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ABSTRACT

As retinopathies continue to be major causes of visual loss and blindness worldwide, early detection and
management of these diseases will help achieve significant reduction of blindness cases. However, an efficient
automatic retinal vessel segmentation approach remains a challenge. Since efficient vessel network detection
is a very important step needed in ophthalmology for reliable retinal vessel characterization, this paper
presents the study on the combination of difference image and k-means clustering for the segmentation of
retinal vessels. Stationary points in the vessel center-lines are used to model the detection of twists in the
vessel segments. The combination of arc-chord ratio with stationary points is used to compute tortuosity
index. Experimental results show that the proposed k-means combined with difference image achieved a
robust segmentation of retinal vessels. A maximum average accuracy of 0.9556 and a maximum average
sensitivity of 0.7581 were achieved on DRIVE database while a maximum average accuracy of 0.9509 and
a maximum average sensitivity of 0.7666 were achieved on STARE database. When compared with the
previously proposed techniques on DRIVE and STARE databases, the proposed technique yields higher mean
sensitivity and mean accuracy rates in the same range of very good specificity. In a related development, a
non-normalized tortuosity index that combined distance metric and the vessel twist frequency proposed in this
paper also achieved a strong correlation of 0.80 with the expert ground truth.
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INTRODUCTION
Diabetic retinopathy (DR), an eye disease

secondary to diabetes, is a major cause of visual loss
and blindness worldwide (WHO; 2010). The focus
in the evaluation on DR is usually on hard exudates,
microaneurysms and vessel morphology. Retinopathy
of prematurity (ROP) has also become a major cause of
blindness to children in many middle income countries
(O’Sullivan et al.; 1997; Varughese et al.; 2008; Chen
et al.; 2008; Gergely and Gerinec; 2009; Hakeem
et al.; 2012; Adio et al.; 2014).

In the face of the global prevalence of DR and
ROP, the cases of vision loss and blindness tend to
increase in the absence of efficient diagnosis and
management approaches of the diseases (Rechtman
et al.; 2007). The families, communities and countries
affected by these epidemics are also likely to suffer
serious economic setbacks caused by the financial
burden, reduced-earnings and reduced-productivity
due to visual impairment and blindness (Atlas; 2013).
Ophthalmologists, with the help of detected vessel
network, focus on retinal vessel feature analysis during
the diagnosis of these diseases. Manual detection and
analysis of the retinal vessels has however been a very
tedious and time consuming task that requires trained

and skilled personnel who are often scarce (Sussman
et al.; 1982; Verma et al.; 2002).

Cost-effective interventions to manage diabetes
can prevent the economic setbacks arising from
complication such as blindness (Klonoff and Schwartz;
2000). Regular retinal examinations for diabetic
patients can help in an early detection of DR
and significant reduction of the cases of blindness.
Automatic segmentation and analysis of the retinal
blood vessels are very important for the automatic
detection of DR. Given the fact that the screening
of large population of patients can be tedious
and time consuming since there is a shortage of
specialists, automated approach is cost-effective as it
has the potential to increase the productivity of the
ophthalmologists in such situations (Abràmoff et al.;
2010a,b). Mobile-based diagnostic systems can also be
used by field workers attending to larger number of
people with diabetes in the rural areas where there are
no ophthalmologists (Prasanna et al.; 2013). This will
yield a cost-effective and efficient early management
of DR as patients who need further medical care can
be referred to ophthalmologists at the early stage rather
than advanced stage of the DR.

Automated vessel segmentation has however been
a challenging problem due to complexities such as
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noise due to nonhomogeneous illumination caused
by different reasons such as; curved surface of the
retina, the degree of dilation is highly variable across
patients, involuntary movements of the patients eye
due to the bright flash-light during the acquisition
of the retinal fundus images (Joshi and Sivaswamy;
2008; Li et al.; 2012). Although existing methods
have made great progress in this field, it remains the
subject of on-going research as there is need for further
improvement in the detection of both large and thin
vessels. Supervised vessel segmentation techniques
are computationally expensive since training time
is required (Condurache and Aach; 2006; Lupascu
et al.; 2010). Another major drawback of the
supervised vessel segmentation techniques is that
their performance is highly dependent on the labelled
training sample by experts which could sometimes be
extremely difficult, expensive or unavailable (Li and
Li; 2013). Furthermore, a new set of labelled training
sample is often required for retraining to obtain good
segmentation performance when detecting vessels on
a new set of retinal images (Staal et al.; 2004; Marı́n
et al.; 2011).

Although several tortuosity measurement
techniques (Lotmar et al.; 1979; Hart et al.; 1997,
1999; Heneghan et al.; 2002; Martinez-Perez et al.;
2002; Azegrouz et al.; 2006; Grisan et al.; 2008;
Wilson et al.; 2008; Bribiesca; 2013; Lisowska et al.;
2014) have been proposed, results obtained suggest
the need for further improvement. The Arc-chord
ratio techniques (Lotmar et al.; 1979; Hart et al.;
1999; Heneghan et al.; 2002; Martinez-Perez et al.;
2002; Azegrouz et al.; 2006) failed to differentiate
varying vessels when they have the same length but
different number of vessel twists. Techniques based on
inflection points alone are also not robust enough as all
the vessels twists are not sufficiently described using
them (Bullitt et al.; 2003).

This paper presents an investigatory study on
the combination of difference image and k-means
clustering for retinal vessel network segmentation. A
study on the characterization of the detected vessels is
also presented.

The rest of this paper is organized as follows.
Section two describes several works previously done
on the detection of retinal vessels and vessel tortuosity.
Section three describes the methods and techniques
used for the detection and tortuosity measurement
of vessels in this paper. Section four explains the
experimental setup, results and discussion, while the
conclusion is drawn in section five.

Several retinal vessel segmentation and tortuosity
measurement techniques have been proposed in the
literature. This section gives a detailed review of

segmentation and tortuosity measurement of vessels in
retinal images.

Different segmentation methods have been
previously proposed for the segmentation of retinal
vessels (see (Fraz et al.; 2012b) for extensive review up
until 2012). These techniques can be divided into two
major approaches namely unsupervised and supervised
methods.

In supervised vessel segmentation methods,
different algorithms (Nekovei and Sun; 1995;
Sinthanayothin et al.; 1999; Niemeijer et al.; 2004;
Staal et al.; 2004; Soares et al.; 2006; Ricci and
Perfetti; 2007; Osareh and Shadgar; 2009; Lupascu
et al.; 2010; Marı́n et al.; 2011; You et al.; 2011; Fraz
et al.; 2012c, 2013) are used for learning the set of
rules required for the retinal vessel extraction. A set
of manually segmented retinal vessels by experts are
considered as the reference images. These reference
images are used for the training phase of the supervised
segmentation techniques. The availability of reliable
labelled training samples by experts for the supervised
segmentation methods could sometimes be expensive
or unavailable.

Fraz et al. (2012c, 2013) implemented a supervised
segmentation technique based on ensemble classifier
of bootstrapped decision trees for the segmentation
retinal vessel network. Lupascu et al. (2010)
implemented a supervised segmentation technique for
detecting vessels using Ada-Boost classifier. A feature
vector comprising of local and spatial properties
of the vessels was generated from the responses
of various filters (matched filters, Gabor wavelet
transform, Gaussian filter and its derivatives). Ada-
Boost classifier was further trained and used to classify
each pixel as either vessel or non-vessel. The drawback
of this method is the high computational time of 125
seconds required to segment vessels in each retinal
image. Another drawback of this method is its inability
to detect the thin vessels as retinal vessels width vary
from 15 pixels in very large vessels to 3 pixels in small
vessels across the fundus images (Li et al.; 2012).

