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ABSTRACT

Surface approximation plays an important role in several application fields, such as computer-aided design,
computer graphics, remote sensing, computer vision, robotics, architecture, and manufacturing. A common
problem present in these areas is to develop efficient methods for generating, processing, analyzing, and
visualizing large amount of 3D data. Triangular meshes constitute a flexible representation of sampled points
that are not regularly distributed in space, such that the model can be adaptively adjusted to the data density.
The choice of metrics for building the triangular meshes is crucial to produce high quality models. This paper
proposes and evaluates different measures to incrementally refine a Delaunay triangular mesh for image surface
approximation until either a certain accuracy is obtained or a maximum number of iterations is achieved.
Experiments on several data sets are performed to compare the quality of the resulting meshes.

Keywords: accuracy metrics, point cloud, surface approximation, triangular meshes.

INTRODUCTION

Advances in techniques and equipments for image
acquisition have allowed the extraction of large data
volumes. Several knowledge domains require the
construction of surface models with high level of
details, such as computer vision, digital entertainment,
cartography, computer graphics, finite element
methods, scientific visualization, manufacturing,
architecture, remote sensing, and virtual reality.

Despite the reduction of costs with storage
devices, the availability of images at higher resolutions
demands the development of efficient mechanisms for
storing, manipulating, transmitting and visualizing
data.

A digital image is commonly represented by a
two-dimensional matrix that stores intensity values
sampled at a discrete set of points. The matrix
grid must have a resolution sufficiently small to
capture the details necessary for the application
under consideration. In order to provide a variable-
resolution approximation of digital images, some
hierarchical representations have been developed
in the literature, such as quadtrees (Sullivan and
Baker, 1994; Scholefield and Dragotti, 2014) and
pyramids (Burt and Adelson, 1983; Tran et al., 1987).

In contrast to the use of regular grid
representations, where a set of sampled data points is
stored at uniform intervals, polygonal meshes (Araújo
et al., 2015; Bommes et al., 2013; Botsch et al.,
2010; Maglo et al., 2012) can be more adaptive
to irregularity of the data. In particular, triangular

meshes are a common structure for modeling surface
as a network of adjacent triangles, whose vertices
represent the data samples. Important features, such
as corners or edges, can be directly incorporated
into the model. Furthermore, the triangular structure
can be adjusted to fit variable density of data points,
avoiding redundancy, In fact, triangular meshes can
be used to compress (Maglo et al., 2012) data, while
preserving relevant surface characteristics. Such data
reduction improves storage requirements, transmission
capacities, and rendering performance.

Several methods for constructing triangular
meshes from dense data sets have been proposed
in the literature (Lipman, 2012; Ma et al., 2013;
Moraes et al., 2017; Nivoliers et al., 2012). Most
surface approximation approaches can be classified
as refinement or decimation methods. Refinement
methods (Boissonnat et al., 2009; Brown, 1997; Hu
et al., 2009; Dey and Ray, 2010) start with a simple
initial approximation of the surface and incrementally
add new data points to the triangulation until a given
approximation criterion is achieved, such as desired
accuracy or maximum number of iterations. On the
other hand, decimation methods (Cignoni et al.,
1998; Shaffer and Garland, 2001; Luebke et al.,
2002; Salinas et al., 2015) start with a triangulation
containing the entire set of sampled data points and
iteratively simplify it until a specified approximation
criterion is satisfied.

The vertex selection metric used in the refinement
or decimation process is crucial to produce compact
and precise triangular meshes, since it determines the
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degree of fidelity between the original data and the
approximated model. Therefore, adequate measures
for determining the relevance of a point must be
carefully designed and evaluated.

The main contribution of this paper is to propose
and evaluate different metrics for inserting new points
to an initial triangulation with accuracy within a
specified error tolerance or maximum number of
points. More specifically, we extend upon the set
of mesh refinement metrics developed in a previous
work (van Kaick and Pedrini, 2006), such that five new
criteria for image surface approximation are defined
and analyzed in this work. Several data sets are used
to assess the effectiveness of the metrics.

The paper is organized as follows. Section 2 briefly
describes relevant concepts and works related to
surface modeling and image approximation. Section 3
presents the different metrics used to approximate a
set of sampled data points through triangular meshes.
In Section 4, experiments are conducted on several
data sets to assess the effectiveness of the evaluated
metrics. Section 5 concludes the paper with some final
remarks and directions for future research.

