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ABSTRACT

A new class of non facet-to-facet random tessellations in three-dimensional space is introduced – the so-called
column tessellations. The spatial construction is based on a stationary planar tessellation; each cell of the
spatial tessellation is a prism whose base facet is congruent to a cell of the planar tessellation. Thus intensities
and various mean values of the spatial tessellation can be calculated from suitably chosen parameters of the
planar tessellation.
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THE CONTEXT FOR OUR NEW
MODEL

Random tessellations are classical structures
considered by stochastic geometers. Two standard
models are the Poisson hyperplane and Poisson
Voronoi tessellations (Schneider and Weil, 2008; Chiu
et al., 2013). In the planar case these tessellations
are side-to-side, that is, each side of a polygonal
tessellation cell coincides with a side of a neighbouring
cell. In their three dimensional versions they are facet-
to-facet, meaning that each facet of a polyhedral cell
coincides with a facet of a neighbouring cell.

In recent years there has been a growing interest
in tessellation models that do not have the stated
coincidence for all sides or facets. A first systematic
study of the effects when a three-dimensional
tessellation is not facet-to-facet is given in Weiss and
Cowan (2011). A recent study presented in Cowan
and Thäle (2014) looks in depth at the planar case,
building on results from the 1970s when non side-to-
side tessellations first attracted attention.

Tessellations of that kind arise for example by
cell division. Among these models, the iteration stable
or STIT tessellation is of particular interest because
of the number of analytically available results (Nagel
and Weiss, 2005; Mecke et al., 2008; Thäle et al.,
2012; Cowan, 2013; Thäle and Weiss, 2013, and the
references therein). It serves as a reference model
for geological crack and fissure structures (Mosser
and Matthäi, 2014) and might have application in the
process of biological cell division. The development of
new model classes is important for further applications
to random structures in materials science, geology and
biology – and the current paper contributes to that aim.

We consider a new class of non facet-to-facet
spatial tessellations, whose construction is based on
a stationary planar tessellation Y ′ having convex
polygonal cells. From each polygonal cell z of Y ′

we form an infinite column perpendicular to the
plane E in which Y ′ lies. Any cross-section of the
column parallel to E is congruent to z. To create a
spatial tessellation, each infinite column is intersected
by many such cross-sections, thereby dividing the
column into cells. The spatial cells which arise are
prisms and their polygonal base facets (located at the
cross-sections) are translations (in the third dimension
orthogonal to E ) of the cells of Y ′. The resulting
three-dimensional tessellation Y is called a column
tessellation. Column tessellations could be useful to
describe crack structures in geology, as for example in
the Giant’s Causeway of Northern Ireland (Figs. 1 and
2).

If the locations of cross-sections were identical in
all columns, the column tessellation Y reduces to the
stratum model of (Mecke, 1984) and is facet-to-facet
if and only if Y ′ is side-to-side. So, in order to be
innovative, we shall be introducing mechanisms such
that no section which divides a column is coplanar
with a section of a neighbouring column. This implies
that cells in neighbouring columns will not have a
common facet. As a consequence, the tessellations we
shall study in this paper are never facet-to-facet.

The definitions which we shall use to specify
where the cross-sections intersect the columns can
vary, thus giving scope for us to consider different
cases – and so to construct a rich model class. This
class provides a significant generalization of column
constructions considered briefly in (Weiss and Cowan,
2011). In the current paper we investigate which
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parameters of the planar tessellation are necessary to
calculate characteristics of the spatial tessellation. This
is interesting, for example, when only a planar section
through a spatial column tessellation can be observed.

Fig. 1. Basalt columns, approximately 6− 8 metres
high above ground level, divided by ‘cross-sectional
plates’ at approximately 30 cm spacing. Photo taken
by one of the authors. There are many formations like
this one (at the Giant’s Causeway, Northern Ireland)
around the world.

The paper is organized as follows. To describe
in detail the complicated geometry for tessellations
which are not facet-to-facet, we use the system of
notation given in (Weiss and Cowan, 2011). The next
section gives a short introduction to this notation for
planar and spatial tessellations. In Section “Column
tessellations”, the general construction of a column
tessellation is explained, special notation is defined
and basic properties are considered. Section “Formulae
for the features of column tessellations” shows that
intensities and various mean values of a spatial column
tessellation can be determined by suitably chosen
parameters of the planar tessellation. Later in that
section, formulae for metric mean values of the
column tessellation are also deduced. Three examples
conclude the paper.

To aid comprehension throughout the paper, we
often consider the special case where the cross-
sectional plates in a column have a constant separation

of 1 unit. This generates a column tessellation where
all the cells have height 1. We illustrate the notation
and our results using this special case.

Fig. 2. Viewed from above, examples of pentagonal and
heptagonal basalt columns at the Giant’s Causeway.

BASIC DEFINITIONS AND THE
NOTATION USED

The geometric elements: In this paper we
describe stationary convex-celled random tessellations
in R2 and R3 in general terms. We use the structure and
system of notation given in Weiss and Cowan (2011),
where convexity of cells was also assumed. Convexity
implies that the cells in the R2 case are convex
polygons and, in the R3 case, convex polyhedra.

In the three-dimensional case, we avoid a clash in
terminology between tessellation theory and polyhedra
theory by calling the faces of a polyhedron as follows:
apex (a 0-face); ridge (a 1-face); facet (a 2-face). The
words side and corner describe the 1-faces and 0-
faces of a polygon – and this terminology will be
used both for the cells of an R2-tessellation and for
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polygons imbedded in an R3-tessellation. For example,
cell-facets in a tessellation of R3 are polygons; so we
can speak of facet-sides and facet-corners.

For a spatial tessellation, we deal with four kinds
of primitive elements: these are called vertices, edges,
plates and cells. They are defined as follows.

A tessellation of R3 is a locally-finite collection
of compact convex cells which cover the three-
dimensional space and overlap only on their
boundaries. The union of the cell boundaries is called
the tessellation frame. A subset of the frame, the union
of all the cell-ridges, is called the tessellation net.
Each cell has apices, ridges and facets which lie on
the frame, the first two lying in the net. The union
of all apices is a collection of points in R3 called the
vertices of the tessellation. Those line-segments which
are contained in the net, have a vertex at each end and
no vertices in their relative interior are called edges
of the tessellation. Those convex polygons which are
contained in the frame, whose boundary is contained
in the net and whose relative interior is disjoint from
the net are called plates.

So we see that vertices, edges, plates and cells
are elements of the tessellation, whilst apex, ridge
and facet are names for elements of a polyhedral cell.
Vertices, edges, plates and cells are primitive in the
sense that they cannot have any other elements in their
relative interior.

Classes of elements and their inter-relation: The
corresponding classes of these primitives are denoted
by V, E, P and Z. An object belonging to a class X is
often referred to as “an X-type object” or “an object of
type X”.

