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ABSTRACT

Homogeneous random tessellations in the 3-dimensiondidean space are considered that are stable under
iteration — STIT tessellations. A classification of verceegments and flats is introduced and a couple of new
metric and topological mean values for them and for the djpéell are calculated. They are illustrated by
two examples, the isotropic and the cuboid case. Severareym problems for these mean values are solved
with the help of techniques from convex geometry by intradg@n associated zonoid for STIT tessellations.

Keywords: convex geometry, iteration/nesting, mean \@luendom tessellation, spatial statistics, stochastic
geometry, zonoid.

INTRODUCTION

A central problem in stochastic geometry is the 1,
development of mathematical models for random
structures whose properties are mathematically
feasible and not only accessible by simulation. A
standard example, where this account is fulfilled
is the so-called Boolean model, (s&toyanet al.,
1995 Schneider and Weil 2008. Mathematically
well developed models for random tessellations are
Poisson line or plane tessellations and Poisson-
Voronoi tessellations. Since random tessellations
can successfully be applied in material sciences,
geology or biology $toyanet al,, 1995, our problem
mentioned at the beginning arises especially in the
theory of random tessellations. Particular structures
modeled by random tessellations are single-phase
polyhedral microstructures, foams, systems of cracks
(joints, fissures) in rocks, crag@e of thin layers or
systems of cells. Fig. 1. A realization of a homogeneous and isotropic

STIT tessellation.

However, the two mathematically manageable

standard models for random tessellations, the Poisson | . underlying models used here for the non-

line or plane and the Poisson-Voronoi tessellationg,ce 1o face cases are random tessellations which are
seem not in any case to serve the best choices fQf,pie under the operation of iteration — so-called
idealized mathematical models regarding the abov&T|T tessellations. They were formally introduced by
mentioned examples. This is mainly due to the factthqqage| and Weisg2005. In later papers Nagel and
their cells are face-to-face (see the definition below)weiss (2006; 2008) have shown that many mean
Simulations of random tessellations which are not/alues can be obtained from the characteristic stability
face-to-face are shown in Figs.and 4, whereas in  property of the tessellations by writing and solving
contrast Fig.3 shows a realization of a face-to-face certain balance equations. Because of that, random
tessellation irR3. STIT tessellations have the potential to serve as a
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new mathematical reference model — besides Poisson SPATIAL RANDOM

line or plane and Poisson-Voronoi tessellations — for TESSELLATIONS AND
random structures tessellating the plane or the space. BASIC NOTATION

It is the aim of the p_resent paper to cqntinue A tessellation of the 3-dimensional Euclidean
the work of Nagel and Weis200§ and especially gpace is a countable and locally finite family of convex

that of Nagel and Weis$2008 by calculating further polytopes, thesells of the tessellation. They cover the
mean values for random STIT tessellations in thevhole space and have pairwise no common interior
3-dimensional Euclidean space. We will generalizeyoints. Theprimitive elementof a tessellation are
the planar concept of so-callet-, J- and K- the vertices edges platesand cells The edges are
segments introduced iMackisack and Mileg1996  line segments with no vertices in their relative interior
by considering in the spatial case four types ofnd the plates are convex polygons with no vertices
segments and three different types of facets, called fla)d €dges in their relative interior. The boundary of
here. Moreover, we will distinguish between two types? Plate consists of vertices and edges. With a spatial

of vertices, the T-type and X-type vertices. It is one Oftessellatlon we can associate a familykenetworks

. . for k=0,1,2, where ak-network is the union of the
the main purposes of the present paper to find mean

| hich all tonological ch terizati fprimitive elements of dimensiok of the tessellation.
values which allow a topological characterizatlion Ol gengte by, E, P, C the class of vertices, edges,

the different types of vertices, segments and flatjaies and cells of a tessellation, respectively. An
Because STIT tessellations are not face-to-face theggyject of a clasX is often referred to as "an object

are interesting multifaceted new effects, for examplef typeX”, X € {V,E,P,C}.
it appears that the interior of a cell-facet contains
vertices and edges. We will explore some of thes
effects below.

Our definition does not exclude that on the
%oundary of a plate for example there could appear
additional verticesi(e., elements from the 0-network)
which are no corners of the polygon. This is the case

Another class of problems the paper deal§yhen the cells of the tessellation are fiate-to-face
with concerns extrema for the considered meaRee Schneider and Wei(2008 p. 447) for a formal
values. STIT tessellations are characterized by thedefinition and Fig2 for an illustration.

rf intensi n heir so-call irectional . . . .
surface intensity and by their so-called directiona To avoid terminological confusion and to

distribution and the metnf; mean value_s dep_enc_l (_)Histinguish between the primitive elements and the
both parameters. For a fixed surface intensity it i§,o,nqary structure of polygons and polytopes, we call
interesting to ask for which choices of directionalye o-faces of a polygon or a polytope dtsrners The
distributions these mean values become minimal]__faces of a p0|yg0n are isdesand the 1-faces of a
Similar questions were studied in the literature forpolytope are called itddges Furthermore, we call the
Poisson line, plane or even hyperplane tessellatiorg-dimensional faces of a spatial polytopefasets
before, seeSchneider and Wei(2008. The answer

to these questions can be given with the help of an

associated convex body — the Steiner compact — and

two inequalities known from convex geometry.