Marı́n et al. (2011) generated a 7-D vector
composed of gray-level and moment invariants-
based features for pixel representation, while a
multilayer feed forward artificial neural network
(ANN) classifier was used for the vessel segmentation.
Nekovei and Sun (1995) used a back-propagation
ANN for the segmentation of blood vessels in
angiography. ANN was trained using ground truth
images of manually labelled angiograms. The ANN
was finally applied to segment the blood vessels in
the angiograms. Sinthanayothin et al. (1999) combined
principal component analysis (PCA) with ANN for the
localization of anatomical structures in retinal images.
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Niemeijer et al. (2004) implemented vessel
segmentation method based on pixel classification.
Each pixel of the green plane of the retinal image
and responses of Gaussian matched filter were used to
construct feature vectors. Consequently, these feature
vectors were classified using a kNN classifier. Osareh
and Shadgar (2009) applied multi-scale Gabor filters,
and PCA for the extraction of features in the retinal
image. The features generated were consequently
used to classify the pixels of the retinal images
as either vessels or non-vessels using Gaussian
mixture model (GMM) and support vector machines
(SVM). Ricci and Perfetti (2007) proposed automated
vessel segmentation based on line operators. Two
segmentation methods were considered. One of the
segmentation methods used two orthogonal line
detectors with the gray level of the target pixel to
construct a feature vector for supervised classification
using a support vector machine. Although the
technique had a good performance, there are however
high false detection around the border of the optic
disc. The need for a new set of training samples and
the retraining of classifier before applying it on a new
dataset also remains the drawback of the method.

Soares et al. (2006) implemented the combination
of two-dimensional (2-D) Gabor wavelet transform
and Bayesian classifier for retinal vessel segmentation.
A feature vector comprising a multi-scale 2-D Gabor
wavelet transform responses and pixel intensity was
generated from the retinal images. Each pixel in
the retinal image was further classified as vessel
or background tissue using a Bayesian classifier.
Although the technique had a good performance,
segmentation of thinner vessels as well as false
detection around the border of the optic disc remains
a challenge. The need for a retraining of classifier
before applying it on a new dataset also remains
the limitation of this method. Staal et al. (2004)
utilized ridge information and kNN classifier with
sequential forward feature selection for retinal vessel
segmentation. One of the drawbacks of the technique
in (Staal et al.; 2004) is its inability to segment thinner
vessels. This method is also expensive as it requires
a time consuming manual labelling (about 2 hours
per image) and a retraining of the classifier before
applying it on a new dataset. The need for a retraining
of classifier before applying it on a new dataset also
remains the limitation of this method. You et al. (2011)
combined radial projection with SVM using a semi-
supervised self-training approach for the segmentation
of vessels. Radial projections were used to locate
the vessel centre-lines and the low contrast blood
vessels. Having enhanced the vessels using modified
steerable wavelet, feature vector was generated using
line strength measures. SVM classifier was further

used in a semi-supervised self training manner for the
classification of each pixel as either vessel or non-
vessel. A supervised classification approach utilizing
multi-scales vesselness and texture features was
proposed by Poletti and Ruggeri (2012) to segment the
retinal vessel network in wide-field images acquired
with RetCam fundus camera. Poletti and Grisan (2014)
proposed a supervised technique based on ADABoost
classifier using an array of optimal discriminative
convolution kernels for detection of vessels in retinal
images.

The approaches based on unsupervised
classification, on the other hand, attempt to find
inherent patterns of blood vessels in retinal images
that can be further used to determine that a particular
pixel belongs to vessel or not. The training data
or hand labelled ground truths are not needed for
the design of algorithm in these approaches. These
approaches are matched filter-based (Chaudhuri et al.;
1989; Hoover et al.; 2000; Chanwimaluang and Fan;
2003; Cinsdikici and Aydın; 2009; Zhang et al.; 2010;
Chakraborti et al.; 2014), scale space-based (Martı́nez-
Pérez et al.; 1999; Grisan et al.; 2004; Vlachos and
Dermatas; 2010; Poletti et al.; 2011; Wang et al.;
2013), tracking-based (Yin et al.; 2013), model-based
(Szpak and Tapamo; 2008; Xiao et al.; 2013), adaptive
thresholding-based (Jiang and Mojon; 2003; Cornforth
et al.; 2005; Akram and Khan; 2013; Mapayi et al.;
2014), mathematical morphology-based (Zana and
Klein; 2001; Mendonca and Campilho; 2006; Jiménez
et al.; 2010; Fraz et al.; 2011; Miri and Mahloojifar;
2011; Fraz et al.; 2012a) and clustering-based (Tolias
and Panas; 1998; Yang et al.; 2008; Kande et al.;
2010; Lupaşcu and Tegolo; 2011a,b; Sun et al.; 2011;
Saffarzadeh et al.; 2014).

Chaudhuri et al. (1989) implemented matched
filter response (MFR) by initially approximating the
intensity of gray-level profiles of the cross-sections
of retinal vessels using a Gaussian shaped curve.
An Otsu thresholding technique was further applied
to the matched filter response image to segment
the retinal vessels. The proposed technique however
had a poor detection of the vessels. Hoover et al.
(2000) segmented retinal vessels by applying a
threshold probing technique combining local vessel
attributes with region-based attributes on MFR image.
While compared to the technique used in (Chaudhuri
et al.; 1989) where a basic thresholding of an
MFR was used, the method proposed in (Hoover
et al.; 2000) reduced the false positive rate by as
much as 15 times. Chanwimaluang and Fan (2003)
proposed the combination of matched filter and
entropy for the segmentation of retinal vessels. The
performance measure of the proposed technique was
only visual. Cinsdikici and Aydın (2009) implemented
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the combination of matched filter and ANT colony
algorithm for the detection of retinal vessels. Zhang
et al. (2010), having identified that the general matched
filter responds to both vessels edges and the non-
vessel edges, extended the general matched filter with
the first-order derivative of the Gaussian properties
of the retinal vessels. The improved technique was,
however, faced with the inability to segment the
thinner vessels. Chakraborti et al. (2014) implemented
an unsupervised segmentation technique that combines
vesselness filter and matched filter using orientation
histogram for the segmentation of retinal vessels.

Martı́nez-Pérez et al. (1999) used a combination
of scale space analysis and region growing to
segment the vessel network. Vlachos and Dermatas
(2010) proposed a retinal vessel segmentation method
based on multi-scale line-tracking procedure and
morphological post-processing. Wang et al. (2013)
proposed multi-wavelet kernels and multi-scale
hierarchical decomposition. Vessels were enhanced
using matched filtering with multi-wavelet kernels.
Yin et al. (2013) implemented a probabilistic tracking-
based method for vessel segmentation. A Bayesian
method with maximum a posteriori (MAP) was
used for detecting the retinal vessel edge points. Li
et al. (2006) combined multi-scale analysis based on
Gabor filters, scale multiplication, and region based
thresholding to achieve adaptive thresholding for
vessel segmentation.

Szpak and Tapamo (2008) used gradient based
approach and level set technique for the segmentation
of retinal vessels. The proposed technique was
however unable to detect the thinner vessels. Xiao
et al. (2013) proposed a Bayesian method with spatial
constraint for the segmentation of retinal vessels. The
spatial dependence of the posterior probability of
each pixel in relation to their neighboring pixels was
utilized. An energy function was further defined and
a modified level set approach was used for the vessel
segmentation.

