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ABSTRACT  

A novel Vector Quantization (VQ) technique for encoding the Bi-orthogonal wavelet decomposed image 
using hybrid Adaptive Differential Evolution (ADE) and a Pattern Search optimization algorithm (hADE-
PS) is proposed. ADE is a modified version of Differential Evolution (DE) in which mutation operation is 
made adaptive based on the ascending/descending objective function or fitness value and tested on twelve 
numerical benchmark functions and the results are compared and proved better than Genetic Algorithm 
(GA), ordinary DE and FA. ADE is a global optimizer which explore the global search space and PS is local 
optimizer which exploit a local search space, so ADE is hybridized with PS. In the proposed VQ, in a 
codebook of codewords, 62.5% of codewords are assigned and optimized for the approximation coefficients 
and the remaining 37.5% are equally assigned to horizontal, vertical and diagonal coefficients. The 
superiority of proposed hybrid Adaptive Differential Evolution and Pattern Search (hADE-PS) optimized 
vector quantization over DE is demonstrated. The proposed technique is compared with DE based VQ and 
ADE based quantization and with standard LBG algorithm. Results show higher Peak Signal-to-Noise Ratio 
(PSNR) and Structural Similiraty Index Measure (SSIM) indicating better reconstruction. 

Keywords: differential evolution (ADE); image compression; Linde-Buzo-Gray (LBG); Pattern Search (PS); 
vector quantization. 

INTRODUCTION 
Synthetic Aperture Radar (SAR) images are high 
resolution images that carries the amplitude and 
phase information of object/target captured and pro-
cesses with transferable radar. These are beneficial 
for military applications, plant investigations, remote 
sensing and Earth scientists. Transmitting or storing 
of SAR images requires large time and high data 
storage devices, consequently necessitates the use of 
efficient and effective image compression techniques. 
SAR image has less spatial correlation, identifying 
homogeneous regions and high dynamic range (Zeng 
and Cumming, 2001) is difficult as compared to 
ordinary optical images. So the compression techni-
ques to solve an ordinary optical image are not 
suitable for compression of SAR images. SAR Image 
compression plays crucial role in the field of multi-
media applications, streaming data on the Internet, 
data storage, wire and wireless communication, chip 
designing and computer to computer communication. 

Image Compression is a technique of representating 
the image that results in reduction of bits per pixel 
and processing time. Image compression is performed 
in three processing stages: pixel transforms, Quanti-
zation and entropy coding. Pixel transformation is a 
powerful process for image compression where spatial 
domain image is transformed into a frequency domain 
image with some transformation techniques like DWT 
(JPEG-2000 and JPEG-XR), DCT (JPEG,). In this 
work the focus is on Quantization. It has two variants, 
one is a scalar, applicable for one dimensional (speech, 
voice) and another is vector quantization/block quanti-
zation/pattern matching applicable for two dimensions 
(image). According Shannon's rate-distortion infor-
mation theory, compression with vector quantization 
performance is better to scalar quantization (Liu and 
Ling, 2015).Vector quantization is a process of 
representing high two dimensional vectors/image into 
a low dimensional vector/image (called codebook) 
based on the minimum Euclidean distance/ average 
distortion. The elements in the codebook are called 
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codewords. The minimization of the average distortion 
is a nonlinear problem, which is generally achieved 
by a gradient-descent-based iterative procedure called 
the generalized Lloyd algorithm (GLA)/LBG Algorithm 
(Linde et al., 1980). The goal of VQ is to find a 
codebook which minimizes the Euclidean distance 
between training vector and codewords. LBG algorithm 
is simple, adaptable and flexible, but it suffers with 
local optimal problem. The LBG algorithm does not 
guarantee the global best solution since its solution 
depends on the initial solution of the algorithm. So 
Patane et al. (2002) proposed an enhanced LBG 
algorithm that avoids the local optimal problem. In 
genetic algorithm, crossover and mutation plays vital 
role. Krishna et al. (1997) obtained optimal fast 
codebook with genetic algorithm by applying genetic 
algorithm on k-means clustering with the help of 
Gradient descent in which k-means algorithm is used 
as crossover operation and mutation operation is 
distance based. Chen (2012) hybridized the Genetic 
algorithm and LBG algorithm for optimizing the 
center of clusters. Zheng et al. (1997) applied genetic 
algorithm to speed up the LBG algorithm by using an 
appropriate fitness function. The results obtained are 
compared with those of non-genetic algorithm and 
proved effective but time consuming.  

George and Dimitrios (2012) incorporated the c-
means and the fuzzy c-means in a uniform fashion for 
balancing the speed and efficiency of vector quanti-
zation. Zhao and Liu (2013) presented a clonal cluster 
method based on the manifold distance, which produces 
a final codebook with the help of optimization tech-
nique. Horng and Jiang (2011) proposed an Artificial 
Bee Colony (ABC) based VQ that shows improve-
ment in PSNR with good reconstructed image quality 
as compared to LBG, PSO, QPSO and HBMO. 
Rajpoot et al. (2004) designed a codebook by vector 
quantizing the DWT transformed wavelet coefficients 
with the help of Ant Colony Optimization (ACO) 
algorithm. They designed a codebook by identification 
of the edges of the graph and arranging the wavelet 
coefficients in a bidirectional graph. It was found that 
quantization of zero-tree vectors using ACO outper-
forms LBG algorithm, but ACO convergence time is 
high. Tsaia et al. (2013) observed that during the 
convergence process of ACO for Codebook Generation 
Problem (CGP), patterns or sub-solutions reach their 
final states at different times. Also, most of the 
patterns are assigned to the same codewords after a 
certain number of iterations. Particle Swarm Optimi-
zation (PSO) vector quantization, based on updating 
the global best (gbest) and particle best (pbest) 
solution (Chen et al., 2005) outperforms LBG algo-

rithm.The gbest holds highest fitness value among all 
populations and pbest holds the best fitness value of 
corresponding particle. The Feng et al. (2007) suggested 
Evolutionary fuzzy particle swarm optimization algo-
rithm which is a combination of PSO and adaptive 
Fuzzy Inference Method (FIM) to obtain better global 
performances than LBG learning algorithms. 

Quantum Particle Swarm Algorithm (QPSO) was 
proposed by Wang et al. (2007) to solve the 0-1 
knapsack problem. The QPSO performance is better 
than PSO; it computes the local points from the pbest 
and gbest for each particle and updates the position of 
the particle by choosing appropriate parameters u, a 
random number that lies between 0 and 1 and z which 
is non-negative constant and is less than 2.8. Poggi et 
al. (2001) proposed Tree-structured product-codebook 
vector quantization, which reduces encoding complexity 
even for large vectors by combining the tree-structured 
component codebooks and a low-complexity greedy 
procedure. Hu et al. (2008) proposed a fast codebook 
search algorithm based on triangular inequality esti-
mation. Sanyal et al. (2013) applied a new approach 
for the selection of chemotaxis steps of basic Bacte-
rial Foraging Optimization Algorithm (BFOA) which 
leads to the development of a near optimal codebook 
for image compression with good reconstructed image 
quality and high peak signal to noise ratio. Fuzzy 
membership function is optimized by the modified 
Bacterial Foraging Optimization and compared the 
results with other optimization techniques. Horng et 
al. (2011) applied honey bee mating optimization 
algorithm for Vector quantization. HBMO has high 
quality reconstructed image and better codebook with 
small distortion compared to PSO-LBG, QPSO-LBG 
and LBG algorithm.  