The paper is structured as follows: After a
short introduction on spatial random tessellations we
rephrase the definition of STIT tessellations and recall
some of their main features which are frequently used
later. Afterwards, we introduce the different types
of vertices, segments and flats appearing in spatial
STIT tessellations. Subsequently their mean values are
calculated, summarized for clearness and specialized
for two particular examples. Extremum problems for
the metric mean values will be discussed at the end of
the paper by introducing an associated zonoid for STIT
tessellations. Fig. 2.Cells that are not face-to-face.
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Spatial random tessellations were formallydepend on the choices of 'the unit volume’ and the
introduced in Schneider and Weil (2008 or centroid function.
Stoyanet al. (1995. They can be seen as random
variables with values in the measurable space of spatia
tessellations. Similarly to the case of deterministic
tessellations we can consider also for random
tessellations the collection of cells (formally the
3-network) and the 0-, 1- and 2-network. In this
paper we will only considehomogeneousandom
tessellations, whereby we require the distribution of
the tessellation to be invariant under the group of all
translations inR3. Moreover, a random tessellation
is said to beisotropig if its distribution is invariant
under the grousQ(3) of all rotations inR3. In the
homogeneous (and not necessarily isotropic case) thi
technique of Palm distributions allows us to speak
of the typical vertex, edge, plate or cell of a random
tessellation. For example the typical vertex can be
interpreted as a vertex 'uniformly’ chosen from the
O-network in a very large observation window (this
can be made precise in the usual sense of ergodic
theory by considering the uniform distribution on the
set of vertices in a large observation window and byFig. 3. A realization of a homogeneous and isotropic
letting the diameter of this window tend to infinity Poisson plane tessellation.

together with a suitable renormalization). Wheneverin - ag an example of a homogeneous random spatial

this paper the wordypical appears, it refers to such egsellation we consider the homogene®gisson

a definition. For the mathematically exact theory wepjane tessellation which is a plane tessellation

cite againSchneider and Wei{2008 or Stoyanetal.  jnduced by a homogeneous Poisson process on the

(1995. space of planes iR3. A realization of a homogeneous
To define mean values for typical objects of aapd isotropic Poisson plane tessellation is shown in

random tessellation, we have to formalize in advanc&i9- 3. It is well known that the law of a Poisson
the concept of adjacent objects. An objecf type X plane tessellation is uniquely determined by a positive

is said to beadjacentto an objecty of typeY if either '@l constantr, its intensity, and a non-degenerate
x CyoryC x. LetNy y be the mean number of objects probab[llty measurer on the upper unit half-sphere
of type Y adjacent to the typical object of clads (Schnelder_and Weil2008 and espeC|a_LIIy Chapter
where the expectation is taken with respect to the Pal 0.3 therein). Such a random collection of planes
distribution of objects of typeX. On the other hand, . €Ccomposes thg space Into convex polytopes whose
the primitive elements of dimensidnk =0, 1,2, 3, are ' interiors are pairwise disjoint. It is a face-to-face
k-dimensional polytopes With—dime’nsionél ’pély’topal tessellatlon'as can easily be' seen from the deflnl_tlon.
faces,j < k. For the typical primitive element of typé For the typical cell qf a Poisson plane tesse_llatlon,
of dirr;ensionk we denote by; (X) the mean number usually called thePoisson polytopethe following

of its j-faces,j < k. For example we have attentively mean values are well known, s8eoyanet al. (1999:

to distinguish between the mean number of vertices of ~ Vo(C) =Ncy =8, v1(C)=Ncg =12,

the typical cellNcy and the mean numbeg(C) of its V2(C) =Ncp=6,

corners. For tessellations in face-to-face position that

differentiation is not necessary, since both parametet<- the Poisson polytope has in the mean 8 vertices,
coincide. 12 edges and 6 plates and likewise 8 corners and 12

ridges and 6 facets. These values are frequently used
By Ax we denote théntensityof objects of clasX,  in the course of the paper.
by which is meant the intensity of the homogeneous
point-process of centroids of-type objects (where
the centroid function is assumed to be invariant under STIT TESSELLATIONS
translations). This is the mean number of centroids
of objects of classX per unit volume, which by STIT tessellations form an interesting class of
homogeneity is a well defined quantity and does hohomogeneous random tessellations, whose cells are
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not in a face-to-face position and whose propertiesith 2 standing for equality in distributions.
are mathematically feasible. They formally ariseRemarkably, the tessellatiod(t,W) and®(t) enjoy

as limits of rescaled iterations (or nestings) ofthe stability property with respect to (rescaled)
homogeneous random tessellations. The idea dferation.

iteration is to subdivide the cells of a given
homogeneous tessellation independently by a
sequence of independent and identically distributed
homogeneous random tessellations having the sam
distribution as the primary tessellation. An appropriate
rescaling is necessary in order to keep theface
intensity %, i.e, the mean total surface area of
cell boundaries per unit volume, constant. STIT
tessellations can be characterized by the property
that their distribution does not change through
rescaled iterationj.e, we require the distribution
of the tessellation to bestable underiteration, a
property which also explains the abbreviation STIT.
A realization of a homogeneous and isotropic random
STIT tessellation is shown in Fid, whereas Fig4
shows a realization of a homogeneous but anisotropic
STIT tessellation in the 3-dimensional space. In
Nagel and Weis$2005 an explicit construction was
presented for such tessellations in a bounded conve;
window in Euclidean spaces of arbitrary dimension
d>2.

h
!

