal projection p of W1 in W2 gives orthonormal
bases {ê1, f̂1} of W1 and {ê2, f̂2} of W2 such that
p(ê1) = λ1ê2 and p( f̂1) = λ2 f̂2, ê1 ⊥ f̂2, f̂1 ⊥ ê2 where
0≤ λ1,λ2≤ 1. In fact, λ1 and λ2 are the singular values
of the (2×2)−matrix

A =

(
〈e1,e2〉 〈e1, f2〉
〈 f1,e2〉 〈 f1, f2〉

)
. (5)

If we write λ1 = cosψ1, λ2 = cosψ2 then ψ1,ψ2
are the Jordan angles, 0 ≤ ψ1,ψ2 ≤ π/2, and the
geodesic distance between α = Φ(e1, f1) and β =
Φ(e2, f2) is given by Neretin (2001)

d(α,β ) = d(W1,W2) =
√

ψ2
1 +ψ2

2 . (6)

An upper bound of this distance is given by
d(α,β )≤ π/

√
2.

The geodesic joining α and β is defined by

γ(t,u) = Φ(e(t,u), f (t,u)) (7)

=
1
2

∫ t

0

(
e(s,u)+ i f (s,u))2) ds , t ∈ [0,2π] ,

where

e(t,u) =
sin((1−u)ψ1)ê1(t)+ sin(uψ1)ê2(t)

sinψ1
, (8)

f (t,u) =
sin((1−u)ψ2) f̂1(t)+ sin(uψ2) f̂2(t)

sinψ2
. (9)

Therefore, if α = Φ(e1, f1) and β = Φ(e2, f2), in
order to obtain the geodesic we have to diagonalize
the matrix A by rotating the curve α by a constant
angle φα , i.e., the basis (e1, f1) by the angle φα/2;
and similarly the curve β by a constant angle φβ . The
angles φα and φβ are given by the equations

φα +φβ = 2arctan
(
〈 f1,e2〉+ 〈e1, f2〉
〈 f1, f2〉−〈e1,e2〉

)
, (10)

φα −φβ = 2arctan
(
〈 f1,e2〉−〈e1, f2〉
〈 f1, f2〉+ 〈e1,e2〉

)
. (11)

In the newly aligned basis {ê1, f̂1} = eiφα/2(e1 +

i f1), {ê2, f̂2}= eiφβ /2(e2 + i f2), the diagonal elements
of the matrix will be the cosines λ1 = cosψ1 and
λ2 = cosψ2.

THE SHAPE SPACE
We are interested in geometric curves, i.e., curves

considered up to reparameterizations. The shape space
is then defined as the quotient space

S =
Md

Di f f (S1)
.
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The map Φ can be converted in an isometry if we
consider freely immersed curves and we make both
quotients into Riemannian submersions in Theorem 1.
However, we will consider only diffeomorphisms that
are translations. We will consider digital curves which
correspond to cell boundaries with a fixed orientation
and approximately equally spaced discrete points have
been considered in these curves, we suppose that the
curves α ∈ Md have constant speed |α ′(t)| for all
t ∈ [0,2π). Consider now that φ ∈ Di f f+(S1) (C∞

orientation preserving diffeomorphisms of S1) with
φ(0) = 0, α(t) is a curve in Md with |α ′(t)| = K and
α ◦φ is a reparameterization of c with |(α ◦φ)′(t)| =
K; then we have that φ is the identity, φ(t) = t for all
t ∈ S1.

Therefore, instead of working in the shape space S
we will consider distances in the pre-shape space Md
and we will define the distance between two closed
immersions α and β , each of length 1, representing
two shapes, as

d(α,β ) = min
φ

d(α, β̃ ◦φ) , (12)

where φ ∈ Di f f+(S1) is given by φ(t) = t + t0, where
t0 ∈ S1 is a constant, and β̃ ◦φ is the representative
element of β ◦φ in Md .

With the present approach (Younes et al. (2008))
and the use of constant speed parameterizations, the
task of finding distances and geodesics in the shape
space (that is, factoring out diffeomorphisms on S1) is
direct and does not require of sophisticated numerical
methods, as in the shape space of Klassen (2004,
Section 4), or in the shape space of Younes et al. (2008,
Section 6) for general parameterized closed curves.