BACKGROUND

Different spatial data structures can be employed
to model surface from a set of points, however, they
have critical effects in terms of storage requirements,
degree of accuracy, retrieval flexibility, scalability,
among other factors. Examples of spatial data
structures (Samet, 1990; 2006), illustrated in Fig. 1,
include a grid representation of regularly distributed
data points, a triangular mesh, a quadtree and a
bintree.

Several surface representations have been
proposed in the literature (Araújo et al., 2015;
Bommes et al., 2013; Botsch et al., 2010; Maglo
et al., 2012; Mostafavian and Adams, 2015; Berger
et al., 2013; Garland and Heckbert, 1997), however,
polygonal models are probably the most common
choice for representing sampled data sets since
they are supported by the vast majority of tools for
modeling and rendering purposes.

A polygonal surface is a piecewise-linear
surface defined by a set of polygons, typically
a set of triangles. In addition to their simplicity
and flexibility, polygonal models can represent
surfaces at different levels of detail (Hu et al., 2009;
Luebke et al., 2002; Morigi and Rucci, 2013) and
accuracy, such that a coarse representation can be
used to describe less relevant areas, while high

resolution can be focused on specific parts of interest.
Furthermore, discrete definitions of differential
operators have been proposed (Meyer et al., 2003),
such as curvature measure (Kim et al., 2002) and
geodesic curves (Polthier and Schmies, 2006).

regular grid triangular mesh

quadtree bintree

Fig. 1: Examples of spatial data structures.

Techniques for constructing triangle meshes
can be generally categorized into refinement and
decimation. In the refinement methods (Boissonnat
et al., 2009; Brown, 1997; Hu et al., 2009; Dey and
Ray, 2010), a new data point is iteratively inserted into
the mesh, typically the point that presents the largest
approximation error according to a specific metric. In
the decimation methods (Cignoni et al., 1998; Shaffer
and Garland, 2001; Luebke et al., 2002; Salinas et al.,
2015), the point with the smallest approximation error
is iteratively removed from the current triangulation.
In both approaches, local adjustments must be
performed after each point operation in order to rebuilt
the mesh. The process of refinement or decimation
finishes when a required number of points is satisfied
or an error tolerance is reached.

Two common strategies for generating and
maintaining triangles meshes for image surface
approximation purpose are Delaunay triangulation
and data-dependent triangulation.

Delaunay triangulation (de Berg et al., 2008;
Boissonnat et al., 2015; Cheng et al., 2012) guarantees
certain geometric properties. The circumcircle of
any triangle in a Delaunay triangulation contains no
other data points in its interior. Another interesting
property is that the Delaunay triangulation of a set of
points is dual to its Voronoi diagram (de Berg et al.,
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2000; Preparata and Shamos, 1985). The Delaunay
triangulation also maximizes the minimum angle of all
triangles of the mesh, reducing the occurrence of thin
triangles that tend to cause undesirable effects, such
as numerical instability and visual artifacts (Scarlatos,
1992; Rippa, 1992a). Based on the property of
maximizing the minimum angle, Lawson (1977)
proposed a local optimization procedure to swap the
diagonals of a strictly convex quadrilateral to produce
a most equiangular triangulation. An important
consequence is that, after a finite number of swaps, the
successive application of this procedure to all internal
edges of an arbitrary triangulation will produce a
Delaunay triangulation.

Data-dependent triangulation (Brown, 1991; Dyn
et al., 1990; Quak and Schumaker, 1990) maintains
the mesh topology based on information of the input
points to approximate the image surface. Although
data-dependent triangulation methods can generate
compact meshes, long and thin triangles are usually
produced, which can lead to certain disadvantages for
rendering purpose (Kolingerová et al., 2010; Scarlatos,
1992; Rippa, 1992a). However, such approaches can
be suitable for the reconstruction of features, such as
edges in images, where a function has high second-
order derivatives in one direction when compared
to other directions (Rippa, 1992b; Tóth et al., 2007;
Wang et al., 2001).

In this work, we used the Delaunay triangulation
to incrementally approximate image surfaces due to its
efficient operations to maintain a valid topology after
each vertex insertion, as well as visual quality of the
generated meshes.