h

e

i
I
[

The finite-volume construction can be understoo
as a process of sequential cell division at random time
At time t = 0 the construction starts with a compact
convex polytopal windowW c R3, for example a
cube or a ball. After a random lifetimg that is The algorithmic construction of STIT tessellations
exponentially distributed (with parameter related toin polytopal windows described above immediately
the geometry oW and the directional distribution leads to an effective simulation algorithm. This
R) a random plane with directional distributicR  algorithm was used to create the simulations shown in
is introduced inW, thus W splits into two new Figs.1and4.
polytopes and cell-facets (at their birth time also

plates) are born with birth timg. Then, sequ.entie_llly, STIT tessellations was found Meckeet al. (20083

all extant polytopes\s, .., W, with the respective birth 5,4 \eckeet al. (2008). Some mean values for
timesty, ..., i are divided independently of each othery,,,q5eneous random STIT tessellations in the plane
in the same way. The lifetime ofj is a random 5 563164 iNagel and Weis2008 and for the spatial
variable, exponentially distributed and with parametef.;qq inNagel and Weis$2008. Some of the therein

depending on the geometry 8 and the previously qptained formulas will be recalled in a later section.
fixed directional distributioriR (when constructing an

isotropic tessellation, this lifetime is proportional to ~ We will now list some of the key-properties
the mean breadth of the respective cell). At the end g¥f STIT tessellations, which are important for the
its lifetime, the polytop&\; is subdivided by a random Present paper. We will formulate them for the 3-
cell, W, dies and two new polytopes and cell-facets aréPace dimensions:

W, in the sequel denoted Ish(t,W). It can be shown tessellation inRR3 is uniquely determined by

that q)(t,W) IS consistent Ir\N, which means that it its surface intensity < SV < o and by a

is independent ofV and there exists a homogeneous  probability measureR on the upper half-sphere

ig. 4.A realization of a homogeneous and anisotropic
gTIT tessellation whose directional distribution is
concentrated with equal weight to the three coordinate
directions.

A direct global construction of a whole-space

random tessellatiod(t) of the whole spac®® such S?, whose support is not concentrated on a
that 5 great half-subsphere. The measfirdescribes the
D(t,W) =d(t))NW, distribution of the direction of the unit normal

146



Image Anal Stereol 2010;29:14%7

vector at a uniformly chosen point (the so-called TYPES OF VERTICES
typical point with respect to the boundary measure

of cells) of the 2-network associated with the
tessellation andy is the mean total surface area
of cell boundaries per unit volume.

Homogeneous planar STIT tessellations only have
T-shaped vertices, which means that in any vertex there
are three outgoing edges and two of them are collinear.
— The interior of the typical cell of a spatial From the construction of a STIT tessellation given

homogeneous random STIT tessellation has thgabove it follows that a homogeneous spatial STIT

same distribution as the interior of the Poissonessellation has two different types of vertices, namely
polytope with parameterSy and R. This means

that mean volume, mean surface area and length T.yerticesand

of the edge skeleton of the typical cell of a

STIT tessellation are the same as for the Poisson X-vertices

polytope. The difference between STIT and

Poisson plane tessellations arises from the mutual A T-vertex appears on a ridge of a cell, when this
arrangement of the cells (compare Fidgsand4 cell is intersected by a plate which is born, whereas
with Fig. 3) which implies that the topological an X-vertex emerges, when two plates born in two
parameters, such as the mean number of verticegeighboring cells intersect in the relative interior of
edges and plates adjacent to the typical cell, wila common plate of the two cells. These two possible
differ. situations are illustrated in Fi§. Note that the notion

—  The cells of STIT tessellations are not face-to-face® & T- OF X-vertex is based on the plates which create
which means that the intersection of two cells Withfhat vertex. The two types of vertices and the geometric
a common plate is not necessarily a cell-facet Oplifferences between them are essential for our further

both cells. An example of two cells that are notconsiderations as will be seen below.
face-to-face is shown in Fi@-

— The intersection of a homogeneous STIT
tessellation in R® with a plane induces a
homogeneous random STIT tessellation in
this intersection plane. The induced random
tessellation will be isotropic, whenever the spatial
tessellation is isotropic, too. If we intersect a
homogeneous random STIT tessellatioiRfwith
a line g, we obtain a homogeneous Poisson point
process om.

For details on STIT tessellations we refer to
Nagel and Weiss (20095, Nagel and Weiss (2006,
Meckeetal. (2007, Nagel and Weiss (2008,
Meckeet al. (20083 andMeckeet al. (20088, Mecke
(2009, Thale (2009 or Schreiber and Tale (2010.
Also Schneider and We{R008), pp. 469—470 contains
some comments on STIT tessellations.

In Weiss and Cowan (paper submitted
for publication), a systematic study of spatial
homogeneous tessellations which are not face-to-face
is undertaken. STIT tessellations are considered thefeg. 5.A T-vertex (top) and an X-vertex (bottom).
as one particular example and the results for mean
values are deduced from rather general formulae. The intensities of T- and X-type verticéss., mean
In the current paper, the mean values for STITnumber of T- and X-vertices per unit volume, are
tessellations will be derived from the topology and thedenoted byAy, and Ay, respectively. Furthermore,
special properties of these tessellations. Furthermordy = Ay + Ay is the intensity of vertices, meaning
Weiss and Cowan do not consider what we later calthe mean number of vertices of the tessellation per unit
I-segments and I-flats. volume.
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TYPES OF SEGMENTS means that the segments are counted with multiplicity
according to the number of plates or cells they belong