GEOMETRIC REPRESENTATION
OF THE DEFORMATION OF
A TEMPLATE

Curve evolution of a simple closed curve, whose
points move in the direction of the normal with a
prescribed velocity, has been applied to a wide variety
of problems. In this section we will consider geodesic
paths between a template curve (circle or ellipse)
and a curve obtained as a normal deformation of the
template. In the applications we will consider two
approaches; the use of the general theory (Section
“The space of plane shapes”) and the results presented
in this section, particularized to deformation curves.

Therefore, in this section we consider two shapes:
a template curve α and a curve β obtained as

a normal deformation of α . We plan to obtain
suitable expressions for the functions {e1(t), f1(t)}
and {e2(t), f2(t)} such that α = Φ(e1, f1) and β =
Φ(e2, f2).

Let α be a closed curve of length 1 parameterized
by arc length and let β be a curve defined as

β (t) = α(t)+ f (t)~n(t) , (13)

where~n(t) is the inner unit normal vector to α(t) and
f (t) is a differentiable function which represents the
Euclidean signed distance between the points α(t) and
β (t).

Suppose that α(t) = (x(t),y(t)) and ~n(t) =
(n1(t),n2(t)); then, identifying R2 with the complex
numbers C, β (t) can be expressed as

β (t) = (x(t)+ f (t)n1(t))+ i(y(t)+ f (t)n2(t)) .

Proposition 2 Let θβ (t) be the tangent angle function
of β ; then,

e2(t) =
1√
l(β )

√
2|1− f (t)κα(t)|
|cosθ(t)|

cos
(

θβ (t)
2

)
,

f2(t) =
1√
l(β )

√
2|1− f (t)κα(t)|
|cosθ(t)|

sin
(

θβ (t)
2

)
,

where κα denotes the curvature of α and θ(t) =
θβ (t)−θα(t).

Proof 2 Let~t(t) = α ′(t) be the unit tangent vector.
From the definition of β (Eq. 13), and using the
Frenet-Serret formulas~t′(t) = κα(t)~n(t) and ~n′(t) =
−κα(t)~t(t), we obtain

β
′(t) = (1− f (t)κα(t))~t(t)+ f ′(t)~n(t) .

Since f ′(t) = tanθ(t)(1− f (t)κα(t)), (Hobolth and
Vedel-Jensen, 2000), we obtain

|β ′(t)|= |1− f (t)κα(t)|
√

1+ tan2 θ(t) .

Finally, since

β
′(t) = |β ′(t)|eiθβ (t) and β

′(t) =
1
2
(e2(t)+ i f2(t))2 ,

proceeding as in Proposition 1 we obtain the result. �

Then, from Eq. 7, we obtain the geodesic in the
shape space joining α to β .
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ELLIPSES AND CIRCLES AS
TEMPLATES AND THE RADIUS
VECTOR FUNCTION
Since normal cells are almost circular and most

sickle cells are almost elliptical, we study in this
section, as a particular case, shapes of objects obtained
as normal deformations of ellipses and shapes of
objects obtained as normal deformations of circles.
Since ellipses and circles are boundaries of convex
sets we will parameterize them using their support
functions. In the second case because deformations
of a circle are boundaries of star shaped objects, we
will also express them in terms of their radius-vector
functions.

Let p(t) be the support function of a bounded
convex set K; then the boundary of K, ∂K; can be
parameterized as α(t) = (x(t),y(t)) where (Santaló,
1976),

x(t) =p(t)cos t− p′(t)sin t ,

y(t) =p(t)sin t + p′(t)cos t .
(14)

Proposition 3 The two functions associated to the
curve α by the basic mapping are:

e1(t) =

√
p(t)+ p′′(t)

l(α)
(cos

t
2
− sin

t
2
),

f1(t) =

√
p(t)+ p′′(t)

l(α)
(cos

t
2
+ sin

t
2
).

(15)

Proof 3 Under the identification of R2 and C, we have

α
′(t) = (p(t)+ p′′(t))(−sin t + i cos t)

= (p(t)+ p′′(t)) i(cos t + i sin t)

= (p(t)+ p′′(t)) iei t

=
1
2

(√
p(t)+ p′′(t)(1+ i)ei t/2

)2
.