For a random tessellation the intensity of objects
of class X is denoted by λX. It is the mean number
of centroids of X-type objects per unit volume. By
definition, the centroid of a nonempty compact subset
C of Rd is the centre of the (uniquely determined)
smallest ball containing C (Schneider and Weil, 2008,
Section 4.1). It is assumed henceforth that 0 < λX <∞;
this is the case for all examples considered. Recall that
an object x of X is said to be adjacent to an object y
of Y if either x ⊆ y or y ⊆ x. Let µXY be the mean
number of Y-type objects adjacent to the typical object
of X. Formally the typical object of class X can be
introduced by means of Palm distributions for which
we refer to Schneider and Weil (2008) and Chiu et al.
(2013). Intuitively it can be considered as a uniformly
selected object from X independently of its size and
shape. For an element x ∈ X the number of Y-type
objects adjacent to x is denoted by mY(x). Formally,
we write µXY := EX[mY(x)], where EX denotes an

expectation for the typical object of type X with respect
to the Palm distribution.

Because of combinatorial and topological relations
within any particular spatial tessellation the twelve
adjacency mean values µXY, for X,Y ∈ {V,E,P,Z}
and X 6= Y, can be expressed for a random tessellation
as functions of just three parameters; they have cyclic
subscripts.

µVE – the mean number of edges emanating
from the typical vertex,

µEP – the mean number of plates emanating
from the typical edge and

µPV – the mean number of vertices on the
boundary of the typical plate.

See Weiss and Cowan (2011) or also Radecke
(1980) and Mecke (1984) where another notation is
used. Note that all twelve adjacencies are invariant
under topological transformations of R3, defined in
Grünbaum and Shephard (1987, page 166). So we call
µVE, µEP and µPV the topological parameters.

In the facet-to-facet case, the j-dimensional faces
of an X-type object are primitive elements. In contrast,
for non facet-to-facet tessellations we must carefully
distinguish between the primitive elements and the
j-faces of polytopes. For example a cell can have
vertices on its boundary which are not 0-faces of that
polytope. A 1-face (ridge) of a cell can have vertices
in its relative interior, this being impossible for edges.
A 2-face (facet) of a cell may not be a plate. Hence
we use the notation Xj for the class of all j-faces of
X-type polytopes, j < dim(X-object). For instance P1

is the class of the 1-dimensional faces of all plates,
called the plate-sides. We emphasize that some of
these classes are multisets because of the multiplicities
of the elements. For example if k cells have a 0-
face located at a vertex v, then the class Z0 has k
elements positioned on v; note that here k ≤ mZ(v).
Furthermore, we define n j(x) as the number of j-faces
of a particular object x ∈ X and ν j(X) := EX[n j(x)] is
the mean number of j-faces of the typical X-object.
For example it is

ν0(P) – the mean number of 0-faces of the
typical plate,

ν1(Z) – the mean number of 1-faces (ridges)
of the typical cell.

Sometimes we use X[·] for a subset of the class X,
where the term in the brackets is a suitably chosen
symbol describing the property of the subclass. For
example, the subclasses of horizontal and vertical
edges are denoted by E[hor] and E[vert] respectively.

Parameters when not facet-to-facet: If a spatial
tessellation is not facet-to-facet, a face of a primitive
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element can have interior structure. To quantify the
effects of this phenomenon four additional parameters
for a random tessellation were introduced in Weiss and
Cowan (2011). They are called interior parameters and
defined as follows:

ξ – the proportion of edges whose interiors
are contained in the interior of some
cell-facet,

κ – the proportion of vertices in the
tessellation contained in the interior
of some cell-facet,

ψ – the mean number of ridge-interiors
adjacent to the typical vertex,

τ – the mean number of plate-side-interiors
adjacent to the typical vertex.

Note that the interior parameters can be written using
the adjacency notation as

ξ = µ
◦◦
EZ2

, κ = µ
◦

VZ2
, ψ = µ

◦
VZ1

and τ = µ
◦

VP1
,

using
◦
X for the class of relative interiors of members

of X. We call an edge whose interior is contained in
the interior of a cell-facet a π-edge and a vertex in
the interior of a cell-facet a hemi-vertex (Weiss and
Cowan, 2011).

Naturally all four interior parameters are zero in
the facet-to-facet case. In Cowan and Weiss (2015) it
is shown that a random spatial tessellation is facet-to-
facet if and only if ξ = 0. Some further notation will
be given later.

The planar tessellation: The initial template for
the construction of a column tessellation is a stationary
planar tessellation Y ′ in a fixed plane E which,
without loss of generality, is assumed horizontal. The
classes of planar primitive elements of Y ′ are V′

(vertices), E′ (edges) and Z′ (cells); analogously to
the spatial case these entities are defined for planar
tessellations (Cowan and Thäle, 2014). For example,
an edge of a planar tessellation is a line segment
which is contained in the frame, has a vertex on each
end and no vertices in its relative interior. All the
intensities λ ′X and the adjacency mean values µ ′XY,
X,Y ∈ {V′,E′,Z′} are marked with an apostrophe.
The subscripts are always written without apostrophes.
A planar tessellation which is not side-to-side has
vertices located in the interior of cell-sides. We call
them π-vertices, because one angle created by the
emanating edges is equal to π . The interior parameter
of a random planar tessellation is

φ – the proportion of π-vertices in the
tessellation, φ = µ ′

V
◦
Z1

.

Two cells of a planar tessellation are called

neighbours if their intersection is an edge of the
tessellation.

COLUMN TESSELLATIONS

Construction: Based on the planar tessellation
Y ′ in the horizontal plane E we construct the spatial
column tessellation Y in the following way:

For each cell z of Y ′, we consider an infinite
cylindrical column based on this cell and perpendicular
to E . Further we mark z’s centroid with a real-valued
positive ρz. Here, conditional upon Y ′, ρz is a non-
random function of some aspects of Y ′ viewed from
z, for example, the size, shape or environment of the
cell z. (Unconditionally, ρz inherits some randomness
from Y ′.) Such a mark is created for all cells in Y ′.
Now, for each planar cell z, we construct on the line
going through the cell-centroid of z perpendicular to E
– we call this the cell-axis – a stationary and simple
point process with intensity ρz. This point process
may be dependent on the cell-axis point processes
for neighbouring columns (the columns based on two
neighbouring cells of Y ′), but we require the following
property.

Property 3.1. The simple superposition property:
We require that the superposition of the cell-axis
point processes of two neighbouring columns be a
simple point process, that is, a point process without
multiplicities.

To create the spatial tessellation, the column
based on z is intersected by horizontal cross-sections
located at each of the random points of that column’s
point process. The resulting tessellation Y is called
a column tessellation. Note that the cell-axes do
not belong to the column tessellation. Because the
horizontal cross-sections are actually plates of Y ,
and there are no other plates in the tessellation that
are horizontal, we shall often refer to them as the
horizontal plates.