For planar tessellations whose cells are not ino.

a face-to-face positionMackisack and Mileg1996

introduced a classification of the linear segments of

the 1-network associated with the tessellation. More

precisely, they introduced the notion of, J- and

K-segments for the planar case. For spatial STIT

tessellations we introduce now a similar concept

and make the following classification for segments

contained in the 1-dimensional network of the 3- /

dimensional STIT tessellation:

— a K-segmentis an edge of the tessellation, that
means it is a linear segment in the 1-network
between two vertices but with no further vertex in
its relative interior,

— anl-segmentis the maximal union of connected
and collinearK-segments, that means it cannot
be enlarged by another collineak-segment
(alternatively, thel -segments are the sides of the
plates born during the spatio-temporal construction
of STIT tessellations explained earlier),

— aJ@-segments a side of a plate and
Fig. 7.A plate (red) with a proper §-segment (cyan)
on its boundary.

In Fig. 7 it is illustrated that the classel? and
J® do not coincide, by constructing a 'propel?-
] segmenti.e., one which is not &-, J&- or I-segment
at the same time. To see it, observe at first that the
cyan segment in Figl is a side of the red plate, hence
a J(@-segment. Further note, that it has a vertices in
its relative interior, hence it is not ld-segment, it is
also not a ridge of any of the involved cells, thus, it
cannot be d(®-segment. Moreover, it can be enlarged
[ by another collineaK-segment, which means that it

/ cannot be am-segment.

The classes oK-, |-, J@- andJ®-segments are
H / denoted byKy, I, Jiz) ande), respectively. Fol €
{K,1,3 3@} the intensity ofY-segmentsi.e, the
mean number of -segment midpoints per unit volume
_ _ is denoted byAy,. The mean length of the typical
Fig. 6. Each time two K-segments (redj?3segments Y-segment isLy, and analogously to the concept of
(cyan), J¥-segments (yellow) and I-segments (green)adjacent objects, the mean number of vertices in the
relative interior of the typica¥-segment is denoted by

— aJ®-segments a ridge of a cell, see Fi.

Note that the class oK-segments is equal to
the class of edge€ of the tessellation. Thel- Nredint (vy) v -
segments are 1-dimensional faces,, the sides, of
the primitive elements of the tessellatiod? of
the 2-dimensional primitive elements, the plates, and TYPES OF FLATS
J® that of the 3-dimensional primitive elements,
the cells. It is important to point out that the point  In referring to the different types of segments we
processes formed by the collection of ##)- andJ®)-  consider now the 2-dimensional network associated
segment midpoints, respectively, is not simple, whiclwith a random STIT tessellation and introduce the
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following classification of the different types of plates typical X-flat, whereX stands for one of the literals,
(we call thenflatshere in order to distinguish between J or |. Furthermore, lel;ejint(x,),v @NdNyg(x,) v be the
them, the primitive plates and the faces and facets ahean number of vertices in the relative interior or on
the cells): the boundary of the typica{-flat, respectively.

— aK-flatis a plate of the tessellation, thatmeansitis The mean number of edges in the relative interior
a 2-dimensional convex polygon bounded by edge8r on the boundary of the typica{-flat is denoted
of the 1-network and without edges and vertices iy Nrelint(x,).E @nd Nog(x,) £, respectively, withX €
its relative interior, {K,J,1}, where we say that an edge- E is located

in the relative interior of aiX-flat x € X if relint(e) C

relint(x). Moreover we introducéN;, p and Ny, p for

— an I-flat is the maximal union of coplanar and the mean number of plates adjacent to the typleal
connectedK-flats and cannot be enlarged byflat or the typical-flat, respectively.
another coplandf-flat, see Fig8. Alternatively,l -
flats are the polygons born during the construction

of a STIT tessellation homogeneously in time. PARAMETERS FOR CELLS

— alJ-flatis a facet of a cell and

We will also derive some new topological mean
values for the typical cell of a spatial STIT tessellation.
As already mentioned in the section on STIT
tessellations, the typical cell of a STIT tessellation and
the Poisson polytope of a Poisson plane tessellation
with the same surface intensity share the same metric
mean values, such as mean volume, mean surface
area and mean length of the edge skeleton. For this
reason we will restrict our attention to the topological
parameters. We denote Isk(c) the 1-dimensional
boundaryi.e., the edge skeletonf objectsc of class
C.

We are interested in the following topological
mean values: The mean number of vertidégc) v
and the mean number of edghigc)e on the edge
skeleton of the typical cell.

Fig. 8. A K-flat (red), a J-flat (blue) and an I-flat
(green).

_— . SUMMARY OF NOTATION
Note, that by definition the sides of l&-flat are

J?-segments,)¥)-segments coincide with the sides  For clarity we summarize here the notation mostly
of J-flats andl-flats are surrounded blrsegments. introduced so far. Let € {K,J@ J® 1} andX e
Moreover, the class oK-flats is equal to the class {K,J,1}. Furthermore we use the abbreviatigna.v.

P of plates and the collection al-flats corresponds for 'per unit volume’, typ. for 'typical’ and r.i. for

to the class of cell-facets. Again, the homogeneougelative interior.

point process of-flat centroids is not a simple one in

_ Intensities:
general, since one plate can be a common facet of two
neighboring cells. Sy — surface intensity,e., mean total surface area
p.u.v.