Then, proceeding as in Proposition 2 and, as we want
the length of the curve α to be equal 1, we obtain the
result. �

When the curve α is an ellipse α(t) =
{acos(t), bsin(t)}, t ∈ [0,2π], the support function is

p(t) =

√
1
2
[(a2 +b2)+(a2−b2)cos(2t)] ,

and the corresponding functions e1, f1 to α are known
from the above proposition, and we do not have to
compute them numerically. On the other hand,

κα(t) =
ab

(a2 sin2(t)+b2 cos2 t)3/2
,

and
θα(t) = arctan(

b
a

tan(t +
π

2
)) ,

and Proposition 2 can be used to obtain the functions
{e2(t), f2(t)} corresponding to a curve β , obtained as
a deformation of an ellipse.

For a = b = 1 the curve α(t) = {cos(t), sin(t)} is
a circle and~n(t) =−α(t); then,

β (t) = α(t)+ f (t)~n(t) = (1− f (t))α(t) .

Therefore, r(t) = 1 − f (t) is the radius vector
function of the curve β with respect to the origin.

Now we present a way to obtain the functions
{e2(t), f2(t)} corresponding to a curve β (t) =
r(t){cos(t), sin(t)}.

Proposition 4 Let θβ (t) be the tangent angle function
of β ; then,

e2(t) =

√
2|r(t)|

l(β )|sin(θβ (t)− t)|
cos
(

θβ (t)
2

)
,

f2(t) =

√
2|r(t)|

l(β )|sin(θβ (t)− t)|
sin
(

θβ (t)
2

)
.

Proof 4 Since κα = 2π and

cosθ(t) = 〈α ′(t), β ′(t)
|β ′(t)|

〉 ,

with
α
′(t) = {−sin t,cos t} ,

and
β ′(t)
|β ′(t)|

= {cosθβ (t),sinθβ (t)} ,

from Proposition 2 we obtain the result. �

In the second approach considered in the
applications, we use two templates α: a unit circle and
an ellipse, whose associated functions are given by
Proposition 3. To compute the distance and geodesic
from a cell to a circular template α using Proposition
4, we consider as radius vector r(t) the distance from
the centroid of the cell to its boundary; and to compute
the distance and geodesic from a cell to an ellipse α

as a template using Proposition 2, we consider that α

is the ellipse that best fit the boundary of the cell. As
expected, in general, the distance of a normal cell to
the circle is almost zero and the distance from a sickle
cell to the ellipse is almost zero.
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APPLICATIONS

There are many interesting applications of the
geometric representation of planar shapes proposed
here. In this section we show some of these
applications and we use them to analyze digital images
of peripheral blood smears in the morphological study
of erythrocytes.

All these applications represent a novelty for two
reasons. Firstly, the novelty lies in the use of the
general theory (Prop. 1, Eqs. 6 and 12) which has never
been used for these specific applications. On the other
hand, in some applications, additionally, we will make
use of the computation of representatives for a normal
deformation of an ellipse or a circle (Prop. 4).

Erythrocytes shape deformations are related to
different illnesses, e.g., SCD, that cause the hardening
or polymerization of the hemoglobin that contains the
erythrocytes. The cells are deformed and this results
in a risk of various complications, for example vaso-
occlusive crisis. In Fig. 1 we see images of normal
and deformed cells, they will be used in the following
applications. The study of this process using digital
images of peripheral blood smears offers useful results
in the clinical diagnosis of these illnesses.

The images were obtained of blood specimens
from patients with SCD. They were of 500 × 375
pixels, with 480 ppi resolution. They were taken in
the Clinical Laboratory of the Special Hematology
Department of the “Dr. Juan Bruno Zayas Alfonso”
General Hospital, Santiago de Cuba. In order to
accomplish segmentation we used methods that are
based on contour evolution and that appear in
the literature under the name of active contours,
deformable models, etc.

Three applications are presented here:
interpolation between shapes; supervised classification
and unsupervised clustering.