Horng (2012) applied a Firefly Algorithm (FA) to 
design a codebook for vector quantization. The firefly 
algorithm has become an increasingly important tool 
of Swarm Intelligence that has been applied in almost 
all areas of optimization, as well as engineering practice. 
Firefly algorithm is encouraged by social activities of 
fireflies and the occurrence of bioluminescent commu-
nication. Fireflies with lighter intensity values move 
towards the brighter intensity fireflies and if there is 
no brighter firefly then it moves randomly. Object-
based VQ was proposed by Abouali (2015) based on 
an iterative process of LBG algorithm, max-min algo-
rithm and multi-object applications. The proposed 
method takes the advantage of well suitable high 
dimensional problem technique which is an adaptive 
differential evolution (ADE) and near around/local 
search technique which is pattern search (PS) for 
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effective codebook design by taking the initial solution 
of K-Means clustering algorithm/LBG Algorithm as 
one of the population/solution. In this work the 
modified version of differential evolution and pattern 
search are cascaded to form a Hybrid ADEPS 
(hADE-PS) algorithm. The SAR image to be vector 
quantized is transformed to wavelet domain with the 
help Biorthogonal Discrete Wavelet Transform (DWT) 
because most of the energy is concentrated on the low 
frequency band. The transformed SAR image is now 
vector quantized by using K-Means clustering algorithm 
on which hADE-PS works for efficient codebook 
design. Adaptive differential evolution is developed and 
tested on benchmark functions and results obtained 
are verified and found to be better as compared to 
ordinary differential evolution in which mutation 
operation is random. Whereas ADE follows a specific 
order/strategy while selecting population for mutation 
operation. To improve compression ratio with consi-
derable PSNR and reconstructed image quality, a 
perfect codebook design is crucial for the researcher. 
So in this paper, a hybrid adaptive differential evolu-
tion and pattern search is proposed for efficient code-
book design by optimizing the solution of K-Means 
clustering algorithm. The optimized codebook and 
corresponding index table values are further coded 
with a run length coding followed by a Huffman coding 
at the transmitter section and reverse operation at the 
receiver section. The proposed method is compared 
with the Differential Evolution (DE) based VQ and 
Adaptive Differential Evolution (ADE) based VQ 
and experimentally proved that it has superior Peak 
Signal Noise Ratio (PSNR), Mean Square Error 
(MSE), fitness function, bits per pixel, compression 
ratio and Structural Similiraty Index Measure (SSIM). 
This paper is organized in five sections including the 
introduction. In section 2, proposed framework for 
SAR Image compression and recent methods of VQ 
is discussed along with their algorithms. The proposed 
method of hybrid adaptive differential evolution and 
pattern search VQ algorithm is presented with the 
procedure in section 3. The results and discussions 
are given in section 4. Finally the conclusion is given 
in section 5. 

MATERIALS AND METHODS 

CONTRIBUTION  
In the proposed method of SAR image compression, 
the differential evolution is modified as adaptive 
differential evolution for efficient codebook design 
and for further improvement a pattern search algorithm 
is applied on the solution of adaptive differential 

evolution. The encoding and decoding procedure of 
proposed SAR image compression is shown in Fig. 1. 
At the transmitter/encoding section, the SAR image 
to be vector quantized for compression is transformed 
to wavelet domain by using Biorthogonal Discrete 
Wavelet Transform and further partitioned into non 
overlapping blocks called input vector. The input 
vectors are clustered based on the minimum Euclidean 
distance between the input vector and codewords of 
codebook by means of iterative method called K-
means clustering algorithm/LBG algorithm. The 
obtained codebook is optimized by the proposed 
hybrid adaptive differential evolution and pattern 
search algorithm. The optimized codebook of index 
table contains repeated information, so it is coded by 
variable Run-length coding followed by Huffman 
coding. At the receiver /decoder section, the index 
values are retrieved by Huffman decoding and Run-
length decoding and from these index values the 
corresponding codewords are obtained from the 
receiver end codebook and rearranged to get a 
reconstructed/decompressed image.  

 
Fig. 1. Encoding and decoding process of proposed 
vector quantization. 

VECTOR QUANTIZATION 
The vector quantization is a one of the block coding 
technique for image compression. Codebook design 
is an important task in the design of VQ that 
minimize the distortion between reconstructed image 
and original image with less computational time. Fig. 
2 shows the encoding and decoding process of vector 
quantization. The image (size N × N) to be vector 
quantized is subdivided into Nb  (N/n × N/n)blocks 
with size n x n pixels. These divided image blocks or 
training vectors of size n x n pixels are represented 
with Xi (i = 1, 2, 3,….,Nb). The Codebook has a set of 
codewords, Ci (where i = 1… Nc) is the ith codeword. 
The total number of codewords in Codebook is Nc. 
Each subdivided image vector is approximated by the 
index of codewords based on the minimum Euclidean 
distance between corresponding vector and code 
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words. The encoded results are called an index table. 
During the decoding procedure, the receiver uses the 
same codebook to translate the index back to its 
corresponding codeword for reconstructing the image. 
The distortion/fitness function (D) between training 
vectors and the codebook is given as  

2
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uij is one if Xi is in the jth cluster, otherwise zero. 

Two necessary conditions exist for an optimal 
vector quantizer. 

(1) The partition Rj, j = 1,….,Nc must satisfy 
{ }: (c,C ) (x,C ), k jj kjR x X d dε < ∀ ≠⊃ .    (3) 

(2) The codeword Cj must be given by the centroid of 
Rj: 
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where Nj is the total number of vectors belonging to 
Rj 

DECOMPOSITION USING 
BIORTHOGONAL WAVELET 

In 1970’s images are decomposed with Discrete 
Cosine Transform (DCT) in which most of the energy 

is concentrated in DC coefficients, that helps for high 
compression with considerable artifact effect. The 
image compression has leaped to a new level 
(Daubechies, 1988) with the introduction of Discrete 
Wavelet Transform (DWT). Unlike DCT, the DWT 
provides both spatial and frequency information about 
the image. The DWT decomposes the image into four 
coefficients; approximation (low-low frequency), 
horizontal (low-high frequency), vertical (high-low 
frequency) and diagonal (high-high frequency) 
coefficients. These coefficients are obtained with the 
parallel combination of low pass filter and high pass 
filter and down samplers as shown in Fig. 3. Fig. 4 
shows the three dimensional view of approximation, 
horizontal, vertical and diagonal coefficients of a 
Flight Line SAR image. It is observed that approxi-
mation coefficients carry much information about the 
input image as compared to other coefficients whereas 
all horizontal, vertical and diagonal coefficients 
spread their values near around to particular values, 
that helps for good clustering results in better image 
compression as shown in Fig. 4d. For the sake of 
fidelity of reconstructed image quality one level 
decomposition is applied, the same can be applied to 
more than one decomposition levels for a high degree 
of compression at the cost of time. Like in JPEG-
2000, the wavelet used in our work for decomposition 
is biorthogonal wavelet because of its simple design 
and option to build symmetric wavelet functions. In 
the proposed method, optimization technique spent 
much time in the codebook design of approximation 
coefficients and less time for remaining, because the 
reconstructed image quality depends predominantly 
on approximation coefficients.  

 

 

 

Fig. 2. Encoding and decoding process of vector quantization. 
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Fig. 3. Wavelet decomposition. 

 
Fig. 4. Three dimensional view of Approximation, Horizontal, Vertical and Diagonal coefficients of a Flight 
Line SAR image. 
 