From now on we denote b¥(y, J» and |, the _ o
classes oK-flats, J-flats andi-flats, respectivelyi.e., Ly — edge length intensity,e, mean total edge
we use the subscriptto make clear the dimension of ~ length p.u.v.
the objects under consideration in order to distinguish ), Ag,Ap,Ac — mean number of vertices, edges,
between flats and segments, where for the latter we pjates, cells p.u.v.

have used the subscripalready in the last section. .
P y Ay, Ay, —mean number of T-, X- vertices p.u.v.

By Ax, we denote the intensity of-flats,i.e., the
mean number oK-flats per unit volume (this is the
mean number oX-flats centroids per unit volume) and
by Ax, andUyx, the mean area and perimeter of theTypical objects:

Ay, Ax, - mean number of -segments anX-flats
p.u.Vv.
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Ly, — mean length of the tyf¥.-segment We define the two constan{s and{s by
Ax,, Ux, — mean area and mean perimeter of the

typ. X-flat lo= / / (g, U] R (duy)R(dluy) |
Vk(X),Ww(C) — mean number ok-dimensional _ ///

polytope face(t)s of the typX-flat (k = 0,1) and Gs= [uz, Uz, Us] R (g ) R(dluiz) R(dluz) ,

the typ. cellk=0,1,2)

_ o where the integration is always ovBf and [ug, uy]
Adjacent objects: denotes the area of the parallelogram spanned by
No, 0, — mean number of primitive objects of type U1 and Wz and [ug, Uz, u3] is the volume of the
0, adjacent to the typ. object of tyf@, O;,0, ¢  parallelepiped spanned by the vectorsu, andus (in
{V,E,P,C}: the terminology ofSchneider and Weil008 [u, uy]
and [ui,up,us] are subspace determinants). These
two constants reflect the influence of the directional

distribution R on the mean values of the random

Nretint(x,) v+ Nod(x,) v — Mmean number of vertices in tessellation.

the r.i. and on the boundary of the typ-flat In the isotropic case these constants have the
Nrelint(x,),e — Mean number of edges in the r.i. of particular values(, = m/4 and {3 = m/8 as can

the typ.X-flat be concluded from Thm. 4.6.5 i&chneider and Weil
N3, p, Ni,,p — mean number of plates adjacent to(zooa'

the typ.J-flat or to the typl-flat, respectively The following formulas for mean values for
Nekc)v: Nskc)e — mean number of vertices or homogeneous spatial STIT tessellations were already

edges, respectively, in the edge skeleton of the tygroved inNagel and Weis§2008:
cell

Nrelint(v;)v — Mean number of vertices in the r.i. of
the typ.Y-segment

. _ _ My = Shis, A = 283,
The following mean value relations can easily be 7 1
derived: Ap = 6§753, Ac = 6§753,
Nv,v = Neelintvp)v +2 - and Ny, g = Neejingvy) v +1 Lg = ié,
25y (3
for the mean number of vertices and edges in the 18 ¢, 6 1
relative interior of the typica¥-segment, Up = 75,05’ Ap = 2%
Nod) £ = Rodoo)v Ney = Neg = 376 , Nev =24
for the mean number of edges on the boundary of the Nc e = 36, Nep = 14.

typical X-flat,
Moreover, for the edge length intenslty, we have

Ly = S

Nx, E = Nretint (x).£ + Nod(xp) v These values will be used in the sequel to derive further

for the mean number of vertices and edges adjacent fgean value formulas for STIT tessellations in 3D.
the typicalX-flat.

Nxo.v = Nrelint(x,),v T Nod(x,) v

and

For completeness we recall now the values for the
metric mean values of the typical cell. Denoting by
Volc the mean volume, b$- the mean surface area,
KNOWN MEAN VALUES by Uc the mean length of the edge-skeleton (perimeter)

~and byBc the mean breadth of the typical cell we have
We regard from now on a homogeneous spatial

STIT tessellation®(Sy) with surface intensity 0< 6 1 121

Sy < « and fixed directional distributio®®, which is a Vol = S50 XT g
a S} 3 S ¥E
probability measure on the upper half-sprﬁie such 18 3
that the set of directions in the support®fspans the Uc = 79, Bc = 79
whole 3-dimensional space. Sv (3 25y (3
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TOPOLOGY OF VERTICES NEW MEAN VALUES FOR
VERTICES

The two different types of vertices and moreover
their topology illustrated by Figs will play a crucial In this section we derive at first expressions for the
role. For later reference, we summarize now some dhtensitiesAy; and Ay, i.e, the mean number of T-
their most important properties. We start with the T-and X-vertices per unit volume, respectively. To do so,

type vertices and note that a T-vertex is ... recall that the mean total number of vertices per unit
volume equals$y,{s, i.e, Av = Ay, + Ay = S5,{3. We
... an endpoint of 4 edges, observe now that each T-vertex is a corner of exactly

. ~ 2 cells and an X-vertex cannot be a corner of any
... an endpoint of 10)-segments and located in cell. With vo(C) = 8 we have 8¢ = 2\, and with

PR >
the relative interior of anotheX?)-segment, Ac = 1825 it follows

.. an endpoint of 8(®-segments and located in the 5
relative interior of anothed(®-segment, Ay =4Ac = §§7(3

... an endpoint of 2-segments and located in the
e . ; and
relative interior of a third one,

2 1
... acorner of 5 plates and located on the boundary ~ Av = Av — Ay = Syds— §§753 = §§753-
(but no corner) of a sixth plate,

Thus, for a spatial STIT tessellation we have obviously
... a corner of 6J-flats, located on the boundary the proportion

(but no corner) of two othed-flats and in the
relative interior of a ninth one, Ay Ay =211

.. a corner of oné-flat, located on the boundary \oreover, the following topological mean values are
(but no corner) of anotherflat and in the relative  gasily derived from the topology of vertices in a spatial

interior of a third one, STIT tessellation:
... acorner of 2 cells, located on the edge skeleton Ny g =Ny, g =4
(but no corner) of a third cell and in the relative i o ’
interior of a cell-facet of a fourth one. Nvy.p = Ny, p = 6,
X-type vertices have the following topological and
features: An X-vertex s ... Nvr.c =Ny c=4,
see Fig5.