Jiang and Mojon (2003) implemented an adaptive
local thresholding based on a verification-based
multi-threshold probing scheme for the detection of
vessel network. Vessels’ properties such as contrast,
curvilinear angle, width, and size were modelled into
the verification phase, and a number of thresholds
were used to probe and detect vessel network. The
combination of the resulting detected vessel networks
obtained from probed thresholds followed by post
processing techniques was used to generate the final
segmented vessel network. The technique was however
faced with the limitations of some unconnected
vascular structures and the inability to detect the
thinner vessels. Akram and Khan (2013) enhanced
the vascular pattern using 2-D Gabor wavelet and

followed by a multilayered thresholding technique
that applied different threshold values iteratively to
generate gray level segmented image. Cornforth et al.
(2005) applied wavelet analysis, supervised classifier
probabilities and adaptive threshold procedures, as
well as morphology-based techniques. A comparative
study of global thresholding techniques previously
implemented by Mapayi et al. (2015) showed
that global thresholding approaches are limited at
efficiently segmenting thin retinal vessels. In another
study, Mapayi et al. (2014) implemented an adaptive
thresholding technique utilizing different types of
local homogeneity information for retinal vessel
segmentation.

Zana and Klein (2001) implemented a vessel
segmentation method based on the use of
mathematical morphology and cross-curvature
evaluation. Mendonca and Campilho (2006) combined
differential filters for center-line extraction with
morphological operators for filling vessel segments
considering intensity and morphological properties.
Miri and Mahloojifar (2011) found ridges by applying
multi-structure elements to enhanced retinal image.
Morphological operators by reconstruction was further
applied to get rid of the ridges outside the vessel tree.
Fraz et al. (2011, 2012a) combined vessel centre-lines
detection and morphological bit plane slicing for the
detection of vessel network in retinal images. Jiménez
et al. (2010) implemented vessel centre-lines detection
and a combination of morphological operations for
retinal vessel segmentation.

Kande et al. (2010) combined matched filtering
and a spatially weighted fuzzy C-means for vessel
segmentation in retinal images. Lupaşcu and Tegolo
(2011a,b) having trained a self-organizing map (SOM)
on retinal images, proposed two clustering techniques
for vessel segmentation. The map was divided into two
classes using k-means clustering technique (Lupaşcu
and Tegolo; 2011a) and modified Fuzzy C-Means
clustering algorithm (Lupaşcu and Tegolo; 2011b).
A post-processing technique based on hill climbing
strategy on connected components was further applied
to detect the vessel network (Lupaşcu and Tegolo;
2011a,b). Saffarzadeh et al. (2014) implemented a
preprocessing phase based on k-means followed by the
use of multi-scale line operators for the detection of
retinal vessel network. With the use of k-means, the
visibility of the vessels was enhanced and the impact of
bright lesions reduced. The retinal vessels were finally
detected using the line detection operator in three
scales. Sun et al. (2011) implemented morphological
multi-scale enhancement in combination with fuzzy
filter and watershed transformation for vascular
segmentation. Tolias and Panas (1998) implemented
a fuzzy C-means algorithm to segment vessels in
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retinal angiogram images. The technique however did
not segment thinner vessels due to their low contrast
against background. An automatic extraction of the
vascular structure in retinal images using a sparse
tracking technique was also proposed in Grisan et al.
(2004). Poletti et al. (2011) proposed an automatic
extraction of vessel centerline in wide-field ROP
retinal images using a sparse tracking scheme. An
hybrid approach comprising of a fuzzy clustering
and mathematical morphology was proposed by Yang
et al. (2008). A morphological top-hat operation was
used for retinal image smoothing and background
information removal. The vessels were then extracted
through fuzzy clustering.

Retinal vessel tortuosity is one of the early
symptoms of some retinopathies (Wasan et al.; 1995)
and are of great importance in the diagnosis of ROP
(Davitt and Wallace; 2009). Retinal vessel network
tortuosity is the measure of twists and curvature of
a vessel. Retinal vessel tortuosity measures are used
to determine the state of retinal images as either
healthy or diseased even when there are no visible
pathologies as shown in Fig. 1. One of the first changes
in vessels morphology to occur in DR patients is the
increase in vessel tortuosity (Scheie; 1953; Kristinsson
et al.; 1997; Owen et al.; 2008; Taarnhøj et al.;
2008; Dougherty et al.; 2010; Onkaew et al.; 2011;
Chakravarty and Sivaswamy; 2013).

Fig. 1: (a) Coloured retinal image with normal vessels
(b) Coloured retinal image with tortuous vessels.

Tortuosity has been shown to be a more reliable
vascular parameter in differentiating ROP severity
than vessel width (Capowski et al.; 1995). High
blood pressure has been linked to diabetes due to its
relationship with hypertension (Bedell; 1945; Kylstra
et al.; 1986; Patasius et al.; 2007) and tortuosity has
also been identified as an indicator of high blood
pressure. Degeneration of retinal vessel walls and
changes in their elastic properties have been identified
to be major causes of vessel tortuosity (Azegrouz et al.;
2006). The duration of diabetic disease has a strong
effect on changes in vessel tortuosity (Lim et al.; 2010;
Sasongko et al.; 2010).

Although vessel tortuosity are visually analyzed
and determined by ophthalmologists based on the
curvature and twisting rate of vessels, qualitative
grading of vessel tortuosity suffers from inter-observer
and intra-observer variations (Wolffsohn et al.; 2001).
Several methods have been applied to quantitatively
determine the measure of tortuosity of a vessel (Bullitt
et al.; 2003). The term often called the tortuosity
index (TI), is used for the estimation of the vessel
tortuosity. TI provides a reproducible measure of
vessel characteristics.

Vessel tortuosity was computed as the ratio of the
actual vessel length to the length of the underlying
chord (Lotmar et al.; 1979; Hart et al.; 1999; Heneghan
et al.; 2002; Martinez-Perez et al.; 2002; Wilson
et al.; 2008). This technique assumes a vessel to
be non-tortuous if it is straight line and tortuous
while the radius of curvature is longer than the chord
length of the vessel. The techniques however failed to
differentiate varying vessels with the same length but
with different tortuosity.

Hart et al. (1997) implemented automatic
tortuosity measurement using integral curvature
methods. Dougherty and Varro (2000) used second
derivatives along central axis of the blood vessels
for automatic tortuosity measurement. Bullitt et al.
(2003) applied the number of inflection points for
the automatic vessel tortuosity measure. Grisan
et al. (2003, 2008) implemented automatic tortuosity
measures using arc to chord ratio and the points
of changing curvature sign. The vessel extraction
and inflection point placement was however done
manually (Sinthanayothin et al.; 2010; Onkaew et al.;
2011). Capowski et al. (1995) addressed tortuosity
measurement using the number of direction changes
in vessel course. Azegrouz et al. (2006) proposed
a vessel-thickness tortuosity measurement method
utilizing the average of the two curvature values
computed at two boundary points of the vessel.

Generally, automatic tortuosity measurement
methods based on local tortuosity measurement
performs better while compared to the techniques
based on global tortuosities (Wilson et al.; 2008).
However, the contribution of each local tortuosity
measure is considered for computing the global
tortuosity measure.