Any cell of Y is a right prism, where its base facet
is a vertical translation of a cell of Y ′. Because of
Property 3.1, there is no coplanarity of cross-sectional
plates that appear in neighbouring columns, and so the
cells in neighbouring columns cannot have a common
facet. So a column tessellation is not facet-to-facet.
The intersection of a column tessellation Y with any
plane parallel to E is a vertical translation of Y ′.

Constant cell heights: Let ζk, k = 0,±1,±2, ...,
be the random distances of the horizontal plates from
E . A very simple case arises when ζ0 is uniformly
distributed in (0,1] and ζk = ζ0 + k for all k. This
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implies, of course, that ρz = 1, a constant for all cells z
of Y ′. Also the positions of the horizontal plates in
a column are stationary and completely independent
of such plates in the neighbouring columns, as no
information has been drawn from Y ′.

Fig. 3. Column tessellation Y with constant height 1.
Here the four steps building up a column tessellation
are shown: Starting with the planar tessellation Y ′,
next the columns are given by the cells of Y ′. Then the
columns with their cuts are shown, whereas in the last
figure Y ′ is removed, it is no part of Y .

Any cell of the column tessellation Y that has
arisen is a right prism with height 1. For short, we call
it a column tessellation with height 1. An illustration
is given in Fig. 3. On the top on the left the planar
tessellation Y ′ is shown and the columns formed by
the cells of Y ′ on the right. On the bottom left we
see the columns with the cuts generated by the parallel
horizontal plates, using three different colors for three
columns. Down the right we strike Y ′ off because it is
not a part of the column tessellation Y .

More notation: We need further notation for
planar tessellations. Some is based on a relationship
between cells and lower dimensional objects of
the planar tessellation - an ownership relation. We

describe the ownership relation using a function b
(belonging to) defined as follows. If z j is a j-face of
a cell z, j = 0,1, then it belongs to that cell and we
write z = b(z j) to identify the owner. In other words,
cell z is the owner of any j-face z j such that z= b(z j).
It is obvious that z is the owner of n j(z) j-faces and
that any z j ∈ Z′j has its unique owner. (Remember that
Z′j is a multiset.) Furthermore we are interested in the
vertices of a cell which are not corners (0-faces) of that
cell. It is obvious that those vertices are π-vertices. We
say that z is the owner of such a π-vertex which is
not a 0-face of z. We use for this special belonging
to function the symbol bπ . Thus any π-vertex v[π]
belongs to a unique owner-cell z= bπ(v[π]) and a cell
z owns mV(z)− n0(z) π-vertices. So our belonging to
function b has domain Z0

′∪Z1
′ and range Z′, whereas

function bπ has domain V′[π] and range Z′.

Later we will investigate the dependency of the
vertex intensity of a column tessellation on both the
planar tessellation and the given marks ρz. It is easy
to see that all vertices of Y are located on vertical
lines through the vertices of Y ′. Also the intensity of
the vertices on such a vertex line depends on the ρ-
intensity of all the planar cells adjacent to the planar
vertex which creates this vertex line. To describe those
relations between Y , Y ′ and the cell marks ρz we
define further entities for the planar tessellation Y ′ as
follows.

– When x is adjacent to z ∈ Z′,

αx := ∑
{z:z⊃x}

ρz ,

where we mostly consider the cases x = v ∈ V′,
x= e ∈ E′ and x= v[π] ∈ V′[π].

– When z ∈ Z′ owns z0 ∈ Z′0 or v[π] ∈ V′[π],

βz0 := ρb(z0) and

βv[π] := ρbπ (v[π])

where z0 is a 0-face of the cell b(z0) and v[π] is a
π-vertex and no 0-face of the cell bπ(v[π]).

Furthermore,

– if `′(e) is the length of the edge e and a′(z) is the
area of the cell z,

γv := m′E(v)αv (number-weighted),

γe := `′(e)αe (length-weighted),

γz := a′(z)ρz (area-weighted).
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Fig. 4. An example of adjacency and ownership
relations in the planar tessellation Y ′.

Fig. 4 illustrates an example that shows our
notation – and also the differences between the
ownership and adjacency relations. The vertex v is
adjacent to the cells z1, z2 and z3, the edge e is adjacent
to the cells z1 and z2, hence αv = ρz1 +ρz2 +ρz3 and
αe = ρz1 + ρz2 . For the ownership relation, it is easy
to see that for the π-vertex v[π] we have βv[π] = ρz4 ,
because z4 = bπ(v[π]). Besides, v is a 0-face of the
cells z1, z2 and z3, then the class Z0

′ has 3 elements
located on v denoted by z01, z02 and z03 (not shown in
the figure) with owner-cells z1, z2 and z3, respectively.
Hence βz01 = ρb(z01) = ρz1 , βz02 = ρz2 and βz03 = ρz3 .

Later we will see that the last two items of the new
notation, γe and γz, are necessary for the studies of
the metrical properties whereas all others are used for
results concerning topological and interior parameters.
All these α-, β -, γ-quantities can be understood as
marks of elements of the planar tessellation. Each
of these marks leads to mark distributions. The
corresponding means in the random context are as
follows:

– ρ̄Z =E′Z(ρz) – the mean ρ-intensity of the typical
cell;

– ᾱX = E′X(αx) – the mean total ρ-intensity of
all cells adjacent to the typical X-object, X ∈
{V′,V′[π],E′};

– β̄Z0
= E′Z0

(βz0) and β̄V[π] = E′V[π](βv[π]) – the
mean ρ-intensity of the owner cell of the typical
0-face or the typical π-vertex, respectively;

– γ̄X =E′X(γx) – the mean total weighted ρ-intensity
of all cells adjacent to the typical X-object, X ∈
{V′,E′,Z′}.

Remark 3.2. Using mean value identities for the
primitive tessellation elements, given in (Møller,
1989), and some generalisations, most of the above

mean values can be expressed as second-order
quantities depending on the ρ-intensity as follows:

– λ ′XᾱX = λ ′ZE′Z(m′X(z)ρz);

– λ ′Z0
β̄Z0

= λ ′ZE′Z(n′0(z)ρz);

– λ ′V[π]β̄V[π] = λ ′ZE′Z[(m′V(z)−n′0(z))ρz]

= λ ′VᾱV−λ ′Z0
β̄Z0

– λ ′Eγ̄E = λ ′ZE′Z(`′(z)ρz), where `′(z) is the
perimeter of the planar cell z;

– λ ′Zγ̄Z = λ ′ZE′Z(a′(z)ρz).

Only γ̄V requires a separate argument:

λ
′
Vγ̄V = λ

′
ZE′Z[(k′E(z)+m′V(z))ρz]

= λ
′
ZE′Z(k′E(z)ρz)+λ

′
VᾱV ,

where k′E(z) := ∑
e∈E′

1{e∩z 6= /0} – the number of edges

intersecting z. Here 1{·} is the indicator function.

