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ABSTRACT 

A number of bidimensional random structures with increasing densities are simulated to explore possible 
links between Euler-Poincaré characteristic (EPC), or connectivity, and percolation threshold. For each 
structure model, the percolation threshold is compared with a number of typical points (extrema, zero 
crossings...) of the EPC curve. From these exercises, it can be concluded that the percolation threshold 
cannot be generally predicted using the evolution of the EPC. 
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INTRODUCTION 

Consider a binary random set, defined in a 2D or 3D 
field, whose structure evolves and gradually densifies 
by successive unions of simple geometric objects 
(square, disk, triangle, ...) or morphological transfor-
mations (dilation, closure, ...). Initially, the structure 
consists of isolated objects. Then, as densification 
proceeds, it becomes more and more connected till it 
covers the whole field. When one structure evolves 
from a set made of isolated objects to a fully inter-
connected set, a percolation transition occurs which is 
expressed by an abrupt change from an «insulating» 
state to a «conducting» one (Ottavi et al., 1978). Per-
colation is said to take place whenever there exist 
points of two opposite edges of the rectangular field 
(two opposite planes of the field for 3D case) that 
belong to the same connected component. This occurs 
for a minimal phase proportion that depends on the 
simulation considered. In other words, this minimal 
proportion is random. However, its distribution beco-
mes less and less dispersed and tends to be supported 

by a point as the simulation field becomes infinitely 
large. This point support is called the percolation thres-
hold. A question thus arises: is there a structural feature 
that could help to predict this percolation threshold? 
Percolation is clearly driven by the topology of the 
structure. This topology can be described by several 
attributes, among which the Euler-Poincaré characte-
ristic (EPC) (Hadwiger, 1957) can be easily assessed. 

The relationship between the topology of the 
structure and the percolation is illustrated on a simple 
example presented in Fig. 1. As more and more con-
nections are added to the structure, the topology is 
changed, which modifies its EPC. Simultaneously, the 
filling of the phase is facilitated and the proportion of 
the phase invaded by the fluid increases. 

Accordingly, the aim of this work is to examine 
the possible link between the percolation thresholds 
and the EPC (denoted as Nd, d indicating the space 
dimension in which the characteristic is defined). These 
links will be sought for several simulated densifying 
structures. 
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Fig. 1. (Top) An increase of the number of connections modifies the topology of the phase which, in turn, leads 
to a decrease of the values of the EPC (N2). (Bottom) As the black phase is getting more and more connected, 
its invasion by a fluid (from the top to the bottom of the field) is more and more complete. 

MATERIALS AND METHODS 

As EPC measurements are required, it is advanta-
geous to work in discrete space which implies the 
choice of a digitization grid. As far as the percolation 
is studied, the connectivity of the grid, i.e., the number 
of neighbors of each point should not modify the 
propagation within the structures themselves. 

Taking those considerations into account, the ex-
perimental procedure is devised as follows. The simu-
lations are carried out on a hexagonal 2000*2000 
grid. The field size is taken 100 times larger than the 
objects to reduce statistical fluctuations. The simula-
tions are of two types: i) random implantation of 
increasing numbers of points followed by dilations or 
closures ii) random implantation of increasing numbers 
of digitized objects such as squares, square crowns, 
crosses, triangles... (in the case of deterministic objects, 
the realizations obtained can be seen as realizations of 
a Boolean model with increasing intensity). For each 
structure, we evaluate (i) its compacity that is the 
proportion of the field occupied by the phase of 
interest and (ii) the invaded proportion that is the 
proportion of the phase invaded by geodesic propa-
gation (Lantuéjoul and Beucher, 1981) from markers 
situated on one edge of the field. Suppose that perco-
lation takes place. Then we estimate the percolation 
threshold as the inflection point of the curve that 
gives the invaded proportion versus the compacity. 
Jouannot (1994) observed that this inflection point 

corresponds roughly to a 50% invasion of the phase 
of interest. She also showed that this estimation proce-
dure is equivalent to that recommended by Stauffer 
(1985 and 2009). 

This procedure makes it possible to define accu-
rately the percolation threshold using a limited number 
of simulations. Moreover, the field size effect influ-
ences only the width of the transition zone around the 
percolation threshold (Karioris and Mendelson, 1981). 
In this work, the steepness of the transition observed 
in all cases (Figs. 2-10) ensures that this size effect is 
quite limited. 