Although, much has been achieved in the previous
works, the performances obtained from literature
suggest the need for further work to address the robust
segmentation of large and thinner retinal vessels. There
is also need to investigate an efficient approach for
vessel tortuosity measurement.
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MATERIALS AND METHODS
Since efficient vessel network detection is a very

important step needed in ophthalmology for reliable
retinal vessel characterization, a robust segmentation
technique that performs the detection of large and thin
vessels in a timely manner is highly needed. This
section presents an unsupervised vessel segmentation
approach to address the problems of inability to
detect the thinner vessels (Martı́nez-Pérez et al.; 1999;
Vlachos and Dermatas; 2010; Saffarzadeh et al.;
2014; Mapayi et al.; 2015) connectivity loss in vessel
network (Jiang and Mojon; 2003). Since unsupervised
vessel segmentation methods are not dependent on
labelled training set, the method investigated in
this paper also overcomes the major drawback of
supervised segmentation methods which is their high
dependence on the labelled training (Li and Li; 2013)
with the retraining of the classifiers (Soares et al.;
2006; Marı́n et al.; 2011). The detailed description of
the materials with the vessel segmentation methods
and tortuosity measurement techniques investigated
in this paper are further presented in sections
Materials, Vessel Segmentation and Vessel Tortousity
Measurement respectively.

MATERIALS
Experiments were carried out using MATLAB

2010a on an Intel Core i5 2410M CPU, 2.30 GHz, 4GB
of RAM. The proposed method was evaluated using
the retinal images on the publicly available databases
(DRIVE; 2004; STARE; 2000). DRIVE (2004) is a
publicly available database consisting of 40 colour
retinal fundus images. These images were obtained
from a diabetic retinopathy screening program in
the Netherlands. The images were acquired using a
Canon CR5 non-mydriatic 3CCD camera with a 45
degree field of view (FOV). Each image was captured
using a 24-bit RGB colour at 768× 584 pixels. The
FOV of each image is circular with a diameter of
approximately 540 pixels. This set of forty colour
retinal fundus images are divided into two groups. The
first group of the images is made up of twenty images
which are a training set for supervised segmentation
techniques. The training set are, however, not used
in this paper because we applied an unsupervised
segmentation method. The second group is a testing set
made up of twenty images. All the human observers
that manually segmented the vessels in the retinal
images were instructed and trained by an experienced
ophthalmologist. A set of manual segmentations of the
vessel network is available for the training images.
Two manual segmentations sets X and Y are available
for the test cases. In set X , 577,649 pixels were marked
as vessel and 3,960,494 pixels as background (12.7%
vessel). In set Y , 556,532 pixels were marked as vessel

and 3,981,611 as background (12.3% vessel). It was,
however, observed that it took a human observer an
average time of 7200 seconds (2 hours) to segment
the vessels in each of the retinal images. Set X
of the manual segmentations of the test cases is
used as gold standard (ground truth), while set Y is
often compared to the performance of the automatic
segmentation techniques on the database. STARE
(STructured Analysis of the Retina) STARE (2000)
is a publicly available database that consists of 20
retinal images captured with the use of TopCon TRV-
50 fundus camera with 24-bit grey-scale resolution and
spatial resolution of 700×605 pixels. The approximate
diameter of the FOV is 650 pixels. Two observers
manually segmented all the images. The first observer
segmented 10.4% of pixels as vessel, against 14.9%
vessels for the second observer. The segmentations
of the two observers are fairly different in that the
second observer segmented many more of the thinner
vessels than the first one. The 20 manually segmented
images provided by the first observer is used as
the ground truth for the comparative performance
evaluation of different vessel segmentation algorithms
in the literature.

It is however important to note that one of the
major reason why the first and second observer
disagreed in the manual segmentations of the retinal
vessels was because of the difficulty to distinguish
vessel pixels due to JPEG-artefacts. The decisions
of the human observers at distinguishing pixels at
vessel borders as either vessel or non-vessel are also
subjective. Although the second observer labelled
more pixels as vessels when compared to the first
observer on the STARE database, the first observer
took a more conservative view of the boundaries of
vessels and in the identification of small vessels when
compared to the second observer. Hence, the manual
segmentation of the first observers of DRIVE and
STARE databases are used as the ground truth for the
comparative performance evaluation of different vessel
segmentation algorithms in the literature.

In a related development, 50 digital fundus images
containing 50 different vessel segments used for the
vessel tortuosity measurement. Expert’s ground truth
that determined the state of each vessel segment as
either tortuous or normal was also obtained from a
consultant ophthalmologist.

VESSEL SEGMENTATION
The green component of the coloured retinal

image is used for segmentation since it provides the
best vessel-background contrast (Staal et al.; 2004).
A detailed description of the vessel segmentation
approach investigated in this paper is given as:
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1. Extraction of the green channel of the coloured
fundus image.

2. Process the green channel of the retinal image
using different filtering techniques.

3. Generate the difference image.

4. Segment the retinal vessels from the generated
difference image using k-means clustering.

5. Implement a post-processing phase that combines
median filter and morphological opening for the
removal of misclassification.

Filtering Techniques
The green channel of the retinal image is enhanced

using different filtering techniques. Linear filters such
as mean filter and Gaussian filter are used for
smoothing images. Although these filters reduce image
noise, they are however weak at preserving edges in an
image. Non-linear filter, particularly median filter, is
efficient at removing image noise as well as preserving
edge information in images. It is however worth noting
that the selected filter window sizes should not be too
large in order to efficiently manage the noise due to
illumination variation conditions of the retinal image.
It is also important to carefully select window sizes
that have sufficient data points for good enhancement.
The window sizes of the filters applied in this work are
empirically selected. For the purpose of investigation
in this paper, mean and Gaussian filters are considered
for the convolution while median filter is used for
the filtering of the retinal image. The image padding
does not affect the retinal image as there are black
background pixels after the circular field of view. We
replicated the border pixel values (which are zeros) for
the image padding at the border of the retinal image (i.e
including the background), and this has no effect as the
background pixels around the border are also black.

Difference Image
A difference image is generated by subtracting

the green channel of the coloured retinal image from
the convolved of filtered retinal image to balance the
illumination of the retinal image. The difference image
D(x,y) is given below as:

D(x,y) =U(x,y)−V (x,y) , (1)

where U is the convolved or filtered retinal image,
V is the green channel of the retinal image. D(x,y)=
{Dρ(x,y),Dυ(x,y),Dσ (x,y)}, where Dρ(x,y) is the
difference image based on median filter (DIMDF),
Dυ(x,y) is the difference image based on mean filter
(DIMNF) and Dσ (x,y) is the difference image based
on Gaussian filter (DIGF). A model that combines two

possible difference images was also investigated. The
combinations obtained are:

Dρ

υ = Dρ(x,y)+Dυ(x,y) , (2)
Dυ

σ = Dυ(x,y)+Dσ (x,y) , (3)

Dρ

σ = Dρ(x,y)+Dσ (x,y) , (4)

where Dρ

υ is the combination of median filter and
mean filter based difference images (DIMDMNF), Dυ

σ

is the combination of mean filter and Gaussian filter
based difference images (DIMNGF) and Dρ

σ is the
combination of median filter and Gaussian filter based
difference images (DIMDGF). The results obtained in
Eqs. 2–4 are normalized to the interval [0, 255]. Fig. 2
shows the coloured retinal image, the green channel
of the coloured retinal image and the difference image
obtained using the DIMDF investigated in this paper.

Fig. 2: Coloured retinal image on DRIVE database
(a), green channel of the coloured retinal image (b),
difference image based on DIMDF (c).