... an endpoint of 4 edges,

... an endpoint of 8(?-segments and located in the

relative interior of another twd(?-segments, NEW MEAN VALUES FOR
TYPICAL SEGMENTS

... located in the relative interior of##3-segments,
.. located in the relative interior of2segments,, The present section is devoted to mean values
for the four different types of segments introduced
... acorner of 4 plates and located on the boundaryhove. It is our aim to calculate their intensities, their
(but no corner) of two further plates, mean lengths and the mean number of vertices in their
relative interior, which are denoted by,, Ly, and
Nrelint(v;).v» respectively, wher¥ stands for one of the

literals from{K,J J®) 1},

Recall at first from the section on known mean
values that
... located on the edge skeleton of 4 cells. Ak =Ae = 2§753

. : . and that
These relationships will from now on be used 1 &

frequently in the course of our considerations.

... located on the boundary (but no corner) af-8
flat,

... located on the boundary (but no corner) df2
flats and in the relative interior of a third one,
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Moreover, it follows from the definition df-segments From the equation, L, = Ly we get furthermore
that

Nrelint(k,)v = O- L — Ly 3 &
1

We have seen above that each T-vertex is a corner Ay 25083
of exactly 5 plates and each X-vertex is a corner o
exactly 4 plates. Thus, we haxgvo(P) = 5Ay; +4Ay,
and therefore the typicd{-flat has in the mean four

f\/loreover, each T-vertex lies in the relative interior of
exactly one I-segment and each X-vertex in the relative
interior of exactly two. By taking into account the

cornersy.e., proportion of T- and X-vertices, we arrive at
Vo(P) = Vo(Kz) =4, 4
_ Nrelint(ll),v -)\|l = 1-)\VT + 2')‘Vx = éAV'
With /\pVo(P) = AJ(Z) and )\J(z)LJ(z) = 3Ly — recall
that each edge ils contairlmed lin the boundary oHence,
exactly 3 edges and thatsegments are counted with N B %)\v _5
multiplicity — we obtain now relint(ly),V = A
1
14 9 & meaning that the typicdlsegment contains 2 vertices
)‘Jia = 33%753 and Lﬁz) 145,75 in its relative interior in the mean. Note, that this is in

line with the observation thaf;, = 3L, .

The typicalK-flat has in the meaﬁ7§ vertices on its

boundaryNpy = 376 Since — in the mean — 4 of them

are corners of the plat&flat) we get NEW MEAN VALUES FOR
i TYPICAL FLATS
N —ﬂ(N _4)_7_4_2
relint(3{”) v AJ<2> i 4T Mean values for the typicdl-flat were considered
' by Nagel and Weis§2008. They obtained
i.e, in the mean, the typical®-segment containg 7 s, 6 1
vertices in its relative interior. A, = 6§7Z3’ Ak, = S @?
K 3
From the property that a STIT tessellation has a 36 1; Z
Poisson-typical cell we get immediatel = == - 252
yp g y Nk,v = Nk, E 7 Uk, 75, 78"
1
L.@= 7% Additionally, in the previous section we have shown
A Sy s

that vo(K2) = 4. Moreover, from the definition ok-

from Stoyanetal. (1995 in the isotropic and flatsitfollows
Schneider and We{R008) in the anisotropic case. The
fact that each edge is adjacent to two ridges of cells and Nrelint(kz) v = Nrelint (k)£ = O-

thatJ-segments are counted with multiplicities implies : . .
g P P We consider now the typical-flat. Since STIT

2Ly tessellations have Poisson typical cells, the mean area
)‘Jf?) LA 2§7(3' of the typicalJ-flat is the same as the mean area of
(3) . .
I a facet of the Poisson polytope, which is well known

from the literature (se&toyanetal, 1995 for the

To _Obta_mNrennt(Jﬁ),v we observe thaLJfD = 2Lk, isotropic case an&chneider and Weil2008 p. 490,
which yields for the mean value in the anisotropic case). From this
Neetint W)y~ 1. it follows
We calculate now the intensity,,, i.e, the mean 21 e
R : AJz — =~ 7 UJ2 - 7
number ofl -segments per unit volume. To this end we S ¥ Sy {3
notice that any T-vertex is the endpoint of exactly two
I-segments and arlysegment has two endpoints andand also
they are T-vertices. ThusA\? = 2Ay;, which leads to Vo(J) =4,

2 i.e, the typical J-flat is in the mean a topological
A= §§753- quadrangle.
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The intensity A;, can be calculated from the as follows from the fact that STIT tessellations

relationAy, Ay, = 2Sy, which yields have Poisson typical cells, the observation that
sectional STIT tessellations are again stable under
AJ22§753- iteration and the known mean values for Poisson