In 2D space, the simplest and most widely used 
grids are the square and the hexagonal ones. This 
latter grid has been chosen for its isotropy and for its 
unambiguous connectivity. The six equidistant neigh-
bors of a given point ensure propagation with maxi-
mal isotropy. In the case of a square grid, the con-
nectivity of the grid can be arbitrarily defined as 
either four or eight. This is a major drawback for pro-
pagations: the percolation threshold of this grid uni-
formly filled with points corresponds to the values 
0.59 for the 4-connectivity and 0.41 for the 8-con-
nectivity (Fig. 2). Anyway, it should be pointed out 
that the difference between grids and their connec-
tivity tends to vanish as the structure is filled with 
bigger and bigger monosized objects (Fig. 2). In that 
case, the results obtained are the same, irrespectively 
of the underlying grid. 
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Fig. 2. (Left) Propagations through increasing numbers of points uniformly distributed on 2000*2000 grids 
using a 4-connectivity square grid (top), 6-connectivity hexagonal grid (middle) or 8-connectivity square grid 
(bottom) lead to three different percolation thresholds. (Right) Propagations through increasing numbers of 
monosized squares (3*3 or 15*15) uniformly distributed on 2000*2000 grids using a 4-connectivity square 
grid (top), 6-connectivity hexagonal grid (middle) or 8-connectivity square grid (bottom) lead to the same 
percolation threshold only for the 15*15 squares. For all curves, the percentage of invaded area is plotted as a 
function of the compacity 

RESULTS AND DISCUSSION 

All results are represented versus the compacity of 
the structure (X-axis). Regarding the EPC graphics, 
each point is assigned either N1 (1D) or N2 (2D) (Y-
axis) that are respectively related to the perimeter and 
the curvature of the interface between the two phases. 
Regarding the percolation graphics, each point is as-
signed the maximum value of the percentage of phase 
invaded by the geodesic propagation (Y-axis). Full or 
hollow patterns are used depending on whether perco-
lation has already taken place or not. 

During the evolution of structures, the curves re-
presenting the topological parameters as a function of 

the compacity exhibit singular points such as extrema, 
zeros and inflection points. In what follows, a rela-
tionship between one of these singular points and the 
percolation threshold is investigated. 

PERCOLATION THRESHOLD AND 
EPC: SEVERAL COINCIDENCES 

For a uniform implantation of increasing numbers of 
15*15 squares, the percolation occurs at a compacity 
close to 0.63 (Fig. 3). 

This percolation threshold coincides with the 
compacity at which N1 reaches its maximum and N2 
vanishes. These coincidences are also observed in 
Fig. 4 when the hexagonal grid of the simulation field 
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is progressively filled by uniform points. In this case, 
the percolation transition is observed for a compacity 
equal to 0.5 which is also that of the inflection point 
of N2. Nevertheless, this coincidence is not observed 
for a uniform implantation of points on a square grid. 

To go a step further, we attempt to extend the va-
lidity domain of the results by using more sophistica-
ted structures. The previous simulations of points are 
easily but deeply modified by morphological trans-
formations (Jouannot and Jernot, 1993). 

Fig. 3. Increasing numbers of 15*15 squares uniformly placed on a hexagonal 2000*2000 grid: the curves 
depicting the evolution of the topology and the percolation process are compared as a function of the compacity. 

Fig. 4. Increasing numbers of points uniformly distributed on a hexagonal 2000*2000 grid: a coincidence is 
observed between the maximum of N1, the zero and the inflection point of N2 and the percolation threshold. 
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PERCOLATION THRESHOLD AND 
EPC: A SINGLE COINCIDENCE 

The structures obtained from an increasing number of 
points uniformly distributed on the grid can be easily 
dilated or closed. Two such 2D examples are given in 
Figs. 5 and 6.  

The coincidence with the zero value of N2 is no 
longer observed once the population of points has been 

morphologically transformed. Nevertheless, it can be 
seen in Figs. 5 and 6 that the percolation transition 
occurs at a compacity close to that of the maximum 
of N1. Such a link has already been observed not 
only in 2D, but also in 3D space with the two extrema 
of N2 for dilated or closed structures built on a 
100*100*100 face-centered-cubic grid (Jouannot et 
al., 1995). Some experimental observations of this 
coincidence are gathered in Table 1. 

Fig. 5. Structures obtained by applying a dilation of size 5 on increasing numbers of points uniformly di-
stributed on the grid. A coincidence is observed between the percolation threshold and the maximum of N1 but 
no longer with the zero value of N2 (arrow). 

Fig. 6. Structures obtained by applying a closure of size 5 on increasing numbers of points uniformly di-
stributed on the grid. A coincidence is observed between the percolation threshold and the maximum of N1 but 
no longer with the zero value of N2 (arrow). 
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Table 1. Percolation thresholds and singular values of EPC for dilated and closed 2D or 3D structures. 

Extremum of N1 Percolation threshold 
2D dilated structures 0.61 0.61 
2D closed structures 0.37 0.38 

Extrema of N2 Percolation thresholds 
3D dilated structures 0.27 

0.90 
0.25 
0.92 

3D closed structures 0.07 
0.72 

0.07 
0.72 

As already mentioned, this coincidence was also 
observed for a uniform implantation of increasing 
numbers of squares. Is it still valid when the objects 
are not convex? 

PERCOLATION THRESHOLD AND 
EPC: NO COINCIDENCE 

Two kinds of non-convex monosized objects are used 
in the simulations: square crowns (outer width 21, 
thickness 3) and crosses (width 21, thickness 3). Such 
objects are gradually and uniformly distributed on the 
2000*2000 hexagonal grid. The topological evolutions 
and the percolation results are presented in Figs 7 and 8. 