K-Means Clustering

K-means clustering is an unsupervised
segmentation technique used in defining the natural
group of pixels in an image. This is achieved by
classifying input image data points into different
classes through a set of distances computed using the
image data points and centroids. K-means clustering
technique is used for dividing n sample input data
points of X = {x1,x2, ....,xn} into a group of k clusters.
This is achieved by considering the similarities among
the input points within the same cluster as well as
the differences among the different clusters. Sum of
squared errors is a very useful criterion measure for
clustering. Given k clusters, the sum of squared errors
is computed as:

SSE =
k

∑
i=1

∑
x j∈Si

||x j−µi||2 , (5)

such that µi is the centroid of the ith cluster Si, {i =
1,2 . . .k.}.
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Fig. 3: Segmentation results of different values of
K before post-processing(a) Gold standard image
on DRIVE database (b) K=2 (c) K=4 (d) K=6 (e)
K=8 (f) K=10.

The k-means clustering technique is used to
segment the vessel network from the background
tissue in the retinal images using the results generated
from Eqs. 1–4. This clustering technique was applied
on the retinal image pixel intensities. In order to
determine the number of clusters k, a range of values
were investigated. Fig. 3 shows the impact of different
values of k for the detection of the vessel network.
Randomly, five different values of k, k = 2, k = 4,
k = 6, k = 8, and k = 10 are shown in Fig. 3. It will
be observed that when k = 2, the smaller vessels were
not detected. There was however an improvement in
the detection of the vessels when k = 4. The were
better detection of vessels when k = 6, k = 8 and
k = 10. The value k = 10 was applied for the k-means
clustering technique applied in this paper. Fig. 4 shows
the detected vessels after applying k-means clustering
on the difference images.

POST-PROCESSING
Median filter and morphological opening are

used for the post-processing phase to remove noisy
pixels appearing to be broken vessels and restore
the connectivity of the background tissues (black
background) while the several vessel networks are still
preserved. Median filtering is a non-linear smoothing
operation often used in image processing to reduce
noise and preserve edges at the same time. In
this research, the median filtering is performed by
moving a 2× 2 sliding-window through all the pixels
of the binarized retinal image containing detected
vessels. When the chosen mask is greater than
2 × 2, the median filter categorizes some of the
smaller retinal vessels as noise. This is followed
by morphological opening. In the application of
morphological opening to the filtered image, erosion
is applied to remove the remaining noisy pixels and

dilation is subsequently applied. The morphological
opening with line structuring elements orientated in
five different directions namely 0◦, 30◦, 60◦, 120◦,
150◦ was applied. Another mophological operator
applied is the area opening. This technique removes
the remaining noisy pixels appearing to be broken
vessels using the connectivity value 8. After this, the
FOV mask is subtracted from the segmented image
to obtain the detected vessel in the circular field
of view. Given that the filtered segmented image is
Sfiltered

im , the final output image after the application of
morphological opening is computed as:

γ(Sfiltered
im ) = δ (ε(Sfiltered

im )) , (6)

where γ(Sfiltered
im ) is the final segmented vessel

network after post-processing and ε(Sim) describes the
application of erosion and δ (Sfiltered

im ), the application
of dilation.

Fig. 4: Detected vessels based on k-means and
difference image before post-processing(a) k-means
and DIMDF (b) k-means and DIMDGF (c) k-means
and DIMDMNF (d) k-means and DIMNGF.

VESSEL TORTOUSITY MEASUREMENT
Retinal vessel network tortuosity is the measure

of twists and curvature of a vessel (Grisan et al.;
2003, 2008; Onkaew et al.; 2011; Chakravarty and
Sivaswamy; 2013). Several clinical studies have
described the relation between vessel tortuosity and
retinopathies such as DR, ROP (Scheie; 1953;
Capowski et al.; 1995). Fig. 5 shows the variation in
the directional changes, frequency of twists and the
differences in the vessel lengths of the different vessels
a, b, c, d, e, f and g.
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Description of Tortuosity
With the help of ophthalmologic rules and clinical

definition, the metric that provides numeric index for
vessel tortuosity measurement is utilized (Bullitt et al.;
2003). Rather than inflection points alone (Bullitt
et al.; 2003), the stationary points of the vessel are
considered to be very important for computing the
tortuosity measure in this paper. A combination of arc-
chord ratio with stationary points are used to compute
tortuosity index using the local tortuosity measurement
approach. Fig. 6 shows a sample vessel of interest is
marked, detected vessel of interest and skeletonized
form of detected vessel of interest.

The tortuosity measure applied in this paper
utilizes the chord length, arc length and the frequency
of vessel curve using the stationary points as described
in Algorithm 1. The blood vessel is skeletonised to
extract the center line of the vessel.

The chord length Lchord of the skeletonised blood
vessel is defined as

Lchord =
√
(xn− x1)2 +(yn− y1)2 , (7)

where Lchord is the length of the straightline connecting
the two end-points of the skeletonised blood vessel.

The arc length Larc of the skeletonised blood vessel
is defined as

Larc =
n−1

∑
i=1

√
(xi+1− xi)2 +(yi+1− yi)2 , (8)

where Larc is the actual length of the skeletonised
blood vessel.

The pixel locations of skeletonised blood vessels
are extracted to plot a vessel description graph as
shown in Fig. 7. A set of frequent smaller swings
occurred on the skeletonised vessel segment as a result
of noise. In order to efficiently detect the number the
stationary points, a moving average filter with span n
= 5 was applied to smoothen the smaller swings that
occurred on the skeletonised vessels to remove the
noise. The stationary points of the vessel description
graph are computed using the gradients of the vessel
description graph. We applied a 1-point difference
scheme. With such scheme, each gradient is computed
as either 0, 1 or -1. With the help of the 1-point
difference, a change of direction in the vessels can
also be detected. The stationary points are points on
the vessel description graph where the gradient is zero.
There are however three major types of stationary
points: minimums, maximums and inflection points as
illustrated in Fig. 8 and Fig. 9 (Thomas; 1996).

Fig. 5: Retinal vessels with different twists.

Fig. 6: Coloured retinal with vessel of interest marked
(a), detected vessel of interest (b), and skeletonization
of detected vessel of interest (c).

Fig. 7: Vessel graph describing X and Y coordinates of
skeletonised blood vessels.

Fig. 8: Graph describing different stationary points
between point A & point B.

Given the skeletonised blood vessel T with vessel
coordinates X and Y , the gradients of the vessel
description graph are computed as:

G =
dY
dX

, (9)

such that X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn},
G = {g1, g2, . . . , gn} and −1≤ G≤ 1 where GεI.

The nature of each type of the stationary points is
shown in Fig. 9 and Table 1:
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Algorithm 1: Vessel Twist Detection Based on Stationary Points Algorithm
Input: S1, S2, S3, S4 are the sets of stationary point detectors. T is the thinned segmented vessel.
Output: SPCcount is total number of vessel twists, Di is the set of gradient pattern obtained from the

detectors and E j is the set of gradient pattern obtained from the thinned segmented vessel
/* Computes and Updates the computed gradient patterns of the detectors

based on stationary points. */
1 for i ≤ 4 do
2 while s ∈ Si do

/* diff computes gradients. */
3 Di = di f f (s) UpdateDetectorPattern(Di)

4 end

5 end
/* Initialize the vessel twist counter to zero. */

6 counter ← 0
/* Updates the computed gradient patterns of the segmented vessel. */

7 while t ∈ T do
8 E j = diff(t)
9 UpdateRealVesselPattern(E j) for i ≤ 4 do

10 if Matches (E j, Di) then
/* Increments the vessel twist counter. */

11 counter++

12 end

13 end

14 end
15 SPCcount ← counter
16 return SPCcount

Fig. 9: Maximal point (a), minimal point (b), points of
inflection (c, d).