In a codebook of eight codewords, using the pro-
posed VQ, five codewords are assigned and optimized 
for the approximation coefficients, one for horizontal, 
one for vertical and one for diagonal coefficients. 
Similarly, in a codebook size of 16, 32, 64, 128, 256 
and 512, approximation coefficients takes codewords 
of 10, 20, 40, 80, 160 and 320 respectively and 
remaining codewords 6, 12, 24, 48, 96, 192 are 
assigned for the other three coefficients with each 
containing a codeword of 2, 4, 8, 16, 32, 64 res-
pectively. While optimizing the codebook population/ 
solution, maximum and minimum values are selected 
based on the max and min value of corresponding coef-
ficients. After successful codebook optimization with 
the proposed hADE-PS, index table and codebook are 
coded by Run Length Coding (RLE) and Huffman 
coding. Runlength coding is a lossless coding, aiming 
to reduce the amount of data needed for storage and 

transmission. It represents consecutive runs of the 
same value in the data as the value, followed by the 
count or vice versa. If all the values in the original 
data are same, RLE can reduce data to just two values 
otherwise double of the original data. Therefore, RLE 
should only be used in cases where runs of the same 
value are expected. Huffman coding is a lossless vari-
able length coding, best fit for compressing a data/ 
image obtained from run length coding. It uses fewer 
bits to represent frequent symbols and more bits to 
represent infrequent symbols. The performance of 
Huffman coding purely depends on the effective deve-
lopment of Huffman tree with minimum weighted 
path length. The time complexity of Huffman coding is 
O (Nlog2 N) where each iteration O (log2N) time to 
determine the cheapest weight and there would be O 
(N) iterations. 
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GENERALIZED LBG VECTOR 
QUANTIZATION ALGORITHM 

The most commonly used methods in VQ are the 
Generalized Lloyd Algorithm (GLA) which is also 
called Linde-Buzo-Gary (LBG) algorithm. The algo-
rithm is as follows:  

Step 1: Begin with initial codebook C1 of size N. 
Let the iteration counter be m = 1 and the initial 
distortion D1 = ∞. 

Step 2: Using codebook Cm = {Yi}, partition the 
training set into cluster sets Ri using the nearest neigh-
bor condition. 

Step 3: Once the mapping of all the input vectors 
to the initial code vectors is made, compute the cen-
troids of the partition region found in step 2. This 
gives an improved codebook Cm+1. 

Step 4: Calculate the average distortion Dm+1. If 
Dm – Dm+1 < T then stops, otherwise m = m+1 and 
repeat step 2–4. 

HYBRID ADAPTIVE DIFFERENTIAL 
EVOLUTION AND PATTERN SEARCH 
(HADE-PS) VQ ALGORITHM 

To examine the extremely multimodal space, a two 
phase hybrid method recognized as hybrid Differen-
tial Evolution and Pattern Search (hADE-PS) is 
employed. In this algorithm, DE is used for global 
exploration and the pattern search is employed for 
local search. The first phase is explorative, employing 
a classical ADE to identify hopeful areas of the 
search space. The best solution initiated by ADE is 
then polished using the PS method during a conse-
quent exploitative phase. In order to find the advan-
tage of projected hADE-PS approach, the results are 
compared with the DE algorithm. In the subsequent 
section, proposed ADE is employed for for efficient 
codebook design.  

DIFFERENTIAL EVOLUTION VECTOR 
QUANTIZATION  

The LBG algorithm distortion becomes smaller after 
recursive execution. Actually, the LBG algorithm can 
guarantee that the distortion will not increase from 
one iteration to the next iteration. However, the 
resulting codebook may not be the optimum one and 
the initial condition will significantly influence the 
results (Chiranjeevi and Umaranjan, 2015). Therefore, 
in the LBG algorithm more attention should be given 
to the choice of the initial codebook. The problems 
with the LBG algorithm can be overcome by using 

differential evolution. Differential evolution is meta-
heuristics algorithm introduced for large dimensional 
problems in the year 1995 by (Stron and price, 1995). 
Differential evolution is applicable in the field of 
engineering and science problems because of its high 
speed of convergence, less expensive, easy to imple-
ment, negligible parameter tuning and real coding. 
The working process of DE is similar to the GA in 
which three steps are crossover, mutation and selection. 
The DE algorithm initializes the populations/solutions X 
(X1, X2, X3,-------- XN) of size N and D dimensions in 
between upper and lower limits of the problem 
(0,255), in this paper D is equal to 16 (block size = 
16). The population values are initialized randomly 
within the limited upper (Xupper) and lower (Xlower) 
bounds as given in Eq. 5, here as the image is gray-
scale image upper bound is 255 (white) and lower is 
0 (black).  

 XK = Xlower + rand(1,1)×(Xupper - Xlower)  

                                              K = 1,2,3,----N, (5) 

where rand (1,1) is a random number of size one 
lying between 0 and 1 

Calculate the fitness/objective function of all 
populations (f(X1), f(X2), f(X3),-------- f(XN)) and 
considered these as old generation. In each iteration 
the new generation of same population is generated 
with three steps: mutation, crossover and selection. In 
mutation operation, for all populations in each 
iteration a trial vector/donor vector VK is created by 
adding the weighted difference of randomly selected 
two populations multiplied by the scalar multiple 
control parameter (F) to a random third population as 
given in Eq. 6, these three populations are selected 
randomly from the initialized populations.  

 Vk
i = Xr1

i
 +F ×(Xr2

i
 - Xr1

i), (6) 

where r1, r2 and r3 are randomly selected numbers 
lying between 1 and N, i is the ith iteration and F is 
scaling factor lying between 0 and 2. The next step of 
DE is crossover; to strengthen the potential diversity 
of solution and to generate a new solution called 
target vector. DE offers two kinds of crossovers 
named Exponential and Binomial, among two we did 
with Binominal in which for each trial vector an 
offspring vector UK is created as in Eq. 7, if the 
generated random number is less than the control 
parameter crossover rate (CR). The crossover rate lies 
between 0 and 1. DE offers several variants or muta-
tion strategies like DE/rand/1, DE/best/2 etc... (Price 
et al., 2005). The last stage of DE is the selection 
process for maintaining the constant population size 
in successive generations and it selects either target 
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vector or trial vector in the next generation based on 
their fitness value which follows the Darwinian prin-
ciple given in Eq. 8.  

 , (0,1)
,

K
k

K

V if rand CR
U

X Else
<⎧

= ⎨
⎩

, (7) 

 
( )

( ), ( ( )) ( ( ))
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K K K

K
K K K

V t if f U t f X t
X t

X t if f U t f X t
≤
>

⎧
+ = ⎨

⎩
. (8) 

DE vector quantization algorithm: 

Step 1: Initialize population size (N), scaling factor 
(F), crossover constant (CR), maximum number of 
iterations, tolerance, lower limit and upper limit. 

Step 2: Evaluate the fitness of the population using 
Eq. 1 and generate a trial vector VK with the help of 
Eq. 6. 

Step 3: Crossover operation on population with 
crossover constant and generation of target vector UK 
with the help of Eq. 7.  

Step 4: Replace the old generation with newly 
generated population which are generated based on 
the fitness value of target vectors UK or XK. 

Step 5: repeat step 2 to 4 until stopping criteria. 

PATTERN SEARCH VECTOR 
QUANTIZATION 

Hooke and Jeeves (1960) developed a Pattern search 
algorithm in the year 1960 for getting a solution of 
real time numerical and engineering problems which 
are unsolved by classical methods. Pattern search 
doesn’t require the gradient of the problem to be 
optimized, so it is a derivative free or direct search 
optimization technique. Pattern search optimizes the 
objective function with two types of moves. First step 
is an exploratory move where, step of the movement 
of the solution is small in the direction of low/high 
objective function values and second is pattern move 
where, step of the movement of the solution is large 
in the direction of low/high objective function values.  