The development of compact representation
schemes for approximating image surface plays
an important role in the reduction of storage and
transmission costs. Associated with this subject, a
large number of lossless and lossy image compression
techniques have been proposed in the literature (Held
and Marshall, 1996; Rabbani and Jones, 1991), such
as transform coding (DeVore et al., 1992; Skodras
et al., 2001), deflation (Rigler et al., 2007; Xie et al.,
2008), chain codes (Ren et al., 2002; Sánchez-Cruz
et al., 2007), chroma subsampling (Chen et al., 2009;
Lin et al., 2013), fractal compression (Barnsley and
Hurd, 1993; Fisher, 2012), among others.

In the context of image surface approximation,
several approaches have been developed to compress
triangular meshes (Peng et al., 2005) in order to
reduce the size of the resulting models. These methods
usually explore two types of information, geometry
and topology.

Geometry compression methods (Chow, 1997;
Van Aerschot et al., 2009; Khodakovsky et al., 2000)
aim to reduce the numerical information associated
with the mesh vertices, such as position, intensity,
normal vectors, and texture. Deering (1995) introduced
the concept of geometry compression, where vertex
positions, normals and colors were quantized to less
than 16 bits through delta compression and modified
Huffman encoding. Taubin and Rossignac (1998)
developed a geometry compression technique where
vertex positions were quantized through a spanning
tree, achieving 12 bits per vertex.

Topology compression methods aim to reduce
the connectivity information which associates
vertices of the mesh with edges and faces. Hoppe
(1996) described a technique for transferring a mesh
progressively, from a coarse approximation to a refined
sequence of new vertices. Each vertex is transferred
once, where 5 bits were used to identify two adjacent
vertices. Other progressive compression methods were
developed by Alliez and Desbrun (2001); Cohen-Or
et al. (1999). Rossignac (1999) developed a method
for compressing 3D triangular meshes using 1.3
and 2 bits per triangle. Decomposition of triangle
meshes into triangle strips were explored to encode
connectivity (Chow, 1997; Evans et al., 1996; van
Kaick et al., 2004; Silva et al., 2002). Turán (1984)
explored the mesh connectivity information as a
triangulated planar graph encoded with less than
12n bits, in a triangulation with n vertices. Keeler
and Westbrook (1995) improved Turan’s results by
encoding planar graphs with 4.6n bits through a
triangle-spanning tree.

MATERIAL AND METHODS

The surface representation of an image can be
generally viewed as a 2 1

2 -dimensional modeling
problem (Pedrini, 2000), where a function of two
variables, z = f (x,y), expresses the altitude z of the
surface at a point (x,y).

In our approach, a triangular mesh is constructed
from a set of irregularly spaced data points. A
Delaunay triangulation is adopted due to the suitable
geometric properties mentioned in the previous
section. The triangulation of a set of data points in the
plane can be defined in terms of a planar graph, where
pairs of vertices are connected by edges intersected
only at their endpoints, forming triangular faces.

A minimal approximation of the surface is initially
constructed by consisting of two triangles over the data
domain. This coarse mesh is repeatedly refined by the
insertion of new points until either a specified error
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tolerance is achieved or a given number of points is
reached. The mesh is updated after each point insertion
in order to maintain the Delaunay triangulation.

The order in which the points are inserted into
the triangulation is crucial to produce a compact
and accurate approximation. A common strategy
is to iteratively add the worst fitting point to the
current triangulation according to the maximum
absolute error (vertical difference) between the
original and approximated models until all points are
fit within a specified error tolerance. This process is
straightforward to implement and generates compact
triangulated meshes, however, it is sensitive to noise
or outliers due to the selection of points with highest
error.

In this work, we propose and evaluate new criteria
for mesh refinement, extending upon the set of metrics
described by van Kaick and Pedrini (2006). Each
metric associates an error to a triangle ∆. Let f (p) and
g(p) be the pixel intensity values at a point p(x,y) in
the original and approximated images, respectively. It
is worth mentioning that, at each step of the refinement
algorithm, the point with the highest error in the
triangle ∆ according to one of the evaluated metrics
is inserted into the triangulation.