INTERPOLATION BETWEEN SHAPES

Geodesic paths between shapes cited in section
“The space of plane shapes” can be used to interpolate
between shapes. Interpolation between shapes can be
useful to estimate intermediate shapes of cells which
vary their shapes as time goes by, for example those
affected by SCD. For example, given a normal and a
sickle cell like those shown in Fig. 2, one can build the
geodesic path between both shapes, as it is shown in
this figure. In Fig. 3 some of the intermediate shapes
in this process are shown.

On the other hand, taking into account that a
normal cell should be ‘circular’, we can make profit of

Propositions 3 and 4 (where r(t) is the distance from
the centroid of the cell to its boundary). Using this
option, calculations are considerably reduced. In Fig.
4, intermediate shapes between a “completely circular”
shape and the same sickle cell of Fig. 3 are shown.

Fig. 1. Examples of normal, sickle and other deformed
erythrocytes.

Fig. 2. Geodesics between normal and sickle
erythrocyte.

Fig. 3. Evolution from normal to sickle erythrocyte.

Fig. 4. Evolution from a circle to a sickle erythrocyte.

SUPERVISED CLASSIFICATION

One of the most important issues in the study
of SCD is the search for an efficient automatic
classification method to quantify the number of
deformed cells that a patient has and so gauge
the severity of the illness. Nowadays, automatic
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classification of erythrocytes using digital images is
a very active field of research (Horiuchi et al., 1990;
Wheeless et al., 1994; Asakura et al., 1996; Kavitha
and Ramakrishnan, 2005; Jayavanth et al., 2010;
Frejlichowski, 2010). All these studies are based on the
extraction of shape descriptors (either boundary-based
or region-based) and the use of Euclidean distance
between these descriptors.

In this section, we begin by proposing the use of
the distance between planar shapes cited previously
as the metric in a supervised classification algorithm
and demonstrated the excellent results obtained in the
automatic classification of normal erythrocytes, those
with sickle or those with other deformations.

Blood specimens were obtained from patients with
SCD and 45 images of different fields were taken for
this study. A specialist selected the cells to be studied,
differentiating between normal ones, elongated ones
and those with other deformations present in the
images (Fig. 1).

To carry out the task of the supervised
classification, we propose again two possibilities, the
first one is based on the general approximation to
distances between shapes (Proposition 1 and Eqs. 6
and 12). The second approach is based on considering
the cells as deformations of known templates.

In the first approximation all the distances between
pairs of cells were calculated and the k-nearest
neighbor algorithm for supervised classification (k-
NN) was used (Cover and Hart, 1967). In order to
validate the results, a 5× 1 cross-validation process
was carried out. The confusion matrix of the process
is showed in Table 1, and the sensibility, precision and
specificity measures in Table 2.

Table 1. Confusion matrix of supervised classification.

Classes Normal Sickle Other Deformed
Normal 202 0 0
Sickle 0 202 8
Other Deformed 25 8 178

Table 2. Measures of supervised classification using
the proposed distance.

Classes Sensibility Precision Specificity
Normal 100.00 88.99 90,26
Sickle 96,19 96,19 92,01
Other Deformed 84,36 95,70 98,06
General Efficiency 93,52 93,63 93,44

In Table 2 we see that the elongated class had
high values of sensibility and specificity, with 96.19
% and 92.01 % respectively, and the normal class had
100.0 % of sensibility. No normal cell was classified
as elongated nor vice versa. In the case of other
deformations the sensibility decreased to 84.36 %
due to several cells with other deformations having
shapes very close to circular ones and in addition these
elements differ a lot among themselves. This drop in
accuracy is paralleled – though to a lesser extent –
in the values given for precision and specificity in
the normal class. Nevertheless, a very few elements
from the ”other deformations” class were classified as
elongated, the majority of misclassifications being to
consider them as normal. The process had a general
performance of 93.53 %.

In order to asses the goodness of our results,
they were compared with those obtained using other
approaches previously considered in the literature on
analysis of erythrocytes images. In particular with
descriptors used in Wheeless et al. (1994), Asakura
et al. (1996) and Frejlichowski (2010). The first
one is named the UNL-Fourier method and it is
based on applying two transformations, firstly, the
transformation of boundary points to polar coordinates
(more precisely, UNL-transform) and secondly 2D
Fourier transformation. The second one is based
on two shape factors: circular-shape factor (CSF)
(Wheeless et al., 1994) and elliptical-shape factor
(ESF) (Asakura et al., 1996). Results can be found in
Table 3). In all the cases the proposed descriptors have
similar or higher classification sensibility, specificity
and precision.