Let starting point X(0), acceleration factor a, 
perturbation vector P0 and perturbation tolerance 
vector T. Initialize the current perturbation vector: P 
←P0. Find new solution X(1) by exploratory search 
around X(0). If X(1) fitness value is not better than X(0) 

then, Reset all of the perturbations to ½, i.e., P ← P/2. If 
any member of P is now smaller than its corres-
ponding perturbation tolerance in T, then exit with x(0) 
as the solution. If X(1) fitness value is not better than  
 

X(0) then, reset the perturbation vector to its original 
value, i.e., P ←P0 and follow the Pattern Move. 
Pattern move generate X(2) from X(0) through X(1) 
which is given by X(2) = X(0) + a×(X(1) - X(0)). Now 
apply exploratory search on X(2) and find the fitness 
f(X(2)), if it is not better than f(X(1)) then replace 
solution X(0) with solution X(1). If f(X(2)) is better than 
or equal to f(X(1)) then, replace solution X(0) with 
solution X(1) and X(1) with solution X(2). In this paper 
the initial solution X(0) is the outcome of the Adaptive 
differential evolution. At the initial iteration, pertur-
bation vectors are initialized with the positions [0.5 
0.5], [0.5 -0.5], [-0.5 0.5] and [-0.5 -0.5] with 
acceleration factor is equal to one. To generate a next 
solution X(1) those obtained from the perturbation 
vectors are added to X(0) i.e X(0) + [0.5 0.5], X(0) + [0.5 
-0.5], X(0) + [-0.5 0.5] and X(0) + [-0.5 -0.5] as shown 
in Fig. 5. Calculate the fitness of X(1), if better than 
X(0) then perturbation vectors are consi-dered as 
successful perturbation vectors and algorithm replace 
the X(0) with X(1). Whenever successful per-turbation 
vectors occurred the algorithm will shift its state to 
pattern move where the acceleration factor is multi-
plied by a factor 2 so acceleration factor is also called 
as expansion factor. In the next iteration the new 
solution is X(1) +2×[0.5 0.5], X(1) +2×[0.5 -0.5], X(1) + 
2×[-0.5 0.5] and X(1) +2×[-0.5 -0.5] this process is 
repeated until stopping criteria/maximum iteration. In 
process, if any perturbation vectors resultant fitness 
value not better than the initial/current fitness than 
perturbation vectors are called unsuccessful and the 
same solution carried to the next iteration. In this 
situation the algorithm acceleration factor is divided 
by a factor 2 so called contraction factor.  

Pattern search vector quantization algorithm: 

Step 1: Initialize number of iterations, dimensions 
of the problem, mesh contraction factor/mesh expan-
sion factor (P), solutions (K). 

Step 2: check the convergence for all possible so-
lutions (Xk) where k=1, 2, 3,…… K. 

Step 3: Calculate the objective function f(Xk), and 
with the help of exploratory move calculates the step 
of search SK. 

Step 4: If new objective function f(Xk+Sk) is less 
than f(Xk), then new solution Xk+1= Xk+Sk otherwise 
Xk+1= Xk. 

Step 5: update mesh contraction factor/mesh expan-
sion factor (P). 
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Fig. 5. Exploratory move state and pattern move state of pattern search. 

 

ADAPTIVE DIFFERENTIAL EVOLUTION 
The success of DE in solving a specific problem cru-
cially depends on appropriately choosing donor vector 
generation strategies. In ordinary differential evolution, 
for a donor vector generation the selection of three 
populations is random as in Eq. 5, that results in a 
local optimal solution because the difference of two 
randomly selected populations nearly equals to largest 
solution and in addition to it the added population to 
the above difference results in a value that lies out of 
search space. As there is no particular pattern being 
followed in the selection of populations, it results in 
local optimal solution. So to overcome this we propose 
an adaptive differential evolution, to improve the per-
formance, effectiveness and robustness of differential 
evolution for efficient vector quantization of image 
which leads to better image compression with good 
reconstructed image quality. The proposed novel dif-
ferential evolution follows an intelligent selection of 
the population for donor vector VK that reduce the 
distortion (D) between image to be compressed and 
codebook which is to be optimized. The ADE divides 
the population into two equal groups based on the des-
cending fitness values. The first group is exploited for 
local search of the codebook, as the populations are 
arranged in descending order, the difference magnitude 
of two successive populations is less, which is added 
to the predecessor population. Hence the predecessor 
population explores for a solution around it as shown 
in Fig. 6. The same procedure is repeated for the first 
N/2 populations among the available N descended 
populations. 

For the global search of the codebook both the 
groups are harnessed. The donor vector generation is 
obtained from the difference of least fitness population 

(Nth element - second group) and the highest fitness 
population (1st element - first group) is added to (N-
1)th population. Similarly  

The difference of the next least fitness population 
((N-1)th element - second group) and the precedent 
highest fitness population (2nd element - first group) 
is added to (N-2)th population and the same procedure 
is repeated for the remaining populations as depicted 
in the Fig. 6. 

 
Fig. 6. Diagrammatic representation of proposed ADE. 

The donor vector for Nth population is generated 
on the same lines as that of ordinary differential evolu-
tion. This complete process is repeated for various 
iterations until distortion between codebook and image 
to be compressed is a global minimum. To validate 
the performance of ADE, it is compared with DE based 
on nine benchmark functions. The simulation results 
show that ADE promises competitive performance 
not only in the PSNR, but also in the quality of recons-
tructed images. The algorithm of ADE is as similar as 
DE except the selection of three populations in a 
donor vector generation. The idea of using an adaptive 
selection of populations is to make ADE computa-
tionally more efficient in obtaining local and global 
solutions for the codebook. 
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Table 1. Simulation results of Benchmark functions of GA, FA, DE and ADE. 

Dimension = 2, population = 50, iterations = 1000 
Function Measure GA FA DE ADE 

minimum 0.0263 1.2898 8.32E-07 3.64E-07 
mean 0.0624 1.4871 6.17E-06 2.04E-06 

Akely 
(-4, 5) 
Global min= 0 std. 0.0409 0.1476 9.18E-06 1.32E-06 

minimum 0.0011 5.89E-06 3.34E-04 7.44E-05 
mean 0.0091 0.0127 0.003 0.0015 

Powell 
(-4, 5) 
Global min= 0 std. 0.0058 0.0315 0.0032 0.0014 

minimum 0.0263 1.78E-07 1.01E-07 4.75E-08 
mean 0.2321 1.14E-04 9.23E-06 2.37E-05 

Beale 
(-4.5, 4.5) 
Global min= 0 std. 0.3739 1.48E-04 1.53E-05 2.71E-05 

minimum -106.765 -106.765 -106.765 -106.765 
mean -102.874 -106.753 -106.764 -106.764 

Bird 
(-2pi, 2pi) 
Global min= 106.7 std. 8.2024 0.0152 6.39E-04 3.65E-04 

minimum 1.30E-02 4.55E-05 4.70E-05 2.95E-05 
mean 0.0035 0.0013 7.6657 2.2355 

Bukin4 
(-15, 5) 
Global min= 0 std. 0.0086 7.1094 16.0819 2.8937 

minimum -42.4972 -42.9441 -41.7684 -42.9444 
mean -42.4972 -42.9224 -41.8289 -42.8605 

Chichinadze 
(-30, 30) 
Global min=-43.31 std. 0.1414 0.0256 0.1365 0.1512 

minimum -0.093 -0.0198 -0.013 -4.56E-04 
mean -0.0049 -0.0146 -0.6511 -4.69E-04 

crosslegtable 
(-10, 10) 
Global min= -1 std. 0.0035 5.997 5.3809 5.22E-05 

minimum 3 3 3 3.00E+00 
mean 3 3 3 3.00E+00 

goldsteinprice 
(-2, 2) 
Global min = 3 std. 2.92E-15 4.15E-15 1.24E-06 4.93E-07 

minimum 0.0023 2.43E-05 7.01E-07 4.87E-07 
mean 0.312 0.0042 3.37E-04 8.28E-04 

himmelblau 
(-5, 5) 
Global min = 0 std. 0.0015 0.0051 7.33E-04 0.0016 

minimum -587.966 -637.909 -837.966 -837.966 
mean -555.056 -658.499 -837.966 -837.966 

schweffel 
(-500, 500) 
Global min = -837.9 std. 112.3693 101.39 7.71E-08 5.52E-08 

minimum -10.8723 -10.8722 -10.8723 -10.8723 
mean -10.6449 -10.8713 -10.8718 -10.8723 