The following metrics for point insertion are
evaluated in our method: maximum absolute error
(MAE), absolute vertical sum (AVS), squared vertical
sum (SVS), Laplacian maximum error (LMAE),
Laplacian absolute vertical sum (LAVS), maximum
absolute error weighted by the triangle area (MAEA),
maximum absolute error weighted by the standard
deviation of the errors (MAES), absolute vertical
sum weighted by the standard deviation of the errors
(AVSS), squared vertical sum weighted by the triangle
area and standard deviation of the errors (SVSAS),
Jaccard coefficient (JC), Czenakowski distance
(CZD), and squared vertical sum weighted by the
triangle area and the mean of the values in the original
model (SVSAM). These metrics are defined in the
next equations:

MAE(∆) = max
p∈∆

| f (p)−g(p)| , (1)

AVS(∆) = ∑
p∈∆

| f (p)−g(p)| , (2)

SVS(∆) = ∑
p∈∆

[ f (p)−g(p)]2 , (3)

LMAE(∆) = max
p∈∆

| f (p)−g(p)|
k(p)

, (4)

LAVS(∆) = ∑
p∈∆

| f (p)−g(p)|
k(p)

, (5)

MAEA(∆) = max
p∈∆

| f (p)−g(p)|A(∆) , (6)

MAES(∆) = max
p∈∆

| f (p)−g(p)|σ(∆) , (7)

AVSS(∆) = ∑
p∈∆

| f (p)−g(p)|σ(∆) , (8)

SVSAS(∆) = ∑
p∈∆

[ f (p)−g(p)]2 A(∆)σ(∆) , (9)

JC(∆) = MAE(∆)

1−
∑
p∈∆

{
1, if f (p) = g(p)
0, otherwise

A(∆)

 ,

(10)

CZD(∆) =
MAE(∆)A(∆)

∑
p∈∆

(
1− 2min( f (p),g(p))

f (p)+g(p)

) , (11)

SVSAM(∆) =

∑
p∈∆

[ f (p)−g(p)]2 A(∆)

f̄ (p)
, (12)

where k(p) > 0 is the curvature at point p calculated
with a Laplacian filter, σ(∆) is the standard deviation
of the errors calculated in triangle ∆, A(∆) denotes the
area of triangle ∆, and f̄ (p) is the mean of the values
f (p) in triangle ∆. Metrics MAEA, MAES, AVSS,
SVSAS and SVSAM are proposed in this work.

Algorithm 1 shows the main steps of the mesh
refinement process for a set of points chosen from
an input image. Initially, a coarse triangular mesh is
constructed with the four corners of the image (Lines
1-2). At each iteration, the Delaunay triangulation
is refined by inserting the point with highest error
among all triangles according to the metric under
consideration, that is, one of the metrics defined in
Equation 1 to 12. The intensity value in each triangle
point is then approximated through an interpolation
process, which is performed by computing the plane
defined by the three vertices of the triangle and
evaluating the plane equation at the point under
consideration. This process is repeated until either a
specified error tolerance is satisfied or a given number
of points is achieved (Lines 3-7). The selected subset
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Lena [25,245]
(512×512 pixels)

Peppers [4,226]
(256×256 pixels)

Crater [1533,2478]
(336×459 pixels)

Fig. 2: Some data sets used in the experiments.

of points and its triangulation are returned as results of
this mesh refinement process (line 8).

Algorithm 1: Refinement of the triangular mesh

input : image f
point insertion metric mp
maximum number n of points
tolerance error ε

output: subset P of points
triangulation T

1 P = four corners of f
2 T = Delaunay triangulation(P)
3 while (highest error in T > ε) and (number of

points < n) do
4 select point p with highest error according

to chosen metric mp
5 P = P∪{p}
6 T = Delaunay triangulation(P)
7 end
8 return P and T

The evaluation of the resulting surface
approximation is performed through two common
image quality measures, the root mean squared error
(RMSE) and peak signal to noise ratio (PSNR),
expressed as:

RMSE =

√√√√ 1
M N

M

∑
x=1

N

∑
y=1

[ f (p)−g(p)]2 , (13)

PSNR = 10 log10

 M N L2

M

∑
x=1

N

∑
y=1

[ f (p)−g(p)]2

 , (14)

where M and N correspond to the image dimensions
and L is the maximum intensity value of the image.

RESULTS

Experiments were conducted on several data sets
to demonstrate the effectiveness of the evaluated
metrics for mesh refinement. To allow a further
quantitative and qualitative analysis of the results,
Fig. 2 shows three tested images with their respective
dimensions in pixels, as well as minimum and
maximum intensity (elevation) values.