Table 1: Stationary points nature table.

Sign of dy
dx

at P
Sign of dy

dx
at R

Graphical
Behavior Inference

+ - Fig. 9(a)
A turning point
corresponding

to maximum (S1)

- + Fig. 9(b)
A turning point
corresponding

to minimum (S2)

+ + Fig. 9(c) An inflection
point (S3)

- - Fig. 9(d) An inflection
point (S4)

The stationary points in the vessel description
graph are computed using the vector of gradient
obtained from Eq. (9) and the nature table in Table 1. In
Algorithm 1, the gradient patterns Di of the stationary
points detectors S1, S2, S3, S4 are computed. The
vessel twist counter is initialize to zero and updated
using UpdateRealVesselPattern as the presence of
twists are detected in the vessel by matching the
detector patterns Di with vessel pattern E j obtained
from the thinned segmented vessel. The total number
of twists, SPCcount, is then computed. We investigate
a normalized TI metric TIfreq1 that combines distance
metric and the vessel twist frequency obtained using
the stationary points. This is computed as:

TIfreq1 =
SPCcount

Lchord
((Larc−Lchord)/Lchord) , (10)

where SPCcount is the twist frequency of the vessel
curves.

Several literature have applied a distance metric
by dividing the arc length by the chord length (see
Kalitzeos et al.; 2013). While the previously presented
distance metric divided the arc length by the chord
length (Kalitzeos et al.; 2013), a different distance
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metric that divides the chord length and the number
of stationary points by the arc length is used for the
non-normalized TI in this study. The non-normalized
TI is computed as

TIfreq2 = SPCcount(Lchord/Larc) . (11)

RESULTS
Empirically, we established that using window

sizes 11× 11, for mean and Gaussian filters, 15× 15
for median filter were effective for the detection of the
vessel network. The average time taken to segment the
vessel networks in each of the retinal image on DRIVE
and STARE databases ranges from 3.4 to 4.0 seconds.

The performance measures used are sensitivity,
specificity and accuracy. The measures are described
in the Eqs. 12–14 below as:

Sensitivity =
TP

TP+FN
, (12)

Specificity =
TN

TN+FP
, (13)

Accuracy =
TP+TN

TP+TN+FP+FN
, (14)

where TP is True Positive, TN is True Negative, FP is
False Positive and FN is False Negative.

Fig. 10: (a) & (d) STARE database ground truth.
(b) & (e) Segmented vessels using k-means with
DIMDF. (c) & (f) Segmented vessels using k-means with
DIMDMNF.

An event is said to be TP when a pixel is rightly
segmented as a vessel and TN when rightly segmented
as background. Conversely, an event is said to be FN if
a vessel-pixel is segmented to be a background, and a
FP when a background pixel is segmented as a pixel in

the vessel. Sensitivity measure indicates the ability of a
segmentation technique to detect the pixels belonging
to vessel while specificity measure indicates the ability
of a segmentation technique to detect background
pixels. Therefore, the higher the sensitivity rate, the
higher the rate of vessel detection. The accuracy
measure indicates the degree of conformity of the
segmented retinal image to the ground truth.

Table 2: Performance of different segmentation
methods on DRIVE database.

Method Avg.
Acc.

Avg.
Sens.

Avg.
Spec.

Human observer 0.9473 0.7761 0.9725
Chaudhuri et al. (1989) 0.8773 0.3357 0.9794
Martı́nez-Pérez et al. (1999) 0.9181 0.6389 0.9496
Zana and Klein (2001) 0.9377 0.6971 0.9769
Jiang and Mojon (2003) 0.9212 0.6399 0.9625
Niemeijer et al. (2004) 0.9416 0.7145 0.9801
Staal et al. (2004) 0.9442 0.7345 0.9773
Mendonca and Campilho (2006) 0.9463 0.7315 N/A
Soares et al. (2006) 0.9466 N/A N/A
Ricci and Perfetti (2007) 0.9595 N/A N/A
Szpak and Tapamo (2008) 0.9299 N/A N/A
Vlachos and Dermatas (2010) 0.9285 0.7468 0.9551
Lupaşcu and Tegolo (2011a) 0.9459 0.6562 N/A
Lupaşcu and Tegolo (2011b) 0.9482 0.6565 N/A
Marı́n et al. (2011) 0.9452 N/A N/A
Akram and Khan (2013) 0.9469 N/A N/A
Wang et al. (2013) 0.9461 N/A N/A
Xiao et al. (2013) 0.9529 0.7513 0.9792
Yin et al. (2013) 0.9267 0.6522 0.9710
Saffarzadeh et al. (2014) 0.9387 N/A N/A
k-Means With DIMDF 0.9556 0.7399 0.9766
k-Means With DIMDMNF 0.9516 0.7581 0.9703
k-Means With DIMNGF 0.9523 0.7079 0.9759
k-Means With DIMDGF 0.9531 0.7518 0.9726

A receiver operating characteristic (ROC) curve
performance measure is a plot of the rightly classified
pixels, referred to as true positive rate (TPR) versus
the fraction of the wrongly classified pixels as vessels,
referred to as false positive rate (FPR). Area under the
curve (AUC) is a performance measure computed from
the ROC curve. The ROC are determined by setting the
threshold on the posterior probability. The image with
k = 10 in Fig. 3 serve as the posterior probabilities.

The differences between the various results
achieved by the best methods investigated in this
paper are assessed by means of z-test statistics
(Foody; 2009). The sensitivity is the proportion of
the rightly detected vessel pixel while the accuracy
rate is the proportion of the rightly detected pixel in
the retinal image. To evaluate the variability of the
performance of the different methods on the same
dataset, we used the same set of data point samples.
The significant difference in average sensitivity rate
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indicates the significant difference in the detection
rate of the vessels and the significant difference in
accuracy rate indicates the significant difference in
the accuracy rate of the retinal vessel segmentation.
Both measures are very important as good vessel
segmentation method for efficient vessel analysis in
ophthalmology requires that sensitivity and accuracy
rates of the segmentation be good (Mapayi et al.;
2015). The statistical significance of a difference
between two proportions is evaluated as

z =
| p1− p0 |√

p̄(1− p̄( 1
n1
+ 1

n0
))

, (15)

where p̄ = (x1 + x0)/(n1 + n0) with x0 and x1
representing the number of cases of the rightly
detected pixel in the classifications of sample data-
points of size n0 and n1 respectively. The statistically
difference is computed at an asymptotic confidence
level of 95% (α = 0.05).