To consider the mean number of edges in the relativi’e_and plane tessellations igtoyanet al. (1999

interior of the typicalJ-flat, we use the following or Schneider and Wei{2008. In order to obtain the

topological property of STIT tessellations: Any edgetnconditioned mean valudy, we have to integrate

of the tessellation is adjacent to three cells. In one o‘f\'z(B_: S) with respect to. all .possil'Jle'birt.h times.
them that edge is contained in the relative interior of a© this end we need the birth time distribution of the

facet and in the two others it is contained on a ridge ofyPical I-flat or its densityps(-). To obtain a formula,

these cells. in order that we obtain note that from invariance reasons (homogeneity of the
tessellation) it follows that the intensity, (8 < s)
Ae of I-flats with birth time smaller thas equalscs®

Nreli =—=2
relintt2) € = 2y, with some universal constant> 0 not depending on
Next we remark, that any T-vertex is contained in thes Thus, by the definition of the mark distribution as
relative interior of exactly ond-flat and that any X- given in Chap. 3.5 ofschneider and Wei200§ we

vertex is contained in the relative interior of delat. see that the birth time distribution is given by
This implies

_ A(B <s) _§_§
5 P(B<S)_7/\|2(B<Sv)_cs::}_3\7’ 0<s< Sy.

Hence, the birth time densityz(s) equals

N _ M2
relint(Jz),V AJZ 3
Any vertex of a STIT tessellation is located on the
boundary of eight cell-facets. Therewith we obtain

8\ Pg (S) =
Nod(ap)v = Nod(3). € = 5 — JV =8 >
2

0<s< Sy.

Integration ofA, (8 = s) with respect to this birth time

The mean number of plates adjacent to the typieal density yields immediately the value far,:

flat is given by

Sy
No= 2= L Ay = [T A(B = 9pa(e)ds
J
- Sv 21 3¢ 6 1
because each plate is a part of twdflats. = ??‘Tds:*?'
Summarizing, we find for homogeneous spatial STIT 0 3 Sy €

tessellations the following mean value relation

For a closely related approach in the planar case see
Ny,p-Ap =Ay,. Meckeet al. (2010.

Now, we consider the typicatflat, whose mean area  Having calculated the mean area of the typical
is given by flat, we observe now thalj,A;, = Sy implies

6 1

/A\|2 - = 5 . SV 1
(s A= =287
S I A, 69%7(3

This can heuristically be seen as follows (the
mathematical justification of this approach is provided- .| = _ » lcul h :

by Corollary 2 in Schreiber and Téle 2010: We Ofr?mn;mel;fu'z we can caiculate the mean perimeter
regard the STIT tessellation under consideration as 2

a time-augmented random processlefats, where Ly 6 &
the flats are marked by their respective birth times U, = YA
B € (0,Sy) in referring to the construction explained L Svds

in the section on STIT tessellations. Observe now, th
conditioned on its birth time & 3 =s< Sy, the mean
areal, (3 = s) of the typicall -flat is given by

al&bove we have seen that any T-vertex is a corner of
exactly onel-flat, is located on the boundary but no
corner of anothef-flat, and is contained in the interior
21 of a third one. On the other hand, any X-vertex is
A,(B=s)= 2 located on the boundary and is no corner of twftats
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and in the interior of a thirt-flat. We obtain from these We conclude that the typical cell of a STIT tessellation

considerations

Av

has in the mean 36 edges, 24 of them are located on the
edge skeleton and 12 in the relative interiors of cell-

Nrelint(1,)v = " =6, facets, in the mean.
2
Nogy = 2V _12
Pdlz)V ), - SUMMARY OF THE MEAN
Niov = Nretint(1,),v + Nba(i,) v = 18, VALUES
My _ .

vo(l2) = 5™ =4 The following tables summarize the mean values

12 obtained so far. First, the new mean values for

In particular, the typicall-flat is in the mean a the typical cell are presented (Table 1). Next, we
topological quadrangle, which is not surprising, sincesummarize the new mean values for the different types

| -flats areJ-flats at their birth time.

of vertices (Table 2), segments (Table 3) and flats

Any edge of a STIT tessellation is located in the(TabIe 4).

relative interior of exactly oné-flat, so that the mean
number of edges in the relative interior of the typical
|-flat can be calculated from

AE
Nrelint(lz),E = )‘Tz =12 w C sKC)
For the mean number of plates adjacent to the typical Nvy 24 20 v(C)=8
|-flat we obtain
Nwe 36 24 vi(C)=12
N p— 2P —7 '
P = , .

From this we get a mean value relation for the typical
I-flat of a STIT tessellation analogously to that for theTable 2.Mean values for vertices.
typical J-flat:

Table 1.Topological mean values for the typical cell.