testtubeholder 
(-10, 10) 
Global min = -10.87 std. 0.203622 9.01E-04 0.0017 6.79E-05 

minimum -0.0038 -0.0038 -0.0038 -0.0038 
mean -0.0038 -0.0037 -0.0038 -0.0038 

zettl 
(-5, 5) 
Global min = -0.0037 std. 2.89E-09 7.61E-05 5.44E-10 5.13E-09 

      
PERFORMANCE EVALUATION OF ADE 
ALGORITHM 

In this section some comparisons between the genetic 
algorithm, firefly algorithm, DE and ADE using twelve 
numerical benchmark functions is demonstrated. The 
benchmark functions chosen for validation of Adaptive 
ADE over other optimizations are Ackley, Powell, 
Beale, Bird, Bukin4, Chichinadze, Crosslegtable, 
Goldsteinprice, Himmelblau, Schweffel, Testtubeholder 
and Zettl (Yao et al., 1999). Initially the algorithm is 
validated by taking dimension = 2, population = 50, 

iterations = 1000 and performance measuring para-
meters like minimum, mean and standard deviation 
are considered. Table 1 shows the 12 benchmark func-
tions and its corresponding range and theoretical 
minimum value. All the algorithms independently run 
for 50 times and minimum value is the minimum of 
objective function values of 50 independent runs. 
Mean or average is the ratio of the sum of the 
minimum value obtained to that of the number of 
independent runs. The mean value near to zero indi-
cates better performance of the algorithm. The word 
‘std’ is the standard deviation, which is equal to the 
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square root of variance; a standard deviation close to 
zero indicates better performance of the algorithm 
and close to more than one indicates worst perfor-
mance of the algorithm. In this work, our objective is 
to find the global minimum. Hence, lower the 
‘minimum’, ‘mean’ and ‘std.’, better is the algorithm. 
In this work, the tuning parameters of GA are: cros-
sover probability = 70% and mutation probability = 
20% and α = 0.01, β0 = 1 and γ = 1 are tuning 
parameters for FA and tuning parameters for DE and 
ADE are control parameter (F) = 1, Crossover Rate 
(CR) = 10, and strategy = 2. Form Table 1, for Ackely 
function ADE minimum value is 3.6358e-07 which is 
0.0263, 1.2898, 4.6842e-07 less than the GA, FA and 
DE respectively. With this example we can conclude 
that ADE is better than other algorithms as its 
minimum value is near to the theoretical value. The 
performance of the ADE algorithm is better than the 
GA, FA and DE, but for some benchmark functions 

the performance ADE is not so differentiable. For the 
benchmark functions Bird, Chichinadze, Goldsteinprice, 
Schweffel, Testtubeholder and Zettl the performance 
of ADE almost all similar to GA, FA and DE. Table. 
2 shows the performance of ADE against GA, FA 
and DE on five benchmark functions with no change 
in dimension and population, but the number of 
iterations is reduced to 100. Even with lesser number 
of iterations ADE out perform the GA, FA and DE.  

Table 3, 4 and 5 shows the performance of ADE 
against GA, FA and DE with 50 population, 100 
iterations and dimensions are 30, 60 and 100 respec-
tively on three benchmark functions. These tables 
show that even higher dimensions of the problem 
ADE performance better than the GA, FA and DE. It 
is concluded that ADE algorithm outperforms the other 
algorithms in low dimensional and high dimensional 
search space.  

 

 

Table 2. Dimension = 2, population = 50, iterations = 1000. 

Function Measure GA FA DE ADE 
minimum 1.0536 0.0022 2.98E-04 2.21E-04 
mean 1.0536 0.0196 0.0019 6.22E-04 

Akely 
(-4, 5) 
Global min = 0 std. 0 0.0113 0.0013 2.71E-04 

minimum 11.5801 0.0041 0.0467 0.001 
mean 11.5801 0.0216 0.2286 0.0355 

Powell 
(-4, 5) 
Global min = 0 std. 0 0.0186 0.2714 0.0343 

minimum 0.0077 4.62E-05 3.88E-05 2.24E-05 
mean 0.0077 0.0764 0.0019 0.0014 

Beale 
(-4.5, 4.5) 
Global min = 0 std. 0 0.2409 0.0016 0.0015 

minimum -42.9244 -42.9415 -42.9434 -42.9443 
mean -42.5205 -42.8421 -42.7111 -42.8863 

Chichinadze 
(-30, 30) 
Global min = -43.31 std. 0.1537 0.1823 0.2137 0.1378 

minimum -10.8719 -10.8717 -10.8718 -10.8723 
mean -10.7198 -10.8657 -10.8635 -10.8676 

testtubeholder 
(-10, 10) 
Global min = -10.87 std. 0.2083 0.0087 0.0092 0.0061 

 

Table 3. Dimension =30, population =50, iterations = 100. 

Function Measure GA FA DE ADE 
minimum 4.4264 1.4553 7.6440 7.4363 
mean 5.2181 1.7013 8.0370 7.8702 

Akely 
(-4, 5) 
Global min = 0 std. 0.4574 0.1730 0.2483 0.2587 

minimum 1.7131 1.4553 0.6440 0.4363 
mean 0.5308 1.7013 0.0370 0.8702 

Exponential 
(-4, 5) 
Global min = 0 std. 0.1182 0.1730 0.2483 0.2587 

minimum 64.2397 21.0185 7.2463 6.4224 
mean 428.1775 21.5115 7.4442 5.5335 

Brown 
(-4, 5) 
Global min = 0 std. 847.7448 20.2839 2.0540 4.0634 
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Table 4. Dimension =60, population =50, iterations = 100. 

Function Measure GA FA DE ADE 
minimum 4.4264 1.4553 7.644 3.4363 
mean 5.2181 1.7013 8.037 3.8702 

Akely 
(-4, 5) 
Global min = 0 std. 0.4574 0.173 0.2483 0.2587 

minimum -0.4046 -0.8453 3.3118 3.1224 
mean -0.2614 -0.7983 3.5443 3.5335 

Exponential 
(-4, 5) 
Global min = 0 std. 0.0825 0.0329 0.1051 0.0634 

minimum 186.1389 59.5164 36.601 34.232 
mean 985.7908 60.5707 47.61 35.344 

Brown 
(-4, 5) 
Global min = 0 std. 1.49E+03 70.7381 14.919 13.121 
 

Table 5. Dimension =100, population =50, iterations = 100. 

Function Measure GA FA DE ADE 
minimum 15.2839 12.6322 8.9616 7.0844 
mean 15.7639 12.7814 9.2831 7.1948 

Akely 
(-4, 5) 
Global min = 0 std. 0.4142 0.0741 0.1338 0.0876 

minimum -0.1214 -0.6046 3.5954 3.4771 
mean -0.0698 -0.5453 3.6534 3.6021 

Exponential 
(-4, 5) 
Global min = 0 std. 0.0342 0.0482 0.0355 0.0711 

minimum 1.36E+03 144.5975 39.05 11.893 
mean 5.48E+07 161.4384 40.089 13.021 

Brown 
(-4, 5) 
Global min= 0 std. 1.73E+08 123.4041 52.115 10.711 
 

The simulation results of six benchmark func-
tions, i.e, Akely, Bukin4, Schweffel, Himmelbalu, 
Crosslegtable, and Zettle are shown in Fig. 7. These 
graphs are drawn between the number of iterations 
and the corresponding objective function value with 
100 function evaluations. From these Figs., it is ob-
served that ADE time of convergence is better to GA, 
FA and DE. Form Fig. 7a, one can compare perfor-

mances of all four algorithms. Note that six figures 
(Figs. 7a-7e) are displayed for six benchmark functions 
separately. From Fig. 7, it is seen that our proposed 
algorithm ADE outperforms all other algorithms. So 
the proposed ADE is further used for codebook design 
in cascaded pattern search. The flow chart of proposed 
hybrid pattern search and ADE approach is shown in 
Fig. 8. 