K-means with DIMDF has the best average
accuracy and average sensitivity rates on DRIVE and
STARE databases. DIMDF combined with k-means
clustering detected majority of large and thin vessels,
while very few thinner vessels remain undetected.
In a related development, DIMDMNF and DIMDGF
while combined with k-means yielded higher average
sensitivity rates but lesser average accuracy rates
while compared to DIMDF combined with k-means
clustering technique. The increase in sensitivity is as
a result of the integration of the other difference image
with DIMDF. DIMDF however has the highest average
accuracy rate while compared to DIMDMNF and
DIMDGF while combined with k-means clustering
technique. Fig. 11 gives a visual description that
compares the results obtained from vessels segmented
using DIMDF DIMDMNF and DIMDGF while
combined with k-means clustering technique on
DRIVE database. Fig. 10 and Fig. 12 show the visual
results obtained from vessels segmented using DIMDF
DIMDMNF, DIMNGF and DIMDGF while combined
with k-means clustering technique in comparison with
the ground truth and the result obtained by Hoover
et al. (2000) on STARE database. As shown in
Figs. 10, 11 and 12, majority of large and thin vessels
are detected, a very few thinner vessels still remain
undetected. The false detection around the border of
the optic disc are higher on the results obtained by
using DIMDMNF and DIMDGF while combined with
k-means clustering but lesser on the results obtained
while using k-means combined with DIMDF as shown
Fig. 11. This is also responsible for the higher average
accuracy rate achieved by DIMDF while combined
with k-means clustering technique. The result obtained
while DIMNGF is combined with k-means clustering

technique in Fig. 12 however shows that the thinner
vessels are not detected.

The performance measures of the different
previously proposed techniques on DRIVE and
STARE databases are also compared to the proposed
techniques in Tables 2 and 3. The average accuracy
rate is written by Avg. Acc., average sensitivity rate as
Avg. Sens. and average specificity rate as Avg. Spec.

Fig. 11: The red rectangular box indicates the noise
rate around the border of the optic disc (a) DRIVE
database coloured fundus image (b) DRIVE database
gold standard (c) Segmented vessels using k-means
with DIMDF (d) Segmented vessels using k-means
with DIMNGF (e) Segmented vessels using k-means
with DIMDGF (f) Segmented vessels using k-means
with DIMDMNF.

Fig. 12: (a) & (e) STARE database ground truth.
(b) & (f) Segmented vessels presented by Hoover
(Hoover et al.; 2000). (c) & (g) Segmented vessels
using k-means with DIMNGF (d) & (h) Segmented
vessels using k-means with DIMDGF.
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Fig. 13: ROC curves showing the performance of the
various difference images combined with k-means
clustering on DRIVE.

Fig. 14: ROC curves showing the performance of the
various difference images combined with k-means
clustering on STARE.

Table 3: Performance of different segmentation
methods on STARE database.

Method Avg.
Acc.

Avg.
Sens.

Avg.
Spec.

Human observer 0.9354 0.8949 N/A
Hoover et al. (2000) 0.9275 0.6751 0.9567
Jiang and Mojon (2003) 0.9009 N/A N/A
Staal et al. (2004) 0.9516 0.6970 N/A
Mendonca and Campilho (2006) 0.9479 0.7123 N/A
Soares et al. (2006) 0.9480 N/A N/A
Ricci and Perfetti (2007) 0.9584 N/A N/A
Marı́n et al. (2011) 0.9526 N/A N/A
Akram and Khan (2013) 0.9502 N/A N/A
Wang et al. (2013) 0.9521 N/A N/A
Xiao et al. (2013) 0.9476 0.7147 0.9735
Yin et al. (2013) 0.9412 0.7248 0.9666
Saffarzadeh et al. (2014) 0.9483 N/A N/A

k-Means
With DIMDF 0.9509 0.7372 0.9681

k-Means
With DIMDMNF 0.9492 0.7752 0.9633

k-Means
With DIMNGF 0.9340 0.6979 0.9526

k-Means
With DIMDGF 0.9500 0.7666 0.9648

Table 4: Comparison of AUC of the proposed
techniques with previous works on DRIVE and
STARE databases.

Method AUC
DRIVE

AUC
STARE

Chaudhuri et al. (1989) 0.7878 N/A
Zana and Klein (2001) 0.8984 N/A
Jiang and Mojon (2003) 0.9114 0.929
Niemeijer et al. (2004) 0.9294 N/A
Staal et al. (2004) 0.9520 0.9614
Soares et al. (2006) 0.9614 0.9671
Ricci and Perfetti (2007) 0.9558 0.9602
Marı́n et al. (2011) 0.9588 0.9769
Akram and Khan (2013) 0.963 0.970
Wang et al. (2013) 0.9543 0.9682
Saffarzadeh et al. (2014) 0.9303 0.9431
k-Means With DIMDF 0.9735 0.9756
k-Means With DIMDMNF 0.9749 0.9728
k-Means With DIMNGF 0.9719 0.9463
k-Means With DIMDGF 0.9758 0.9734

Table 5: Correlation of tortuosity measures with
expert’s ground truth.

Tortuosity Measure Correlation

Lcurve/Lchord (Kalitzeos et al.; 2013) 0.73
T I f req1 0.73
T I f req2 0.80

DISCUSSION
This section presents a detailed discussion of the

results obtained in this study.

COMPARISON WITH EXISTING
SEGMENTATION METHODS ON DRIVE
DATABASE
The k-means clustering techniques investigated

achieved average sensitivity rates of 0.7079, 0.7399,
0.7518 and 0.7581 with corresponding average
accuracy rates of 0.9523, 0.9556, 0.9531 and
0.9516 respectively on DRIVE database. All the
techniques that combined difference image with
k-means clustering presented significantly higher
average sensitivity rates of 0.7079, 0.7399, 0.7518
and 0.7581 with significantly higher average accuracy
rates of 0.9523, 0.9556, 0.9531 and 0.9516 when
compared with the average sensitivity rates of 0.3357,
0.6389, 0.6399, 0.6971, 0.6562, 0.6565 and 0.6522
with their corresponding average accuracy rates of
0.8773, 0.9181, 0.9212, 0.9377, 0.9459, 0.9482 and
0.9267 achieved by Chaudhuri et al. (1989), Martı́nez-
Pérez et al. (1999), Jiang and Mojon (2003), Zana and
Klein (2001), Lupaşcu and Tegolo (2011a), Lupaşcu
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and Tegolo (2011b) and Yin et al. (2013), respectively.
All the techniques that combined difference image
with k-means clustering presented significantly higher
average average accuracy rates of 0.9523, 0.9556,
0.9531 and 0.9516 when compared with the average
accuracy rate 0.9387 obtained by Saffarzadeh et al.
(2014). Three of the techniques that combined
difference image with k-means clustering presented
significantly higher average sensitivity rates of 0.7399,
0.7518 and 0.7581 with significantly higher average
accuracy rates of 0.9556, 0.9531 and 0.9516 when
compared with the average sensitivity rates of 0.7145,
0.7345 and 0.7315 with their corresponding average
accuracy rates of 0.9416, 0.9442 and 0.9463 presented
by Niemeijer et al. (2004), Staal et al. (2004) and
Mendonca and Campilho (2006) respectively.

Two of the techniques that combined difference
image with k-means clustering presented significantly
higher average sensitivity rates of 0.7518 and 0.7581
with significantly higher average accuracy rates of
0.9531 and 0.9516 when compared with the average
sensitivity rate of 0.7468 and average accuracy rate of
0.9285 achieved by Vlachos and Dermatas (2010).