Nizp-Ap = As. Z Z=T Z=X both
A, 3830 1SS Sis
NEW MEAN VALUES FOR THE ’
TYPICAL CELL Nee 44—
6 6 —
To deduce mean values and mean value relations N
for the typical cell, we consider again the topology of Ny, ¢ 4 4 —
the vertices mentioned earlier in a separate section. :
Recall, that each T-vertex is located on the edge-
skeleton of three cells, whereas each X-vertex is
adjacent to the skeleton of four cells. Hence, it foIIowsT
able 3.Mean values for segments.
Y VRV Y
N. =—1 X =20.
MOV A T A v, ke 3P 9Py
The typical cell of a STIT tessellation has in the mean 3 143 3 23
24 vertices, 20 of them are on the skeleton (8 corners M, 25)0s 350 25y(s 35v(s
and 12 in the relative interiors of the ridges) and 4 Ly, 1L 9 & 14 3%
vertices are located in the relative interiors of the cell- ! By Wl Svi v
facets, in the mean. Neelintyp)y O Z 1 2
Any edge of a STIT tessellation is adjacent to the Ny 2 16 3 4
edge skeleton of two cells, which implies e 7
2Ae Nrelint(v;),E 1 9 2 3

NSk(C),E — K - 24
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Table 4.Mean values for flats. U, = 12 A, = 48
2 S\77 2 7]_[%7
16 48
=—, A, =—5.
X2 Ke & I =g M =g
Axy ;S S S Cuboid caseHere we have, = 3//32 = 2/3and {3 =
3!/33 = 2/9 and hence
A 61 21 61
X2 RE KRG R 3 27
LK ~ A 2 = T e
186 46 68 too2syt ) 14sy’
Ye 5% w6 wé 3SV ' ;‘SV
L R — a L| = Ac
Vo(X2) 4 4 4 aAT Sy 2y
54 12
UK = Sa UJ = a
Nrelint(Xo) .V 0 % 6 2 7Sy 2 Sy
o, 18,7
Noayy ¥ 8 12 2Ty T Ty
9 27
Nx, v 376 %6 18 Ay A 2 2
Nrelint(%,),E 0 2 12
SOME EXTREMUM PROBLEMS
Nod(x,).E 3 8 12 . . .
We have seen in the section on STIT tessellations
N 36 10 24 that the law of a homogeneous spatial random STIT
Xo,E 7 . . . . .
tessellation is uniquely characterized by its surface
7 intensity and by its directional distribution. The surface
Nx,.p 0 3 7

TWO EXAMPLES

intensity is a positive real constant0Sy < « and the
directional distributiorR is a probability measure on
the upper half-sphe@{ fulfilling the non-degeneracy
condition from above.

Recall, that a convex bodi c R® is uniquely

The new metric mean values considered so fagetermined by itsupport function (K. ) defined by
i.e, the quantitieslLy,, Ux, and Ax, with Y ¢
{K,J@ 3B 1} and X € {I,J,K} are now calculated
B o s o s For e la of any omogeneaus andom STIT
on Sz+ _ theisotropic case see Fig1 — and wher at(E(Tssellatlon with surface intensity 9 Sy < « and

h(K,u) :=max{(x,u) : xe K}, ueR3

. . . irectional distributioriR we define now a convex body
is concentrated with equal weight on three orthogon

e . . . ,R) by puttin
directions. Since in the latter case the cells are cuboi S(SV )by p g
with probability 1 we call this case tlwiboid casesee
Fig. 4 for an illustration.

h(M(Sy, R), ) = SV/S2 (V) [R(dv), ueRS.

Isotropic case:Here we havel> = /4 and {3 = /s,

which leads to The centrally symmetric convex body(Sy,R) is

called Steiner compacissociated with the law of
the STIT tessellation or itsassociated zonojdby
referring to the characteristic property Bf(Sy,R).
Notice, that the zonoidl(Sy,R) is at the same time
the associated zonoid of the homogeneous random
Poisson plane tessellation with the same parameters,
see Schneider and Weil(2008. From the general
theory ibidem we infer thafl(Sy,R) is uniquely
determined by the paramete&, and R and that

©
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given a centered zonoid there is exactly one law of It is an important observation that any of the
a random STIT tessellation having the given convexnetric mean values from above is a constant times
body as its Steiner compact. Because of this one-tdsf(I)/Vol() orbr(M)/Vol(). These expressions are
one correspondence all mean values for homogeneougll known from convex geometry asoperimetric
spatial STIT tessellations are expressible in terms aind the latter assepiphanic coefficienBy applying
the geometric characteristics of the associated Steinelassical inequalities for intrinsic volumes of convex
compact. These are: bodies from convex geometry, see for exanpleber
(2007, we can deduce that the mean valueg,
\é?'s(w”)m)_ VolM(Sy,R)) - the volume of ;" 2nd A, with Y € {K,3?,3@.1} and X €
e {I,J,K} achieve their minimal values if and only
Sf(M) = Sf(MN(Sy,R)) - the surface area of if the associated Steiner compact is a ball. This is
N(Sy,R), exactly the case, when the dirg:ctional distributi®n
is the uniform distribution orS%, i.e. in the case
%r((ls'lv)m—) br(M(Sy,R)) - the mean breadth of yvhen 'the homogene_ous rand+om STIT tessellation
e is additionally isotropic. The lower bounds for the
Here, we us&/ol, Sf andbr instead ofv, SandB in  resulting inequalities can now be obtained from the the
order to distinguish between these functionals and thprevious section and we get the following couple of

mean values considered in an earlier section. inequalities:

Note that from Thm. 10.3.3 iBchneider and Weil Lo > 1 Lo 9 Lo 2 L 3
(2008 it follows thatVol(M), Sf(M) andbr() are in Ki =g, W=7s, W =g, =g,
terms ofSy, > and{s given by 36 8 12

5%7 UKZZE7 UJZ > g, U|2 > g,
Vol(n) = - 48 16 48
ol(I) 653’ AKZZﬁaAJZ Z@,AIZ Zaa
Sf(M) = S,
br(n) — Sy with equality holding only in the isotropic case.
= 5
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