When the structures are made up with square 

crowns, N2 exhibits only negative values and therefore 
the zero of N2 cannot obviously be linked to the 
percolation threshold. Moreover, it can be seen in 
Fig. 7 that the percolation threshold is far from the 
compacity value corresponding to the maximum of 
N1. In the case of crosses (Fig. 8), the percolation 
threshold is halfway between the zero value of N2 
and the maximum of N1. 

We can deduce from these results that the coinci-
dence between the singular values of the EPC and the 
percolation threshold may not be observed for struc-
tures built from non-convex objects. We are then 
faced with the following question: are there any con-
vex objects producing structures for which the same 
lack of coincidence is observed? 

Fig. 7. Increasing numbers of square crowns (outer width 21, thickness 3) are uniformly placed on a hexagonal 
2000*2000 grid. The percolation threshold does not match with any of the singular points of the curves 
depicting the topological evolution of the structure. 
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Fig. 8. Increasing numbers of crosses (width 21, thickness 3) are uniformly placed on a hexagonal 2000*2000 
grid. The percolation threshold does not match with any of the singular points of the curves depicting the 
topological evolution of the structure. 

SYNOPSIS 

Up to now, we have seen on several examples that the 
zero value of N2 cannot be used to predict accurately 
the percolation threshold of 2D structures. Although 
this value is not very different from that of the thres-
hold in a few cases (Bretheau and Jeulin, 1989) (Mecke 
and Wagner, 1991) (Mecke and Arns, 2005) (Neher 
et al., 2008) (Miller et al., 2010) (Levitz et al., 2012), 
the above examples show that this is not generally 
true. As far as N1 is considered, the coincidence be-
tween its maximum and the percolation threshold se-
ems to be more often encountered (Figs. 3 to 6) except 
for the structures built from non-convex objects 
(Figs. 7 and 8). But a counterexample can be found 
even for convex objects such as equilateral triangles. 

Two kinds of simulations are compared in Fig. 9: 
the first one is made up with increasing numbers of 
uniformly placed uppointing triangles while the 
second one is made up with a half-half mixture of 
uppointing and downpointing triangles. An amazing 
comparison of the results is presented in this figure. 
Unexpectedly, we obtain two distinct curves for the 
percolation associated with two different thresholds 

but a unique curve for N1 with a single maximum. 
What about the 3D space? The zeros of the 3D 

connectivity number, N3, were used to estimate the 
percolation thresholds (Jeulin and Moreaud, 2006) 
but in this space again the extrema of the 2D connecti-
vity number, N2, provide better estimates of the 
percolation thresholds. This is illustrated on a simple 
example for which the EPC values can be exactly 
calculated: a face-centered-cubic grid uniformly filled 
with an increasing number of points. At first sight, it 
appears in Fig. 10 that the extrema of N2 are very 
close to the percolation thresholds, N2 playing the same 
role as N1 in 2D space (see also the coincidences 
concerning 3D dilated or closed structures in Table 
1). Unfortunately, as can be seen in Table 2, the exact 
coincidence observed in 2D space (hexagonal grid) 
does not persist in 3D space. 

Finally, from the equation of N3, one can check 
that the two inflection points of N3, exactly calculated, 
do not coincide with the two percolation thresholds 
on the f.c.c. grid (Table 2). Although it could have 
been an acceptable, but inaccurate, candidate on the 
basis of the results gathered in 2D space, the inflection 
point must then also be discarded. 
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Fig. 9. Two procedures are used to fill progressively the space with triangles (edge 20): uniform implantation of 
up pointing triangles (T) and mixture of half-half up and down pointing triangles (Tud). For these two 
simulations, two different percolation transitions are observed (upper curves). As far as the topological pro-
perties are concerned (lower curves), the thresholds correspond neither to the zeros of N2 nor to the compacity 
of the maximum of N1 for which a single curve is obtained. 

Fig. 10. Increasing numbers of points uniformly distributed on a face-centered-cubic 500*500*500 grid (the 
natural 12-connectivity of the f.c.c. grid has been used for the propagations and the theoretical curves of the 
EPC represented here could have been obtained by sweeping the whole space with the rhomboedral unit of the 
f.c.c. grid). The compacities for which the two percolation thresholds occur are about 0.2 and 0.8 in the vicinity 
of the extrema of N2. 
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Table 2. Percolation thresholds and singular values of EPC for structures of points uniformly distributed on a 
hexagonal or on a face-centered-cubic grid. 

2D hexagonal grid 
Extremum of N1 Zero of N2 Inflection point of N2 Percolation threshold 

0.500 0.500 0.500 0.5 
3D face-centered-cubic grid 

Extrema of N2 Zeros of N3 Inflection points of N3 Percolation thresholds 
0.211 
0.789 

0.247 
0.753 

0.276 
0.724 

0.2 
0.8 

CONCLUSION 

Surprisingly, these simulations make it possible to 
conclude that the percolation threshold is generally 
not related to any singular point of the curves reflecting 
the evolution of the Euler-Poincaré characteristic of a 
structure. What can be inferred is then that there does 
not exist any direct link between the percolation 
threshold(s) of a structure and its topology. 
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