Remark 3.3. To illustrate these mean values we
consider now the special case when ρz = 1 for all
z ∈ Z′.

ρ̄Z = 1,

ᾱV = µ
′
VZ = µ

′
VE,

ᾱE = 2,

ᾱV[π] = µ
′
V[π]Z = µ

′
V[π]E,

β̄Z0
= 1,

β̄V[π] = 1,

γ̄V = µ
′(2)
VZ = µ

′(2)
VE ,

γ̄E = 2 ¯̀′
E,

γ̄Z = ā′Z,

where
µ ′V[π]E – the mean number of emanating

edges from the typical π-vertex,
µ
′(2)
VE – the second moment of the

number of edges adjacent to the
typical vertex,

¯̀′
E – the mean length of the typical edge,

ā′Z – the mean area of the typical cell.

Formally, the second moment of the number of edges
adjacent to the typical vertex is given by E′V[m′E(v)2],
where E′V denotes an expectation for the typical vertex
of Y ′ with respect to the Palm measure (Chiu et al.,
2013).

The first and the last of the formulae in Remark 3.3 are
obvious. The formulae for the three α-means follow
from αx =m′Z(x) in the case ρz = 1. The β -mean value
formulae arise from the fact that the owner-cell of
the typical corner or the typical π-vertex, respectively,
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has ρ-intensity 1. And the first two γ-mean values we
obtain using again αx = m′Z(x) for x= v and x= e.

Considering again the general construction, our
aim is the calculation of intensities and mean values
of the column tessellation Y from the characteristics
of Y ′. For this purpose the following basic inter-
relationship between vertices and edges of Y and Y ′

is helpful.

Basic properties: For a vertex v ∈ V′ in Y ′ we
consider the vertical line Lv through v (called vertex-
line) and its intersection with the columns created by
the planar cells adjacent to v. The horizontal plates
in these columns create a point process (comprising
vertices of the spatial tessellation Y ) on Lv, this point
process being the superposition of point processes with
ρ-intensities from the planar cells adjacent to v. Hence
it has intensity αv. For short we say that v has αv

corresponding vertices in Y .

Property 3.4. Let v be a vertex in Y ′. Then v has αv

corresponding vertices in Y and each one is adjacent
to m′E(v)+1 cells and to m′E(v)+3 plates of Y .

Furthermore the column tessellation has only
horizontal and vertical edges denoted by E[hor] and
E[vert], respectively. All horizontal edges are π-edges
with three emanating plates. For each edge e of Y ′,
we have two planar cells adjacent to this edge. When
we cut the two corresponding columns by different
horizontal planes, the intensity of horizontal edges
of Y in the common face of the two neighbouring
columns is αe, and all these edges are translations of
e. Besides, the intensity of vertical edges of Y on a
vertex line Lv is αv.

Property 3.5. An edge e of Y ′ corresponds to αe

horizontal edges of Y . Any horizontal edge of Y is
a π-edge with three emanating plates, two of them are
vertical, the third one is a horizontal plate. A vertex v
of Y ′ corresponds to αv vertical edges of Y , where
each one is adjacent to m′E(v) plates of Y .

These correspondence relations between Y ′ and
Y will be refined later in the paper.

FORMULAE FOR THE FEATURES
OF COLUMN TESSELLATIONS

Intensities of primitive elements: As a first step
we will consider how the intensities λX of the primitive
elements X ∈ {V,E,P,Z} of a column tessellation Y
depend on characteristics of the planar tessellation Y ′.
To establish formulae for this dependence we need the
intensities λ ′Z and λ ′V, the mean ρ-intensity ρ̄Z and the
mean total ρ-intensity ᾱV of Y ′:

Proposition 4.1. The intensities of primitive elements
of a column tessellation Y depend on Y ′ and the cell
marks ρz as follows:

(i) λV = λ ′VᾱV;

(ii) λE = 2λ ′VᾱV;

(iii)λP = λ ′VᾱV +λ ′Zρ̄Z;

(iv) λZ = λ ′Zρ̄Z.

For a refined partition of the classes E and P of Y into
horizontal and vertical elements we obtain

(v) λE[hor] = λE[vert] = λ ′VᾱV and

(vi) λP[hor] = λ ′Zρ̄Z, λP[vert] = λ ′VᾱV.

Proof. With Property 3.4 we obtain (i).

Using Property 3.5 and the mean value identity
λ ′VᾱV = λ ′ZE′Z(m′V(z)ρz) = λ ′ZE′Z(m′E(z)ρz) = λ ′EᾱE

we have (v) and λE = λE[hor]+λE[vert] yields (ii).
From the construction of the column tessellation (iv)
is obvious. With λV−λE +λP−λZ = 0 we obtain (iii)
and λP[hor] = λZ leads to (vi).

Further intensities can be calculated using
properties of the column tessellation or formulae given
in Theorem 4.2 and in Weiss and Cowan (2011), for
example,

intensity of plate-sides: λP1
= λ

′
Z0

β̄Z0
+4λ

′
VᾱV,

intensity of cell-facets: λZ2
= 2λ

′
Zρ̄Z +λ

′
Z0

β̄Z0
,

intensity of cell-ridges: λZ1
= 3λ

′
Z0

β̄Z0
.

Note that in the calculation of those intensities,
the interior parameter φ of the planar tessellation is a
necessary input, because λ ′Z0

depends on φ . Namely
λ ′Z0

= λ ′V(µ
′
VE − φ) (Weiss and Cowan, 2011, Table

3a).

Formulae for the topological and interior
parameters: We now present the three adjacency
parameters µVE, µEP, µPV and the four interior
parameters ξ , κ, ψ, τ of a column tessellation.
To clarify their dependence on the basic planar
tessellation Y ′, we need from Y ′ the mean number of
emanating edges of the typical vertex µ ′VE, the interior
parameter φ and five already–mentioned mean values
ρ̄Z, ᾱV, ᾱV[π], β̄Z0

, γ̄V.
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Theorem 4.2. The three topological and four interior
parameters of a column tessellation Y are given by
seven parameters of the underlying planar tessellation
Y ′ and the function ρz as follows

µVE = 4 , (1)

µPV =
2(3ᾱV + γ̄V)

2ᾱV +(µ ′VE−2)ρ̄Z
, (2)

µEP =
1
2

γ̄V

ᾱV
+

3
2
, (3)

ξ =
1
2

φ
ᾱV[π]

ᾱV
+

1
2
, (4)

κ = φ
ᾱV[π]

ᾱV
+(µ ′VE−φ)

β̄Z0

ᾱV
−1 , (5)

ψ =
γ̄V

ᾱV
−φ

ᾱV[π]

ᾱV
−3(µ ′VE−φ)

β̄Z0

ᾱV
+2 , (6)

τ =
γ̄V

ᾱV
− (µ ′VE−φ)

β̄Z0

ᾱV
−1 . (7)

Note that the Greek letters overset with a bar are
derived from ρz and Y ′ .