Although the results obtained using the above
methodology have been excellent, and the distances
between all the pairs of shapes are almost explicitly
available (this is, for instance, a key advantage over
the shape space of Klassen (2004)); in order to reduce
computational cost, we are going to consider now
that normal and sickle cells correspond to known
templates.

As we said before, normal cells are almost circular
and all deformed cells correspond to deformations of
a circle. However sickle cells are almost elliptical and
we could assume that elliptical forms appear in their
geodesic path from the circle. Considering this fact
we propose to consider distances from each cell to a
circle and to an ellipse in the classification method.
The e and f functions of a circle and of an ellipse were
obtained analytically, by using Eq. 15. Results given in
section “Geometric representation of the deformation
of a template” were used to calculate the representative
of each cell and then the distances to the circle and to
the ellipse. The axes of the ellipse used as a template
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Table 3. Sensibility, precision and specificity values for UNL-Fourier function and the elementary coefficients
CSF and ESF.

UNL-F CSF-ESF
Class Sensibility Precision Specificity Sensibility Precision Specificity
Normal 96.59 92.97 90.59 100.00 63.90 73.05
Sickle 97.14 91.66 90.24 98.10 94.9 97.35
Other abnorm. 84.19 93.50 96.87 41.31 95.70 99.03

are obtained as the mean value of the axes of the
ellipses that best fit each of the sickle cells in the
sample.

Linear discriminant analysis algorithm for
classification with Leave-one-out cross-validation was
used (Rao, 2009). The confusion matrix of the process
is showed in Table 4, and the sensibility, precision
and specificity measures in Table 5. In Table 5 we see
that a high overall performance is also obtained (92.39
%), although it is slightly worse than that obtained
in the previous case. The sensibility of normal and
elongated classes is also high: 98.02 % and 98.57
%, respectively, and once again no normal cell was
classified as elongated nor vice versa.

Table 4. Confusion matrix of classification considering
the distances of each cell to a circle and an ellipse.

Classes Normal Sickle Other Deformed
Normal 198 0 4
Sickle 0 207 3
Other Deformed 24 17 170

Table 5. Measures of classification considering
considering the distances of each cell to a circle and
an ellipse.

Classes Sensibility Precision Specificity
Normal 98.02 89,19 89,55
Sickle 98,57 92,41 89,10
Other Deformed 80,57 96,05 98,30
General Efficiency 92,39 92,55 92,32

UNSUPERVISED CLUSTERING

Another interesting problem in the study of SCD
is that – in classifying cells using a more complex
system – the simplicity of SCD diagnosis is made more
complicated. This more complex classification system
is of interest in the diagnosis of other diseases and their
own particular cell deformations, a study that merits its
own importance.

Several studies consider cellular deformations
produced by various diseases and have been the
theme of study and interest for some years now.
Morphological classification in 6 classes (Bacus et al.,
1977), 12 classes (Frejlichowski, 2010) and 14 classes
(Bacus et al., 1976) have been used. Other studies
considering different shapes of cells depending on
varying flow conditions in different blood vessels were
carried out (Jayavanth et al., 2010). In all these studies
homogeneous classes of deformations characterized by
the morphology of the cells are defined.

In this section we propose to use distance between
planar shapes cited previously as a dissimilarity
measure in an unsupervised classification algorithm in
order to define homogeneous classes of deformations.

As cluster procedure we will use a partitioning
method called Partitioning Around Medoids (PAM).
This method is a generalization of the well-known k-
means algorithm, which can be used with all types of
data and dissimilarity measurement between objects.
The PAM algorithm (in a similar way to k-means) is
based on finding k representative objects (also known
as medoids (Kaufman and Rousseeuw, 1990)) from
the data set in such a way that the total of the
dissimilarities within any given cluster is minimized.
Medoids are representative objects in the clusters
that always exist and we just have to compute the
dissimilarities between cells. Unlike K-means, there is
no need to calculate cluster Frechet means (Pennec,
2006) that would be a very complex task in our
shape space. A gradient search algorithm in a infinite
dimensional Riemannian manifold is required to find
the Frechet mean (Woods, 2003).