 

 
Fig. 7. Performance of proposed ADE, DE, GA and FA for P = 50 and D = 30. 
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Fig. 8. Flowchart of proposed hADE-PS. 

RESULTS 

For the validation of the proposed hybrid ADE-PS 
method, four standard SAR images from the image 
database of compression Sandia National Laboratories 
‘flight line’ and ‘baseball diamond’ and all the 
images are grayscale of size 256 by 256 stored in .jpg 
format are considered. The hybrid ADE-PS and other 
algorithms, i.e., K-Means, DE and ADE have been 
implemented in Matlab 7.9.0 (R2009b) on HP Laptop, 
Intel Core i5 processor 4GB RAM and 32 bit ope-
rating system. All the optimization algorithms acqui-
red the K-Means codebook as the preliminary code-
book or one of the population/solution. The parameters 
used for comparison of proposed hADE-PS algorithm 
with others are bitrate/bits per pixel, PSNR, Mean 
Square Error (MSE), SSIM, fitness function, compres-
sion ratio and memory size of output image. 

Bitrate/Bits Per Pixel (BPP) & Compression Ratio: 
Bitrate is the indication of number bits used to re-
present the vector quantized image, In this work two 
kinds of bitrates and compression ratio are defined; one 
before the run-length followed huffman coding and 
another after run-length followed Huffman coding. The 
formula for the bitrate and compression ratio of the 
first one (BPP & CR) and second one (BPPcode & 
CRcode) is given in Eq. 9 and Eq. 10 respectively.  

 2logBPP      cN
k

=
        

8CR       
c

k
N
×

= ,
 

(9) 

where Nc is codebook size and k is non-overlapping 
image block size (4*4) 

 total number of bits transmittedbpp
size of image

=  

    (10) 
 *8

code
size of imageCR

total number of bits transmitted
=  

Peak Signal to Noise Ratio (PSNR): It’s a mea-
sure of reconstructed/decompressed image quality 
which is given in Eq. 11 

 
2

10
255      1 0 log (dB)PSNR
MSE

⎛ ⎞
= × ⎜ ⎟

⎝ ⎠
,
 

(11) 

where Mean Square Error (MSE) which is given in 
Eq. 12 

 21 { (I, J) (I, J)}
M N

I J
MSE f f

M N
= −

× ∑∑ ,
 

(12) 

where M × N is the size of the image, I and J repre-
sents the pixel value of original and decompressed 
images. In our experiment we have taken N=M a 
square image. ( , )f I J  is an original image and ( , )f I J  
reconstructed image of size 256 by 256.  
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Structural Similarity Index Measure (SSIM): It 
evaluates the visual similarity between the original 
image and the reconstructed image. High-quality image 
is one whose structure closely matches that of the 
original input image. The structural similarity index 
is calculated between original input image and recon-
structed image given in Eq. 13.  
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(13) 

where µI and µĨ are the mean value of the original 
image I and reconstructed image Ĩ, σI and σĨ are the 
standard deviation of original image I and recon-
structed image Ĩ, σIĨ is the cross-correlation and C1 & 
C2 are constants are equal to 0.065.  
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Standard deviation =  
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DISCUSSIONS 

The proposed hADE-PS based vector quantization is 
compared with the standard K-Means, Differential 
Evolution and Adaptive Differential evolution. The 
proposed method is evaluated with a codebook size 
of 8, 16, 32, 64, 128, 256 and 512 and each algorithm 
runs five times. It is observed that PSNR value is 
increased with increment in codebook size. The same 
parameters are used for all experiments (for consis-
tency).  

Fig. 9 to Fig. 12 shows the graph between BPP to 
PSNR and bitrate to the fitness function. In the 
proposed work fitness function is the ratio of sum of 
the Euclidean distance between the input image and 
codewords (distortion) to size of the input image. So 
motto is to design or optimize codebook which 
minimizes distortion. From the figures, it can be 
observed that the peak signal to noise ratio of hADE-
PS is superior to the K-Means, DE and ADE. The 
PSNR value of hADE-PS is around 0.1 to 0.3 higher 
than the K-Means, DE and ADE because of its 
exploration and exploitation behavior. This 0.1 to 0.3 
is not a huge difference, but its reflection on MSE 
between the input image and the reconstructed image 
is very huge (around 10 times lesser). This is specified 
in Fig. 13 to Fig. 16, where a difference of 0.1 in 
PSNR between ADE and hADE-PS is equal to the 
difference in MSE of around 283099 for flight line 

image. Fig. 13 to Fig. 16 shows the bar chart of MSE 
of four methods for four images and observed MSE is 
decreasing with the increment in codebook size and 
MSE of hADE-PS is considerable smaller than the K-
Means, DE and ADE.  

From Table 6 and 7, it is observed that the 
proposed hADE-PS method achieved lesser bits per 
pixel at an average of 0.77% and 0.56% as compared 
to DE and ADE and higher at an average of 2.77% as 
compared to K-Means. hADE-PS achieved higher 
compression ratio at an average of 5.6% and 4.4% 
compared to DE and ADE and lesser at an average of 
1.24% compared to K-Means for Baseball SAR image. 
Whereas hADE-PS method achieved higher SSIM for 
Baseball SAR image at an average of 0.52% compared 
to K-Means and lesser at an average of 1.50% and 
1.36% compared to DE and ADE respectively.  

 

 
Fig. 9. PSNR & fitness function of Polarimetric SAR 
image. 

 

 
Fig. 10. PSNR & fitness function of BaseBall Diamond 
SAR image. 
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Fig. 11. PSNR & fitness function of Flight Line SAR 
image. 

 

 
Fig. 12. PSNR & fitness function of Flight Line SAR 
image. 

 

 
Fig. 13. Polarimetric image MSE with a codebook 
size of 8, 16, 32, 64, 128, 256 and 512. 

 
Fig. 14. Helicopter image MSE with a codebook size 
of 8, 16, 32, 64, 128, 256 and 512. 
 

 
Fig. 15. Flight Line image MSE with a codebook size 
of 8, 16, 32, 64, 128, 256 and 512. 

 

 
Fig. 16. Baseball Diamond image MSE with a code 
book size of 8, 16, 32, 64, 128, 256 and 512.
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From Table 8 and 9, it is observed that the proposed  
hADE-PS method achieved lesser bits per pixel at an 
average of 0.27% and 1.15% compared to K-Means 
and DE and higher at an average of 0.41% compared 
to ADE and achieved higher compression ratio at an 
average of 0.8% and 2.6% compared to K-Means and 
DE and lesser at an average of 7.09% compared to 
ADE for Flight line SAR image. Whereas hADE-PS 
method achieved higher SSIM at an average of 
1.02%, 0.03% and 1.28% compared to K-Means, DE 
and ADE respectively for Flight line SAR image.  

From Table. 10 and 11, it is observed that the 
proposed hADE-PS method achieved lesser bits per 
Pixelat an average of 1.65%, 0.80% and 0.90% with 
compare to K-Means, DE and ADE respectively, and 
hADE-PS method achieved higher compression ratio 
at an average of 7.57%, 5.29% and 6.06% with 
compare to K-Means, DE and ADE respectively for 
Helicopter SAR image. Whereas hADE-PS method 

achieved higher SSIM at an average of 0.13%, and 
0.29% compared to K-Means and DE respectively, 
and lesser at an average of 0.64% compared to ADE.  