Proof. 1. Each vertex of Y arises from the intersection
of an infinite cylindrical column with a horizontal
plane, hence the vertex has 4 outgoing edges; 2 of them
are horizontal and the other 2 are vertical and collinear.
So we have mE(v) = 4 for all v ∈ V.

2. From Property 3.4 we have for the mean number
of plates adjacent to the typical vertex

λVµVP = λ
′
VE′V[αv(m′E(v)+3)] = λ

′
Vγ̄V +3λ

′
VᾱV .

With λVµVP = λPµPV and (iii) of Proposition 4.1 we
obtain (2).

3. A column tessellation has horizontal and vertical
plates.

λEµEP = λE[hor]µE[hor]P +λE[vert]µE[vert]P .

Obviously, µE[hor]P = 3 and we have λE[hor] = λ ′VᾱV

from (v). Each vertical edge corresponding to a vertex
v in the planar tessellation is adjacent to m′E(v) plates;
see Property 3.5. Therefore

λE[vert]µE[vert]P = λ
′
VE′V(αvm′E(v)) = λ

′
Vγ̄V ,

and hence, with (ii) of Proposition 4.1,

µEP =
λ ′VᾱV ·3+λ ′Vγ̄V

2λ ′VᾱV
=

1
2

γ̄V

ᾱV
+

3
2
.

4. To find the formulae for the interior parameters
we have to refine the correspondence relations between

Y ′ and Y into two cases: whether a vertex of Y ′ is a
π-vertex or not. To calculate the intensity of π-edges
λE[π] of Y we note firstly that all horizontal edges are
π-edges and secondly that a vertical edge is a π-edge if
the corresponding vertex v ∈ Y ′ is a π-vertex. Hence

λE[π] = λE[hor]+λ
′
V[π]E

′
V[π](αv[π])

= λ
′
VᾱV +λ

′
V[π]ᾱV[π] ,

which implies, using λE[π] = λEξ and λE = 2λ ′VᾱV,
that

ξ =
λ ′VᾱV +λ ′V[π]ᾱV[π]

2λ ′VᾱV
=

1
2

φ
ᾱV[π]

ᾱV
+

1
2
.

5. To prove Eq. 5 (and Eqs. 6-7 too) we again have
to refine the correspondence between Y ′ and Y . We
consider when the vertices of a column tessellation are
hemi-vertices or not. If the vertex v of Y ′ is not a
π-vertex, then all αv corresponding vertices of Y are
not hemi-vertices. If the vertex is a π-vertex, denoted
by v[π], then βv[π] of the corresponding vertices are
non-hemi-vertices, the others hemi-vertices. Hence the
intensity of hemi-vertices λV[κ] = λVκ is

λV[κ] = λ
′
V[π]E

′
V[π](αv[π]−βv[π])

= λ
′
V[π]ᾱV[π]−λ

′
V[π]β̄V[π]

= λ
′
V[π]ᾱV[π]−λ

′
VᾱV +λ

′
Z0

β̄Z0

using λ ′V[π]β̄V[π] = λ ′VᾱV− λ ′Z0
β̄Z0

from Remark 3.2.
Therefore with λ ′Z0

= λ ′V(µ
′
VE − φ) and Proposition

4.1(i),

κ =
λ ′V[π]ᾱV[π]−λ ′VᾱV +λ ′V(µ

′
VE−φ)β̄Z0

λ ′VᾱV

= φ
ᾱV[π]

ᾱV
+(µ ′VE−φ)

β̄Z0

ᾱV
−1 .

6. To present the parameter ψ , we have to find out
the number of ridge-interiors adjacent to a vertex in
different cases. If the vertex v of Y ′ is not a π-vertex,
denoted by v[π̄], then each of the αv[π̄] corresponding
vertices of Y is adjacent to m′E(v[π̄]) − 1 ridge-
interiors. If v of Y ′ is a π-vertex v[π], each of the
corresponding non-hemi-vertices of Y is adjacent to
m′E(v[π])+1 ridge-interiors, and each of the remaining
corresponding hemi-vertices is adjacent to m′E(v[π])−
2 ridge-interiors. Hence

94



Image Anal Stereol 2015;34:87-100

λVψ = λ
′
V[π̄]E

′
V[π̄][αv[π̄](m

′
E(v[π̄])−1)]+

+λ
′
V[π]E

′
V[π][βv[π](m

′
E(v[π])+1)]+

+λ
′
V[π]E

′
V[π][(αv[π]−βv[π])(m

′
E(v[π])−2)]

= λ
′
VE′V(αvm′E(v))−2λ

′
VE′V(αv)+

+λ
′
V[π̄]E

′
V[π̄](αv[π̄])+3λ

′
V[π]E

′
V[π](βv[π])

= λ
′
Vγ̄V−2λ

′
VᾱV +λ

′
VᾱV−λ

′
V[π]ᾱV[π]+

+3λ
′
VᾱV−3λ

′
Z0

β̄Z0

= λ
′
Vγ̄V−λ

′
V[π]ᾱV[π]−3λ

′
Z0

β̄Z0
+2λ

′
VᾱV .

Therefore,

ψ =
λ ′Vγ̄V−λ ′V[π]ᾱV[π]−3λ ′V(µ

′
VE−φ)β̄Z0

+2λ ′VᾱV

λ ′VᾱV

=
γ̄V

ᾱV
−φ

ᾱV[π]

ᾱV
−3(µ ′VE−φ)

β̄Z0

ᾱV
+2 .

7. For this last identity we consider how the
number of plate-side-interiors adjacent to a vertex of
Y depends on the type of the corresponding vertex
of Y ′. If the vertex v of Y ′ is a v[π̄], then each of
the corresponding αv[π̄] vertices of Y is adjacent to
m′E(v[π̄])− 2 plate-side-interiors. If v is a v[π], each
of the corresponding non-hemi-vertices is adjacent to
m′E(v[π])−1 plate-side-interiors, and each of the other
corresponding hemi-vertices is adjacent to m′E(v[π])−
2 plate-side-interiors. Hence

λVτ = λ
′
V[π̄]E

′
V[π̄][αv[π̄](m

′
E(v[π̄])−2)]+

+λ
′
V[π]E

′
V[π][βv[π](m

′
E(v[π])−1)]+

+λ
′
V[π]E

′
V[π][(αv[π]−βv[π])(m

′
E(v[π])−2)]

= λ
′
VE′V(αvm′E(v))−2λ

′
VE′V(αv)+

+λ
′
V[π]E

′
V[π](βv[π])

= λ
′
Vγ̄V−2λ

′
VᾱV +λ

′
VᾱV−λ

′
Z0

β̄Z0

= λ
′
Vγ̄V−λ

′
VᾱV−λ

′
Z0

β̄Z0
.