PAM algorithm can be found in the Cluster
package of the free software, R (R Development
Core Team, 2009), a language and environment for
statistical computing and graphics.

In most applications of clustering procedures and
in particular in the problem that concerns us here,
the number of groups k is not known in advance.
In order to select the appropriate number of groups,
we will run the clustering algorithm with different
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numbers of groups and we will choose (as suggested
in Kaufman and Rousseeuw, 1990) the result with the
largest average silhouette width.

We have to note that we want k ≥ 3 because
at least we have three classes: normal, sickle and
other deformations, but previously (in order to validate
the clustering procedure) we apply the method to a
supervised case where k = 3. In Table 6 the proportions
of correctly classified objects are shown and we can
see that results are excellent, with a sensibility value
of 97.00 % in the detection of sickle cells, 100.00 % in
the case of normal cells, and a general performance of
the process of 87.67 %.

Table 6. Unsupervised classification using the
proposed distance: 3 groups generated.

Classes Cell Quantity Detected Sensibility
Normal 100 100 100.00
Sickle 100 97 97.00
Other Deformed 100 66 66.00
General Efficiency 87.67

We then used our methodology for k > 3. The
optimal clustering has been achieved with k = 5. For
this number of groups, the average silhouette width is
0.1592418. Results are shown in Table 7. In Fig. 5
we can see the medoids of each class. The medoids
objects detected in normal and elongated classes were
the same as in the process using 3 groups. The new
study (with k = 5) verified that the detection in these
classes was stable.

The cells in the generated new groups mostly
would have belong to the class of other deformations in
our earlier (k = 3) study. Thus we can infer that metrics
allows additional grouping of several types of other
deformations that show up in a study that is adequately
accurate. No normal cell was classified as sickle and
vice versa, and in the case of other deformation classes,
the misclassification occurring was in great majority of
cases of cells detected as normal. Only one cell in the
case of five groups was erroneously detected as sickle.
Thus we can say that the results were good.

Table 7. Unsupervised classification using the
proposed distance: 5 groups generated.

Normal Sickle G1 G2 G3
Normal 100 0 0 0 0
Sickle 0 90 9 1 0
Other 12 1 24 27 36

Fig. 5. Medoids of each class obtained: Normal
and Sickle classes above, the three classes of Other
Deformations below.

PSEUDOCODES AND NOTATION

PSEUDOCODES

The aim of this section is to present a description
of both algorithms used to compute distances and
geodesics between planar curves; from their general
representation (Eq. 2), and between an ellipse (or
circle) and a deformation of this template (Propositions
2-4). Since most of the points of both algorithms are
identical, we will list the steps of the first algorithm,
and then we discuss the differences with the second
one.

Algorithm 1 (Distances and geodesics between general digital curves)

Given c1 and c2 two digital closed curves, each of them given by an ordered set of N points approximately
equally spaced: ci = ci(t) = {xi(t),yi(t)}t=1,··· ,N , i = 1,2.

1. Compute the lengths L(ci), i = 1,2.

2. Compute the approximations of the functions given in Eq. 2, for t = 1, · · · ,N. The tangent angle functions
θi(t) are derived from the cumulative angular function (Zhan et al., 1972) and |c′i(t)|, although it should be
constant, is approached from a second grade polynomial approximation using five points (Sauer, 2011).

3. Calculate the numerical integration of 〈e1,e2〉, 〈 f1, f2〉, 〈e1, f2〉 and 〈 f1,e2〉 from the corresponding sums of
type ∑

N
t=1 e1(t)e2(t).
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4. Compute the singular values λ1 and λ2 of the matrix A defined in Eq. 5 (λ1 and λ2 are the eigenvalues of the
matrix AT A, where AT stands for the transpose matrix).

5. The distance between the parameterized digital curves c1 and c2 is d(c1,c2) =
√

ψ2
1 +ψ2

2 , where λ1 = cosψ1,
λ2 = cosψ2.