From Table. 12 and 13, it is observed that the 
proposed hADE-PS method achieved higher bits per 
Pixelat an average of 1.17% and 0.3% compared to 
K-Means and DE and no difference compared to 
ADE and hADE-PS method achieved higher 
compression ratio at an average of 0.33% compared 
to ADE and lesser at an average of 4.09% and 1.88% 
compared to K-Means and DE Polarimetric SAR 
image. Whereas hADE-PS method achieved higher 
SSIM at an average of 1.06%, 0.56% and 0.41% 
compared to K-Means, DE and ADE respectively. 
From Table 6-13 it is observed that a lower and lower 
value of minimum value of output images and a 
higher and higher value of maximum value of output 
image shows the better PSNR and SSIM. 

 

Table 6. The bits per pixel (BPP), Compression ratio (CR), Structural similarity index (SSIM), Number of bits 
for codebook (bcodebook) and index (bindex), min & max of output image and the number of bytes (bout) of 
Baseball images by using the four different algorithms with different codebook size (NC). 

NC Technique BPPcode CRcode SSIM bcodebook bindex min & max bout 
K-Means 0.145142 55.11859 0.315150 680 8832 25,157 1189 
DE 0.159668 50.10398 0.342557 728 9736 31175 1308 
ADE 0.153564 52.09539 0.324821 688 9376 34,168 1258 

8 

ADEPS 0.143555 55.72789 0.308223 728 8680 37,179 1176 
K-Means 0.222778 35.91014 0.431154 1600 13000 26,179 1825 
DE 0.215332 37.15193 0.416324 1616 12496 25,179 1764 
ADE 0.217651 36.75603 0.411986 1624 12640 25,178 1783 

16 

ADEPS 0.201172 39.76699 0.405823 1640 11544 27,180 1648 
K-Means 0.299316 26.72757 0.493829 3320 16296 25,181 2452 
DE 0.307373 26.02701 0.496363 3408 16736 19,186 2518 
ADE 0.304443 26.27747 0.499020 3384 16568 23,184 2494 

32 

ADEPS 0.297607 26.88105 0.486835 3352 16152 21,191 2438 
K-Means 0.311768 25.66014 0.499794 3376 17056 24,187 2554 
DE 0.430664 18.57596 0.566458 6880 21344 19,196 3528 
ADE 0.429565 18.62347 0.574566 6896 21256 18,198 3519 

64 

ADEPS 0.420776 19.01247 0.565834 7040 20536 9,250 3447 
K-Means 0.613525 13.03940 0.637223 13800 26408 16,205 5026 
DE 0.611938 13.07321 0.637296 13872 26232 16,218 5013 
ADE 0.609863 13.11769 0.639557 13856 26112 16,212 4996 

128 

ADEPS 0.607056 13.17836 0.635659 14048 25736 8,222 4973 
K-Means 0.884277 9.046935 0.704460 27336 30616 16,222 7244 
DE 0.890137 8.987383 0.702164 27712 30624 12,231 7292 
ADE 0.890747 8.981225 0.703864 27680 30696 16,223 7297 

256 

ADEPS 0.898804 8.900720 0.704363 28208 30696 14,243 7363 
K-Means 1.379639 5.798620 0.767407 55264 35152 7,242 11302 
DE 1.382202 5.787865 0.766288 55464 35120 4,250 11323 
ADE 1.383301 5.783269 0.768358 55552 35104 10,237 11332 

512 

ADEPS 1.397705 5.723668 0.762571 56576 35024 9,243 11450 
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Table 7. Average BPPcode, CRcode, SSIM and % difference against ADEPS of Baseball SAR image. 

 BPPcode 
% difference 

against ADEPS CRcode 
% difference 

against ADEPS SSIM % difference 
against ADEPS 

K-Means 0.550921 2.778876 24.47163 -1.24728 0.549860 0.52428 
DE 0.571045 -0.77241 22.81533 5.605383 0.561064 -1.50265 
ADE 0.569876 -0.56612 23.09065 4.466292 0.560310 -1.36624 
ADEPS 0.566668  24.17016  0.552758  
 

Table 8. The bits per pixel (BPP), Compression ratio (CR), Structural similarity index (SSIM), Number of bits 
for codebook (bcodebook) and index (bindex), min & max of output image and the number of bytes (bout) of 
Flight line images by using the four different algorithms with different codebook size (NC). 

NC Technique BPPcode CRcode SSIM bcodebook bindex min & max bout 
K-Means 0.114014 70.16702 0.220490 600 6872 10,102 934 
DE 0.116699 68.55230 0.225755 560 7088 15,113 956 
ADE 0.097290 82.22836 0.198176 560 5816 18,116 797 

8 

ADEPS 0.112427 71.15744 0.226754 600 6768 16,155 921 
K-Means 0.184326 43.40132 0.304027 1400 10680 7,116 1510 
DE 0.188843 42.36328 0.312903 1352 11024 8,131 1547 
ADE 0.168945 47.35260 0.290382 1376 9696 6,160 1384 

16 

ADEPS 0.176636 45.29095 0.294902 1408 10168 9,180 1447 
K-Means 0.260498 30.71040 0.366904 2944 14128 7,147 2134 
DE 0.264404 30.25669 0.366673 2984 14344 6,160 2166 
ADE 0.258911 30.89863 0.371584 3016 13952 6,161 2121 

32 

ADEPS 0.267822 29.87056 0.366819 3088 14464 6,184 2194 
K-Means 0.386108 20.71957 0.444107 6200 19104 4,174 3163 
DE 0.383301 20.87134 0.439294 6360 18760 3,185 3140 
ADE 0.389404 20.54420 0.445250 6288 19232 5,180 3190 

64 

ADEPS 0.381470 20.97152 0.434910 6456 18544 6,189 3125 
K-Means 0.559692 14.29357 0.515133 12544 24136 3,187 4585 
DE 0.571899 13.98847 0.527041 12808 24672 3,197 4685 
ADE 0.571167 14.00641 0.522511 13064 24368 2,187 4679 

128 

ADEPS 0.574829 13.91718 0.521636 13400 24272 4,196 4709 
K-Means 0.855713 9.348930 0.605669 26096 29984 2,202 7010 
DE 0.866699 9.230423 0.614450 26656 30144 2,215 7100 
ADE 0.859497 9.307769 0.607158 26720 29608 3,227 7041 

256 

ADEPS 0.861938 9.281405 0.604545 26800 29688 2,235 7061 
K-Means 1.338623 5.976290 0.694850 52808 34920 0,202 10966 
DE 1.344360 5.9507850 0.692779 53296 34808 0,211 11013 
ADE 1.344238 5.9513260 0.694665 53248 34848 1,211 11012 

512 

ADEPS 1.362305 5.8724010 0.693082 54416 34864 0,234 11160 
 

Table 9. Average BPPcode, CRcode, SSIM and % difference against ADEPS of Flight line SAR image. 

 BPPcode 
% difference 

against ADEPS CRcode 
% difference 

against ADEPS SSIM % difference 
against ADEPS 

K-Means 0.450169 -0.27152 27.80244 0.888362 0.528425 1.028810 
DE 0.454128 -1.15336 27.31618 2.621807 0.533744 0.032589 
ADE 0.447104 0.411182 30.04133 -7.09295 0.527065 1.283530 
ADEPS 0.448950  28.05164  0.533918  
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Table 10. The bits per pixel (BPP), Compression ratio (CR), Structural similarity index (SSIM), Number of bits 
for codebook (bcodebook) and index (bindex), min & max of output image and the number of bytes (bout) of 
Helicopter images by using the four different algorithms with different codebook size (NC). 