Therefore

τ =
λ ′Vγ̄V−λ ′V(µ

′
VE−φ)β̄Z0

−λ ′VᾱV

λ ′VᾱV

=
γ̄V

ᾱV
− (µ ′VE−φ)

β̄Z0

ᾱV
−1 .

Using identities in Weiss and Cowan (2011),
further mean values can be computed. For example the
mean number of vertices and edges, respectively, of the
typical cell are

µZV = 2
γ̄V + ᾱV

(µ ′VE−2)ρ̄Z
and µZE = 2

γ̄V +3ᾱV

(µ ′VE−2)ρ̄Z
,

whereas the mean number of 0-faces and 1-faces of the
typical cell are

ν0(Z) =
4(µ ′VE−φ)

(µ ′VE−2)
β̄Z0

ρ̄Z

and

ν1(Z) =
6(µ ′VE−φ)

(µ ′VE−2)
β̄Z0

ρ̄Z
.

Remark 4.3. To calculate the intensities and
topological/interior parameters of a column tessel-
lation with height 1 from the planar tessellation, five
planar parameters are needed,

λ
′
V, µ

′
VE, φ , µ

′
EV[π] and µ

′(2)
VE .

Using Remark 3.3, Proposition 4.1 and Theorem 4.2
and the mean value identities

µ
′
V[π]E =

µ ′VE

2φ
µ
′
EV[π] and λ

′
Z =

1
2

λ
′
V(µ

′
VE−2) ,

the intensities of a column tessellation with height 1
are

λV = λ
′
Vµ
′
VE , λE = 2λ

′
Vµ
′
VE ,

λP =
1
2

λ
′
V(3µ

′
VE−2) , λZ =

1
2

λ
′
V(µ

′
VE−2) ,

the topological parameters are

µVE = 4 , µPV =
2

3µ ′VE−2
(3µ

′
VE +µ

′(2)
VE ) ,

µEP =
1

2µ ′VE

(3µ
′
VE +µ

′(2)
VE ) ,

and for the interior parameters we obtain

ξ =
1
2
+

1
4

µ
′
EV[π] , κ =

1
2

µ
′
EV[π]−

φ

µ ′VE

,

ψ =
µ
′(2)
VE +3φ

µ ′VE

−1− 1
2

µ
′
EV[π] , τ =

µ
′(2)
VE +φ

µ ′VE

−2 .

Remark 4.4. In Cowan and Weiss (2015) constraints
on the topological/interior parameters of spatial
tessellations are considered. They showed that the
second moment µ

′(2)
VE of a planar tessellation is

unbounded. So, in the class of column tessellations
with height 1, the mean values µEP, µPV and τ, ψ are
unbounded. Further constraints follow in Proposition
4.5.
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Proposition 4.5. The constraints for the
topological/interior parameters of a column tessel-
lation Y with height 1 depending on µ ′VE and φ of Y ′

are as follows

36
7
≤

2µ ′VE(3+µ ′VE)

3µ ′VE−2
≤ µPV ,

3≤ 1
2
(3+µ

′
VE)≤ µEP ,

1
2
≤ 1

2
+

3
2

φ

µ ′VE

≤ ξ ≤ 1− 3(1−φ)

2µ ′VE

≤ 1 ,

0≤ 2φ

µ ′VE

≤ κ ≤ 1− 3−2φ

µ ′VE

≤ 3
4
,

2≤ µ
′
VE +

3
µ ′VE

−2≤ ψ ,

1≤ µ
′
VE +

φ

µ ′VE

−2≤ τ .

Proof. For any planar tessellation we have

0≤ φ ≤ 1 and 3≤ µ
′
VE ≤ 6−2φ ,

as shown in Weiss and Cowan (2011). Furthermore it is
evident that 3≤ µ ′V[π]E and 3≤ µ ′V[π̄]E. With help from
µ ′VE = φ µ ′V[π]E+(1−φ)µ ′V[π̄]E we obtain the following
constraints for the mean number of emanating edges of
the typical π-vertex

3≤ µ
′
V[π]E ≤

µ ′VE

φ
− 3(1−φ)

φ
.

Hence the constraints for µ ′EV[π] are

6φ

µ ′VE

≤ µ
′
EV[π] ≤ 2− 6(1−φ)

µ ′VE

using µ ′EV[π] = 2φ µ ′V[π]E/µ ′VE.

Applying these results together with the inequality
µ
′(2)
VE ≥ (µ ′VE)

2 to Remark 4.3 leads to the constraints
for column tessellations with height 1.

Formulae involving the length metric: Firstly
we consider mean values corresponding to the length
measure for the object classes X ∈ {E,P,Z} in Y ,
those denoted by

¯̀
X – the mean total length of all 1-faces of the

typical X-object, where dim(X-object)≥ 1.

This yields, for special object classes,
¯̀
E – the mean length of the typical edge,
¯̀
P – the mean perimeter of the typical plate,
¯̀
Z – the mean total length of all ridges of the

typical cell.

We can also define ¯̀
Xk

and ¯̀
X[·] in a similar way. For

example,
¯̀
E[hor], ¯̀

E[vert] – the mean length of the
and ¯̀

E[π] typical horizontal, vertical,
and π-edge, respectively,

¯̀
P1

, ¯̀
Z1

– the mean length of the
typical plate-side and the
typical ridge, respectively,

¯̀
Z2

– the mean perimeter of the
typical facet.

The notation above does not include, for instance,
the mean total length of all edges of the typical
cell. Therefore we use again the adjacency concept,
analogous to the mean adjacencies µXY:

¯̀
XY – the mean total length of all Y-objects

adjacent to the typical X-object, where
dim(Y-object)= 1.

For X= Z and Y = E we have
¯̀
ZE – the mean total length of all edges

adjacent to the typical cell.

Some of these ¯̀
XY mean values can be easily

determined, for example

¯̀
PE = ¯̀

P, ¯̀
Z1E = ¯̀

Z1
, ¯̀

P1E = ¯̀
P1
,

but other examples (see Proposition 4.7) are more
complicated and demonstrate the necessity of the
notation.

Using the additional parameter γ̄E of the planar
tessellation Y ′ - the length-weighted total ρ-intensity
of the cells adjacent to the typical edge, we can
calculate the mean values corresponding to the length
measure of a column tessellation.

Theorem 4.6. Three mean values of primitive
elements corresponding to the length measure of the
column tessellation are given as follows:

¯̀
E =

1
2

(
γ̄E

ᾱE
+

1
ᾱV

)
, (8)

¯̀
P =

(3γ̄E +2)µ ′VE

(µ ′VE−2)ρ̄Z +µ ′VEᾱE
, (9)

¯̀
Z =

2(µ ′VEγ̄E +µ ′VE−φ)

(µ ′VE−2)ρ̄Z
. (10)

Proof. 8. Recalling that a column tessellation has only
horizontal and vertical edges,

λE
¯̀
E = λE[hor]

¯̀
E[hor]+λE[vert]

¯̀
E[vert] = λ

′
Eγ̄E +λ

′
V .