Figs. 3, 4 and 5 show the triangular meshes
constructed for approximations of the three images
used in our experiments with the evaluated measures.
All triangulations satisfy the same error level (RMSE
= 15 or PSNR = 25), and the results show the spatial
distribution of points generated by each metric.

The metrics AVS, SVS, LAVS, AVSS, SVSAS
and SVSAM generated triangulations with a smaller
number of points, fitting to the image features
adequately for a fixed error rate. Other metrics,
such as MAE, LMAE, MAES and JC concentrated
points on specific portions of the image, particularly
regions with high curvature, requiring more points.
Some metrics (AVS, LAVS, MAEA, CZD and
SVSAM) produced meshes with points more regularly
distributed across the image, although MAEA and
CZD did not generate compact triangulations.

In this work, the common criteria for mesh
refinement based on the vertical error between the
original and approximated models were modified in
order to make them more adaptable to the data. Metrics
weighted by triangle area favor the partitioning of
large triangles into smaller ones, which can be more
suitable for high curvature regions. On the other hand,
metrics weighted by the standard deviation of the
errors can prevent the selection of points based on
local errors in the presence of noise (outliers).

Fig. 6 shows the number of points required
for each mesh refinement metric to achieve a fixed
tolerance level (RMSE ou PSNR) for each tested
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MAE (3229 points) AVS (1883 points) SVS (1458 points) LMAE (3359 points)

LAVS (1901 points) MAEA (2197 points) MAES (3567 points) AVSS (1414 points)

SVSAS (1480 points) JC (2880 points) CZD (2188 points) SVSAM (1864 points)

Fig. 3: Triangulations using different refinement metrics for approximations of Lena image with RMSE = 15 or
PSNR = 25.

image. It is worth mentioning that the point selection
criteria do not guarantee a monotonically convergence,
however, the approximation errors show a decreasing
behavior. From the results, it is possible to observe
that new strategies for point selection can provide
higher adaptability to the data when compared to the
vertical error measure.

Triangulations and respective reconstructed
images for the tested data sets with metric AVSS
using only 1% of the original number of points
are shown in Fig. 7. Despite the small number of
points, the triangular meshes correspond to suitable
approximations of the images, resulting in an efficient
compression scheme. Error maps, computed as the
difference between the intensity values of the original
and approximated images, are also illustrated.

The proposed approach provides a good trade-
off between performance and flexibility to construct
triangular meshes from different data sets.

DISCUSSION

In this work, we evaluated several metrics for
refining triangular meshes constructed to approximate
surfaces from a set of sampled points. The main
benefit is the generation of more compact and accurate
meshes, which can be applied to a number of different
practical problems.

As demonstrated in our experiments, a substantial
reduction in the size of triangular meshes can be
achieved through the employment of more effective
meshes, improving storage requirements, transmission
capacities, and rendering performance.

Directions for future work include the proposition
of new heuristics for mesh refinement and evaluation
of features present in the data, such as corners and
lines, to guide the triangulation construction process.
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MAE (1141 points) AVS (993 points) SVS (861 points) LMAE (1697 points)

LAVS (1124 points) MAEA (1031 points) MAES (1296 points) AVSS (853 points)

SVSAS (912 points) JC (1100 points) CZD (1030 points) SVSAM (1022 points)

Fig. 4: Triangulations using different refinement metrics for approximations of Peppers image with RMSE = 15
or PSNR = 25.
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Meyer M, Desbrun M, Schröder P, Barr AH (2003). Discrete
differential-geometry operators for triangulated 2-
manifolds. In: Hege HC, Polthier K, eds. Visualization
and Mathematics III. Berlin: Springer, 35–57.

Moraes TF, Amorim PH, da Silva JV, Pedrini H
(2017). Out-of-core progressive web-based rendering
of triangle meshes. In: Tavares J, Natal Jorge R, eds.
VipIMAGE 2017. ECCOMAS 2017. Lecture Notes in
Computational Vision and Biomechanics, vol 27 Lect
Not Comput Vision Biomech 27:456–66.

Morigi S, Rucci M (2013). Multilevel mesh simplification.
Visual Comput 30:479–92.

Mostafavian S, Adams MD (2015). An optimization-based
mesh-generation method for image representation. In:
Proc 2015 IEEE Pacif 234–9.
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