NC Technique BPPcode CRcode SSIM bcodebook bindex min & max bout 
K-Means 0.168213 47.55878 0.331316 688 10336 11,78 1,378 
DE 0.166015 48.18800 0.320182 688 10192 11,77 1360 
ADE 0.173462 46.11963 0.342659 672 10696 6,85 1,421 

8 

ADEPS 0.138306 57.84289 0.317535 640 8424 11,78 1,133 
K-Means 0.235474 33.97408 0.407295 1416 14016 10,94 1,929 
DE 0.220703 36.24779 0.399017 1456 13008 5,83 1808 
ADE 0.216919 36.88014 0.405095 1424 12792 3,78 1,777 

16 

ADEPS 0.227783 35.12111 0.409797 1544 13384 5,191 1,866 
K-Means 0.318970 25.08075 0.476180 2984 17920 6,88 2613 
DE 0.312500 25.60000 0.472684 3048 17432 6,11 2560 
ADE 0.305298 26.20392 0.467926 3088 16920 7,80 2501 

32 

ADEPS 0.315918 25.32303 0.479451 3096 17608 3,203 2588 
K-Means 0.428101 18.68720 0.541240 6096 21960 5,177 3507 
DE 0.423218 18.90280 0.532136 6240 21496 3,173 3467 
ADE 0.433105 18.47125 0.547188 6272 22112 3,197 3548 

64 

ADEPS 0.409546 19.53383 0.529461 6344 20496 3,203 3355 
K-Means 0.601807 13.29331 0.606344 12680 26760 2,188 4930 
DE 0.592773 13.49588 0.612615 12568 26280 2,203 4856 
ADE 0.595093 13.44328 0.609848 12792 26208 1,203 4875 

128 

ADEPS 0.597290 13.39383 0.611974 26136 26136 1,253 4893 
K-Means 0.858643 9.317032 0.673415 25072 31200 1,197 7034 
DE 0.862427 9.276150 0.684333 25528 30992 2,203 7065 
ADE 0.860962 9.291933 0.683863 25416 31008 1,203 7053 

256 

ADEPS 0.860107 9.301164 0.683592 25656 30712 1,253 7046 
K-Means 1.318237 6.068710 0.744965 51048 35344 0,255 10799 
DE 1.318970 6.065340 0.753700 51152 35288 0,203 10805 
ADE 1.315918 6.079406 0.753683 50984 35256 0,253 10780 

512 

ADEPS 1.316650 6.076024 0.754213 51144 35144 0,255 10786 
 

Table 11. Average BPPcode, CRcode, SSIM and % difference against ADEPS of Helicopter SAR image. 

 BPPcode 
% difference 

against ADEPS CRcode 
% difference 

against ADEPS SSIM % difference 
against ADEPS 

K-Means 0.561349 -1.65162 21.99712 7.570621 0.540108 0.139038 
DE 0.556658 -0.8021 22.53942 5.291939 0.539238 0.299893 
ADE 0.557251 -0.90948 22.35565 6.064119 0.544323 -0.64028 
ADEPS 0.552228  23.79884  0.540860  
 

Fig. 17 to Fig. 20 shows the reconstructed images of 
‘Baseball diamond’ ‘Flight line’, ‘Helicopter’, and 
‘Polarimetric’, with a codebook size of 64, 16, 8 and 
8 respectively for K-Means, DE, ADE and hADE-PS. 
These codebook size is selected only for the better 
explanation and visual proof of the proposed method. 
For the best explanation of stated method, the regions 
marked with the red pencil shows reconstructed 

image visible clearly with the proposed method. For 
flight line image the regions marked with red are 
smoother with hADE-PS, whereas with other 
methods these regions are blurred as shown in Fig. 
18. Similarly for Baseball diamond, Helicopter and 
Polarimetric the marked red regions are smooth with 
hADE-PS compared to other K-Means, DE, ADE 
optimization techniques. 
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Table 12. The bits per pixel (BPP), Compression ratio (CR), Structural similarity index (SSIM), Number of bits 
for codebook (bcodebook) and index (bindex), min & max of output image and the number of bytes (bout) of 
Polarimetric images by using the four different algorithms with different codebook size (NC). 

NC Technique BPPcode CRcode SSIM bcodebook bindex min & max bout 
K-Means 0.153931 51.97145 0.383693 712 9376 27,122 1261 
DE 0.154907 51.64381 0.384900 704 9448 26,121 1269 
ADE 0.166870 47.94148 0.393032 720 10216 24,120 1367 

8 

ADEPS 0.167725 47.69723 0.399023 704 10288 18,120 1374 
K-Means 0.220825 36.22775 0.473461 1560 12912 24,130 1809 
DE 0.236206 33.86873 0.488854 1520 13960 3,120 1935 
ADE 0.234009 34.18675 0.483875 1480 13856 5,124 1917 

16 

ADEPS 0.231567 34.54718 0.492617 1536 13640 17,124 1897 
K-Means 0.318481 25.11920 0.564017 3184 17688 3,141 2609 
DE 0.321899 24.85248 0.568047 3104 17992 14,133 2637 
ADE 0.321655 24.87135 0.569604 3240 17840 9,127 2635 

32 

ADEPS 0.315918 25.32303 0.564702 3216 17488 7,144 2588 
K-Means 0.424194 18.85928 0.631893 6320 21480 0,167 3475 
DE 0.432495 18.49732 0.635423 6544 21800 2,184 3543 
ADE 0.431763 18.52870 0.630889 6528 21768 2,147 3537 

64 

ADEPS 0.433838 18.44007 0.639282 6688 21744 2,191 3554 
K-Means 0.598145 13.37469 0.699715 13104 26096 1,155 4900 
DE 0.601929 13.29061 0.699861 13376 26072 1,175 4931 
ADE 0.606079 13.19960 0.708086 13408 26312 1,162 4965 

128 

ADEPS 0.601929 13.29061 0.701873 13488 25960 1,175 4931 
K-Means 0.872681 9.167156 0.759742 26576 30616 0,176 7149 
DE 0.870972 9.185144 0.757715 26680 30400 1,179 7135 
ADE 0.871582 9.178711 0.756357 26744 30376 1,191 7140 

256 

ADEPS 0.874756 9.145409 0.762382 27016 30312 1,187 7166 
K-Means 1.349731 5.927105 0.815328 53480 34976 1,182 11057 
DE 1.354370 5.906805 0.814673 53752 35008 0,179 11095 
ADE 1.352783 5.913734 0.814175 53664 34992 0,190 11082 

512 

ADEPS 1.359009 5.886643 0.814358 54096 34968 0,179 11133 
 
Table 13. Average BPPcode, CRcode, SSIM and % difference against ADEPS of Polarimetric SAR image. 

 BPPcode 
% difference 

against ADEPS CRcode 
% difference 

against ADEPS SSIM % difference 
against ADEPS 

K-Means 0.562570 1.17330 22.94952 -4.09282 0.618264 1.060505 
DE 0.567540 0.30022 22.46356 -1.88863 0.621353 0.566179 
ADE 0.569249 0 21.97433 0.330383 0.622288 0.416553 
ADEPS 0.569249  22.04717  0.624891  
 

 
Fig. 17. Reconstructed Baseball image with a codebook size of 64 (a) Input Image (b) K-Means (c) DE (d) ADE 
(e) hADE-PS. 
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Fig. 18. Reconstructed Flight line SAR image with a codebook size of 16 (a) Input Image (b) K-Means (c) DE 
(d) ADE (e) hADE-PS. 

 
Fig. 19. Reconstructed Helicopter SAR image with a codebook size of 8 (a) Input Image (b) K-Means (c) DE (d) 
ADE (e) hADE-PS. 

 
Fig. 20. Reconstructed Polarimetric SAR image with a codebook size of 8 (a) Input Image (b) K-Means (c) DE 
(d) ADE (e) hADE-PS. 

CONCLUSIONS  

In this paper, the performance analysis of different 
optimization techniques is compared which are used 
for optimizing the LBG vector quantization for 
efficient codebook design, that results in high image 
compression and good reconstructed image quality. 
Experimental results shows that hADE-PS has better 
performance in compression ratio and reconstructed 
image quality than DE, ADE and K-Means. Adaptive 
Differential Evolution algorithm gives true global 
minimum regardless of the initial parameter values with 
fast convergence, and with few control parameters. 
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