With (ii) from Proposition 4.1 and the equation
λ ′EᾱE = λ ′VᾱV we obtain Eq. 8.
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9. Similarly, for the plates of Y we have

λP
¯̀
P = λP[hor]

¯̀
P[hor]+λP[vert]

¯̀
P[vert] .

A cell z of the planar tessellation Y ′ corresponds to ρz

horizontal plates of Y (they are vertical translations
of z), hence λP[hor]

¯̀
P[hor] = λ ′ZE′Z(`′(z)ρz) = λ ′Eγ̄E,

from Remark 3.2. A vertical edge of Y on a line
through a vertex v of Y ′ is adjacent to m′E(v) vertical
plates. Furthermore any horizontal edge is adjacent
to two vertical plates, see Property 3.5. Therefore,
λP[vert]

¯̀
P[vert] = λ ′Vµ ′VE + 2λ ′Eγ̄E = 2λ ′E + 2λ ′Eγ̄E and

consequently

λP
¯̀
P = 3λ

′
Eγ̄E +2λ

′
E ,

which implies Eq. 9.

10. To determine the mean total length of all ridges
of the typical cell, we use the fact that any horizontal
ridge has multiplicity 2 (two cells with a common
horizontal facet have horizontal ridges which are the
sides of that facet). A point on a vertical line through
a vertex v of Y ′ is an element of as many ridges as
there are 0-faces z0 of Y ′ which are located on v. That
implies

λZ
¯̀
Z = 2λP[hor]

¯̀
P[hor]+λ

′
Z0

,

and we get Eq. 10.

Other mean values corresponding to the length
measure of the column tessellation can be computed
in the same way by separating the roles of horizontal
objects and vertical objects. For example,

– the mean length of the typical π-edge

¯̀
E[π] =

µ ′VEγ̄E +2φ

2(ᾱV +φᾱV[π])
,

– the mean length of the typical ridge

¯̀
Z1

=
1

3β̄Z0

(
µ ′VEγ̄E

µ ′VE−φ
+1

)
,

– the mean length of the typical plate-side

¯̀
P1

=
µ ′VE(3γ̄E +2)

2(µ ′VE−φ)β̄Z0
+4µ ′VEᾱE

,

– the mean perimeter of the typical facet

¯̀
Z2

=
2µ ′VEγ̄E +2(µ ′VE−φ)

(µ ′VE−2)ρ̄Z +(µ ′VE−φ)β̄Z0

.

We also take care of results for some ¯̀
XY. It is

interesting for us to calculate ¯̀
ZE and

¯̀
Z2E – the mean total length of all edges adjacent

to the typical facet.

Proposition 4.7. The values of ¯̀
ZE and ¯̀

Z2E are given
as follows:

¯̀
ZE =

µ ′VE(3γ̄E +2)
(µ ′VE−2)ρ̄Z

,

¯̀
Z2E =

5µ ′VEγ̄E +4µ ′VE−2φ

2[(µ ′VE−2)ρ̄Z +(µ ′VE−φ)β̄Z0
]
.

Proof. Based on the properties of the column
tessellation, it is not difficult to see that

λZ
¯̀
ZE = λZ

¯̀
ZE[hor]+λZ

¯̀
ZE[vert]

= 3λE[hor]
¯̀
E[hor]+λ

′
Zµ
′
ZV

= 3λ
′
Eγ̄E +2λ

′
E .

To prove the second formula for ¯̀
Z2E, firstly we note

that any horizontal edge of Y is contained in the
boundary of two horizontal and two vertical cell-facets
and in the interior of a further vertical cell-facet. This
explains the summand 5λ ′Eγ̄E. Secondly, a vertical edge
of Y which is corresponding to a non π-vertex v of Y ′

is adjacent to 2m′E(v) = 2m′Z0
(v) vertical cell facets,

whereas a vertical edge corresponding to a π-vertex v
is adjacent to 2m′E(v)− 1 = 2m′Z0

(v)+ 1 facets. This
creates the two summands 2λ ′Z0

+λ ′V[π] = λ ′Z0
+ 2λ ′E.

We obtain

λZ2
¯̀
Z2E = 5λ

′
Eγ̄E +2λ

′
E +λ

′
Z0

= 5λ
′
Eγ̄E +λ

′
Z

4µ ′VE−2φ

µ ′VE−2
,

which completes our proof.

For the mean values corresponding to the length
measure of column tessellations of constant cell-height
1, we have (using the metric parameter ¯̀′

E from the
planar tessellation)

¯̀
E =

1
2

(
¯̀′
E +

1
µ ′VE

)
, ¯̀

E[π] =
2(µ ′VE

¯̀′
E +φ)

µ ′VE(2+µ ′
EV[π]

)
,

¯̀
P =

2µ ′VE(3 ¯̀′
E +1)

3µ ′VE−2
, ¯̀

P1
=

µ ′VE(3 ¯̀′
E +1)

5µ ′VE−φ
,
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¯̀
Z =

2(2µ ′VE
¯̀′
E +µ ′VE−φ)

µ ′VE−2
,

¯̀
Z1

=
1
3
+

2µ ′VE
¯̀′
E

3(µ ′VE−φ)
,

¯̀
Z2

=
2(2µ ′VE

¯̀′
E +µ ′VE−φ)

2µ ′VE−φ −2
,

¯̀
Z2E =

5µ ′VE
¯̀′
E +2µ ′VE−φ

2µ ′VE−φ −2
, ¯̀

ZE =
2µ ′VE(3 ¯̀′

E +1)
µ ′VE−2

.

Metric formulae involving areas and volumes:
Firstly we deal with areas, using analogous notation.
Later in this sub-section, we consider volumes.

āX – the mean total area of all 2-faces of the
typical X-object, where dim(X-object)≥ 2.

In this case we have
āP – the mean area of the typical plate,
āZ – the mean surface area of the typical cell,

and,
āZ2

– the mean area of the typical cell-facet.

To determine these mean values for the column
tessellation Y , we use two additional mean values of
the planar tessellation Y ′, namely γ̄Z and ¯̀′

E.

Theorem 4.8. The mean area of the typical plate of
the column tessellation is

āP =
(µ ′VE−2)γ̄Z +µ ′VE

¯̀′
E

(µ ′VE−2)ρ̄Z +µ ′VEᾱE
.