6. Consider all the reparameterizations of c2 of the form c2(t + t0), when t0 ∈ {1, · · · ,N} and go to point 3 (now
〈e1, f2〉 ≈ ∑

N
t=1 e1(t) f2(t + t0)). Compute the N distances d(c1(t),c2(t + t0)) and the minimum distance will

be the distance between the geometric curves c1 and c2.

7. To compute the geodesic joining them, we consider the parameterization of c2 which gives the minimum
distance.
Solve Eqs.10 to 11 and, from the angles φα , φβ , obtain the aligned basis {ê1, f̂1}.

8. From Eq. 7 we obtain the geodesic γ(s,u) between c1 and c2. For u = 0 we obtain the curve c1, for u = 1 we
obtain the curve c2, and for 0 < u < 1 we obtain intermediate curves between c1 and c2. For u > 1 we obtain
an extension of the geodesic beyond c2. For each fixed value of the parameter u, the integral to obtain γ(s,u)
is approximated numerically.

Algorithm 2 (Distances and geodesics using a circle or an ellipse as a template)

In this case we consider c1 either a circle or an ellipse (if the axes are unknown they can be estimated from the
axes of the ellipses that best fit each curve in the sample). To compute the distance of a curve c2 to the template
c1, we suppose the condition in Eq. 13. All steps are identical to the preceding algorithm except:

2. If c1 is an ellipse: compute the approximation of the functions e2, f2 from proposition 2.
If c1 is a circle: compute the approximation of the functions e2, f2 from proposition 4.
The corresponding functions e1, f1 are given from proposition 3.

6. This step is not necessary in this case.

7. This step is not necessary when the template c1 is a circle.

NOTATION

We present here a summary of some mathematical concepts and symbols that appear in the paper.

M Space of smooth planar immersed curves
S1 Unit circle
TαM Tangent space of M at α

Gα Riemannian metric on M
• Usual product in R2

sim Group generated by translations, scalings and rotations
Md Pre-shape space, M

sim
S Space of planar shapes, Md

Diff(S1)

V Vector space of all C∞ mappings f : S1 −→ R
‖ · ‖2 Usual norm in V
〈·, ·〉 Usual product in V
Φ Basic mapping, Φ(e, f )(t) = 1

2
∫ t

0(e(x)+ i f (x))2dx
Gr(2,V ) Grassmannian of 2-dimensional subspaces of V
Gr0(2,V ) Subset of Gr(2,V ) with non vanishing simultaneously (e, f ) elements
θα(t) Tangent angle function of the curve α
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CONCLUSIONS

In this paper we consider the metric introduced
in Younes et al. (2008) and we apply it to calculate
distances and geodesics between all pairs of a sample
of closed planar curves, each one representing the
boundary of an erythrocyte. From these distances and
geodesics we show some practical applications in
the morphological study of erythrocytes using digital
images of peripheral blood smears of SCD:

1. Shape interpolation between erythrocytes.

2. Supervised classification of erythrocytes in
normal cells, sickle cells, and cells with other
deformations, with a general effectiveness of the
process of 93.53 %

3. Unsupervised classification of erythrocytes where
the detection of the groups of normal and sickle
cells in relation to the supervised classification
remained stable while three new class of
deformations were differentiated.

On the other hand, since normal erythrocytes are
almost circular and many sickle cells have elliptical
shape, we have adapted the general theory of Younes
et al. (2008) to the particular case where we have a
known convex template (in particular, circle or ellipse)
and a normal deformation of it. Now, we only have to
calculate the distance and geodesic of each shape in
the sample, to a unit circle and to an ellipse, which is
obtained from the mean value of the axes of the ellipses
that best fit each of the sickle cells in the sample.

For the same sample of cells as in the preceding
case, we have performed a second experiment, using
templates (a circle and an ellipse) with the goal of
reducing computational cost. In this case, the general
effectiveness of the supervised classification process of
erythrocytes in normal cells, sickle cells, and cells with
other deformations was of 92.39 %.

With these results it can be affirmed that the
method is feasible for morphologic study applications
and can be used as support to the clinical diagnosis of
the state of a patient with SCD.

The methodologies introduced in this paper could
be also extended to other similar clinical applications.
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