Although two of the techniques that combined
difference image with k-means clustering presented
higher average sensitivity rates of 0.7518 and 0.7581
when compared with Xiao et al. (2013) where an
average sensitivity rate of 0.7513 was achieved, one
of of the technique presented a significantly higher
average sensitivity rate of 0.7581 when compared
with the average sensitivity rate 0.7513 achieved
by Xiao et al. (2013). All the k-means clustering
techniques investigated achieved significantly higher
average accuracy rates of 0.9523, 0.9556, 0.9531 and
0.9516 when compared with Soares et al. (2006),
Szpak and Tapamo (2008), Marı́n et al. (2011),
Akram and Khan (2013) and Wang et al. (2013)
where no average sensitivity rate was presented but
average accuracy rates of 0.9466, 0.9299, 0.9452,
0.9469 and 0.9461 were achieved respectively. All the
difference images combined with k-means presented
lower average sensitivity rates of 0.7079, 0.7399,
0.7518 and 0.7581 but significantly higher average
accuracy rates of 0.9523, 0.9556, 0.9531 and 0.9516
when compared with the second human observer with
average sensitivity rate of 0.7761 and average accuracy
rate of 0.9473.

All the proposed k-means clustering techniques
presented significantly higher AUC rates of 0.9719,
0.9735, 0.9749 and 0.9758 (see Table 4 and Figs. 13
and 14) when compared with the AUC rates 0.7878,
0.8984, 0.9114, 0.9294, 0.9520, 0.9614, 0.9558,
0.9588, 0.963, 0.9543 and 0.9303 achieved by the
previously proposed techniques by Chaudhuri et al.
(1989), Zana and Klein (2001), Jiang and Mojon

(2003), Niemeijer et al. (2004), Staal et al. (2004),
Soares et al. (2006), Ricci and Perfetti (2007), Marı́n
et al. (2011), Akram and Khan (2013), Wang et al.
(2013) and Saffarzadeh et al. (2014) on DRIVE.

COMPARISON WITH EXISTING
SEGMENTATION METHODS ON STARE
DATABASE
The k-means clustering techniques investigated

achieved average sensitivity rates of 0.6979, 0.7372,
0.7666 and 0.7772 with corresponding average
accuracy rates of 0.9340, 0.9509, 0.9500 and
0.9492 respectively on STARE database. All the
techniques that combined difference image with
k-means clustering presented significantly higher
average sensitivity rates of 0.6979, 0.7372, 0.7666
and 0.7772 with significantly higher average accuracy
rates of 0.9340, 0.9509, 0.9500 and 0.9492 when
compared with the average sensitivity rate of 0.6751
and average accuracy rate of 0.9275 achieved by
Hoover et al. (2000). All the k-means clustering
techniques investigated presented significant higher
average accuracy rates of 0.9340, 0.9509, 0.9500 and
0.9492 when compared with the work of Jiang and
Mojon (2003) that achieved an average accuracy rate
of 0.9009.

Although all the techniques that combined
difference image with k-means clustering presented
higher average sensitivity rates of 0.6979, 0.7372,
0.7666 and 0.7772 when compared with the average
sensitivity rate of 0.6951 achieved by Staal et al.
(2004), only three of the average sensitivity have
significant differences when compared with Staal
et al. (2004). Three of the techniques that combined
difference image with k-means clustering presented
significantly higher average sensitivity rates of 0.7372,
0.7666, 0.7772 and significantly higher average
accuracy rates of 0.9509, 0.9500 0.9492 when
compared with the average sensitivity rates of
0.7123, 0.7147 and 0.7248 with corresponding average
accuracy rates of 0.9479, 0.9476 and 0.9412 presented
by Mendonca and Campilho (2006), Xiao et al. (2013)
and Yin et al. (2013) respectively.

Ricci and Perfetti (2007), Marı́n et al. (2011)
and Wang et al. (2013) presented no sensitivity but
higher average accuracy rates 0.9584, 0.9526 and
0.9521 when compared with the average accuracy
rates of all the k-means clustering segmentation
techniques in the range 0.9340 to 0.9509. Akram
and Khan (2013) presented no sensitivity but a lower
average accuracy rate of 0.9502 when compared with
average accuracy rate of 0.9509 obtained using one
of the k-means clustering segmentation techniques
with no significant difference. Soares et al. (2006)
and Saffarzadeh et al. (2014) also presented lower
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average accuracy rates of 0.9480 and 0.9483 when
compared with the average accuracy rates of 0.9509,
0.9500 and 0.9492 obtained from three of the k-means
clustering segmentation techniques with significant
differences. The human observer STARE (2000)
presented a higher average sensitivity of 0.88949
when compared with all the average sensitivity rates
of k-means clustering segmentation techniques. The
higher average sensitivity rate achieved by the human
observer STARE (2000) showed the higher detection
rate of both large and thin vessels by the human
observer in the retinal images. The human observer
STARE (2000), however, presented a significantly
lower average accuracy rate of 0.9354 when compared
with the average accuracy rates of 0.9509, 0.9500 and
0.9492 obtained from three of the k-means clustering
segmentation techniques.

Three of the proposed k-means clustering
techniques on STARE (see Table 4) presented
significantly higher AUC rates of 0.9728, 0.9734
and 0.9756 when compared with the AUC rates of
0.929, 0.9614, 0.9671, 0.9602, 0.970, 0.9682 and
0.9431 achieved by Jiang and Mojon (2003), Staal
et al. (2004), Soares et al. (2006), Ricci and Perfetti
(2007), Akram and Khan (2013), Wang et al. (2013)
and Saffarzadeh et al. (2014) respectively.

COMPARISON OF TORTUOSITY
MEASURES WITH EXPERT’S GROUND
TRUTH
The tortuosity measures computed in the previous

section utilized chord length, arc length and the
frequency of twists using the stationary points of the
vessel curves.

The non-normalized tortuosity index (TI)
combined a different distance metric and the vessel
twist frequency as described in Eq. 11. The normalized
TI as described in Eq. 10, utilized the chord length
for the normalization previously presented distance
metric combined with the twist frequency measure. A
threshold value 1.0 is applied to differentiate tortuous
from non-tortuous retinal vessels. Hence, TI values
less than 1.0 are considered non-tortuous while TI
values greater than or equal to 1.0 are considered
to tortuous. Table 5 shows the correlation of the
tortuosity measures obtained with the expert ground
truth using Spearman’s rank correlation coefficient.
The result obtained shows that the non-normalised
metric (TIfreq2) has a stronger correlation with the
expert ground truth with significant differences when
compared with the other techniques investigated.

In conclusion, this paper presents unsupervised
vessel segmentation approach that combines difference
image and k-means clustering for the segmentation
of retinal vessels. K-means clustering combined with

difference images addressed the major drawback of
supervised segmentation methods which is their high
dependence on the labelled training with the retraining
of the classifiers. K-means clustering combined with
difference image based on median filter also addressed
the segmentation of large and thinner retinal vessels
as well as the reduction of false detection around
the border of the optic disc. It is also shown
that an integration of difference images based on
median filter with difference image based on mean
filter and difference image based on Gaussian filter
while combined with k-means clustering technique
segmented both large and thin vessels in retinal
images. The reason for the good performance of
these segmentation techniques are due to the very
good edge-preserving property of median filter.
The vessel segmentation techniques that combined
median filtered based difference image with k-means
clustering technique present higher average sensitivity
and average accuracy rates when compared with the
previous techniques on DRIVE and STARE databases.
The vessel segmentation techniques investigated in this
paper are also computationally fast ranging from 3.4 to
4.0 seconds on DRIVE and STARE databases.

Having designed and implemented the detection of
twists in vessel segments through the use of stationary
points in the vessel center-lines, we also showed that
the proposed non-normalized TI that combined the
distance metric and the vessel twist frequency has
a stronger correlation with the expert’s ground truth
when compared to the previously presented distance
metric and the normalized TI investigated in this paper.
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