Proof. For a cell z of Y ′ the corresponding column
contains on its boundary the vertical plates of Y .
These plates are rectangles with two horizontal edges
corresponding to an edge of Y ′ adjacent to z, that
is, λP[vert]āP[vert] = λ ′E

¯̀′
E. Because all horizontal plates

of Y are translations of the cells of Y ′, we have
λP[hor]āP[hor] = λ ′ZE′Z(a′(z)ρz) = λ ′Zγ̄Z; see Remark
3.2. Therefore

λPāP = λP[hor]āP[hor]+λP[vert]āP[vert] = λ
′
Zγ̄Z +λ

′
E

¯̀′
E ,

which implies our result.

Using the fact that each plate of a spatial
tessellation always belongs to two cells and two facets,
we have λZāZ = 2λPāP and λZ2

āZ2
= 2λPāP. With the

help of Proposition 4.1 we infer that

āZ =
2

ρ̄Z

(
γ̄Z +

µ ′VE
¯̀′
E

µ ′VE−2

)
,

āZ2
=

(µ ′VE−2)γ̄Z +µ ′VE
¯̀′
E

(µ ′VE−2)ρ̄Z +(µ ′VE−φ)β̄Z0

.

Also for the area measure we can consider mean
values of type āXY – the mean total area of all Y-type
objects adjacent to the typical X-object. Again some
equations are obvious:

āZP = āZ , āZ2P = āZ2
.

It is interesting in this context to evaluate the mean
total area of all facets adjacent to the typical cell,
namely āZZ2

. In a facet-to-facet spatial tessellation, it
is easy to see that āZZ2

= 2āZ, because each cell-facet
is a plate and the class Z2 of cell-facets is equal to the
class P of plates up to the multiplicity 2. It is difficult
to determine āZZ2

for an arbitrary non-facet-to-facet
spatial tessellation; we only know that āZZ2

≥ āZ. For
a column tessellation, however, we can compute āZZ2

,
using the fact that each horizontal facet of a cell is also
a facet of one another cell and each vertical facet is
an element of Z2 with multiplicity 1. So any cell z of
Y is adjacent to its facets, obviously, and to the two
horizontal facets of the neighbouring cells within the
same column. Thes are identical to the base and top
facet of z. There are no further facets adjacent to z.
Therefore we obtain

λZāZZ2
= λZāZ +2λP[hor]āP[hor]

= λ
′
Z

(
4γ̄Z +2

µ ′VE
¯̀′
E

µ ′VE−2

)
,

hence

āZZ2
=

2
ρ̄Z

(
2γ̄Z +

µ ′VE
¯̀′
E

µ ′VE−2

)
.

Finally, we present results involving volumes.

Theorem 4.9. The mean volume of the typical cell of
the column tessellation, denoted by ῡZ, is

ῡZ =
1

λ ′Zρ̄Z
.

Proof. It is obvious from the fact that λZῡZ = 1.

The corresponding area and volume mean values
of column tessellations of constant cell-height 1 are

āP =
(µ ′VE−2)ā′Z +µ ′VE

¯̀′
E

3µ ′VE−2
,

āZ = 2
(

ā′Z +
µ ′VE

¯̀′
E

µ ′VE−2

)
,

āZ2
=

(µ ′VE−2)ā′Z +µ ′VE
¯̀′
E

2µ ′VE−φ −2
,

āZZ2
= 2

(
2ā′Z +

µ ′VE
¯̀′
E

µ ′VE−2

)
,

ῡZ =
1

λ ′Z
.
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THREE EXAMPLES

Concluding the paper we will give three examples
for column tessellations. The generating planar
tessellations are the Poisson line tessellation (PLT), the
STIT tessellation and the Poisson- Voronoi tessellation
(PVT), respectively. We will consider the column
tessellations with constant cell height 1 (ρZ = 1) and
we restrict for the planar mosaics to the stationary
and isotropic case. The intensities, topological/ interior
parameters and metric mean values for those column
tessellations are presented in Table 2. To facilitate
the comparability of the results we assume that all
the underlying planar tessellations have the same cell-
intensity λ ′Z. In Table 1 the seven necessary parameters
of the planar PLT, STIT and PVT are given (Chiu
et al., 2013; Nagel and Weiss, 2008). In a PLT all
vertices have 4 emanating edges (µ ′VE = 4, µ

′(2)
VE =

16), whereas in STIT and PVT all vertices have 3
emanating edges (µ ′VE = 3, µ

′(2)
VE = 9). PLT and PVT

are side-to-side (φ = µ ′EV[π] = 0); a STIT tessellation is
non side-to-side and all vertices are π-vertices (φ = 1,
µ ′EV[π] = 2). Through the paper all our results were
considered for the special case of a column tessellation
with constant height 1. In Remark 3.3 the α-, β -
and γ-mean values are given, Remark 4.3 presents the
intensities and topological/interior mean values and the
metric mean values are given in the previous section.
Using those results the entries in Table 2 and other
interesting quantities of those column tessellations can
be computed.

Table 1. Seven parameters of the planar tessellation.

Y ′ PLT STIT PVT

λ ′V λ ′Z 2λ ′Z 2λ ′Z

µ ′VE 4 3 3

µ
′(2)
VE 16 9 9

φ 0 1 0

µ ′EV[π] 0 2 0
¯̀′
E

√
π

2
√

λ ′Z

√
π

3
√

λ ′Z

2
3
√

λ ′Z

ā′Z
1

λ ′Z

1
λ ′Z

1
λ ′Z

Table 2. Fifteen mean values of the corresponding
column tessellation with height 1.

Y
/
Y ′ PLT STIT PVT

λV 4λ ′Z 6λ ′Z 6λ ′Z

λP 5λ ′Z 7λ ′Z 7λ ′Z

µPV
28
5

36
7

36
7

µEP
7
2 3 3

ξ
1
2 1 1

2

κ 0 2
3 0

ψ 3 2 2

τ 2 4
3 1

¯̀
E

√
π

4
√

λ ′Z
+ 1

8

√
π

6
√

λ ′Z
+ 1

6
1

3
√

λ ′Z
+ 1

6

¯̀
P

6
√

π

5
√

λ ′Z
+ 4

5
6
√

π

7
√

λ ′Z
+ 6

7
12

7
√

λ ′Z
+ 6

7

¯̀
Z

4
√

π√
λ ′Z

+4 4
√

π√
λ ′Z

+4 8√
λ ′Z

+6

¯̀
ZE

6
√

π√
λ ′Z

+4 6
√

π√
λ ′Z

+6 12√
λ ′Z

+6

¯̀
Z2E

5
√

π

3
√

λ ′Z
+ 4

3
5
√

π

3
√

λ ′Z
+ 5

3
5

2
√

λ ′Z
+ 3

2

āP
1

5λ ′Z
+

√
π

5
√

λ ′Z

1
7λ ′Z

+
√

π

7
√

λ ′Z

1
7λ ′Z

+ 2
7
√

λ ′Z

āZZ2
4

λ ′Z
+ 2

√
π√

λ ′Z

4
λ ′Z

+ 2
√

π√
λ ′Z

4
λ ′Z

+ 4√
λ ′Z
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