ABSTRACT

This paper addresses the characterization of spatial arrangements of fringes in catalysts imaged by High Resolution Transmission Electron Microscopy (HRTEM). It presents a statistical model-based approach for analyzing these fringes. The proposed approach involves Fractional Brownian Field (FBF) and 2-D Auto-Regressive (AR) modeling, as well as morphological analysis. The originality of the approach consists in identifying the image background as an FBF, subtracting this background, modeling the residual by 2-D AR so as to capture fringe information and, finally, discriminating catalysts from fringe characterizations obtained by morphological analysis. The overall analysis is called ARFBF (Auto-Regressive Fractional Brownian Field) based morphology characterization.

Keywords: auto-regressive field, fractional Brownian field, HRTEM imaging, mathematical morphology, texture analysis.

INTRODUCTION

Texture analysis plays a key role in almost all imaging systems (radar, sonar, X-ray, microscopy…) and human visual perception. Texture structure characterization has deserved a considerable amount of works in order to describe image patterns for feature recognition (see Qazi et al., 2011; Goncalves and Bruno, 2013, among other references).

In recent literature, material texture characterization at nanoscale using image analysis has been considered either qualitative or quantitative methods. For instance, Da Costa et al. (2015) investigated carbon planes with orientation description, Pré et al. (2013) considered activated carbon with mathematical morphology approach, Moreaud et al. (2012) studied alumina platelets using morphological random model-based approach, Toth et al. (2013) investigated soot with multi-resolution approach, Zhang et al. (2011) considered active phases of unsupported hydrosulphurization catalyst and Moreaud et al. (2008) investigated ceria active phase using local frequency segmentation approach and morphological analysis.

In this paper, we are interested in the characterization of hydrotreating catalysts with sulphide phases supported on alumina (see Toulhoat and Raybaud 2013, Celce et al., 2008) using...
statistical model-based approach. Samples were observed by high resolution transmission electron microscopy, using a JEOL TEM 2100F operated at 200kV, whose point-to-point resolution is 0.23 nm. The so-called CoMoS\(^1\) active phase consists of nanolayers of MoS\(_2\), decorated at the edges with Co atoms. When their basal plane is oriented parallel to the electron beam axis, then they appear as black fringes. They can be either isolated or stacked with a stacking number up to 5 usually. If the catalyst presents a high loading of active phase, nanolayers can also form aggregates filling the support porosity. Length and stacking number of the nanolayers depend on several parameters: nature of the support, impregnation and sulfidation methods. They directly impact the activity and selectivity of the catalyst (see Toulhoat and Nikulshin, 2013).

Active phases shown in Fig. 1 can be seen as pseudo-periodic fields, a property which can be captured by using a 2-D Auto-Regressive model (2-D AR). Indeed, the 2-D AR random field model has shown relevancy for describing a wide class of pseudo-periodic textures (see Haralick, 1979; Souza, 1982; Mao and Jain, 1992; Alata and Ramananjaraosa, 2005 for the relevancy of this model in classification, segmentation and recognition of textural information). We thus consider the AR model for characterizing the active phases and propose using AR field power spectrum in order to derive their features. The spectrum of 2-D AR model can be calculated by the Harmonic Mean (HM) method (see Jackson and Chien, 1979; Alata et al., 1998).

The nanolayers are deposited on a crystalline alumina support (Fig. 1). Observations at high resolution also produce fringes (corresponding to atomic planes) and Moire fringes. Nevertheless, their contrast and their periodicity differ from those of CoMoS nanolayers, preventing confusion. Moreover, post-treated areas correspond to the thinnest zones of the sample, where alumina contribution is minorized. This background is considered here as a noisy field interacting with the intrinsic AR model and it has to be removed or attenuated significantly so as to make AR modeling efficient. For this purpose, we propose using a 2-D Fractional Brownian Field (FBF) for modeling this undesirable interaction, prior to AR modeling.

FBF is the spatial extension of the fractional Brownian motion (fBm), a non-stationary process derived by Mandelbrot and Ness (1968). Several variants of FBF exist, among which the separable and isotropic extensions. We consider hereafter the isotropic FBF whose characterizations are given in Pesquet-Popescu and Larzabal (1997); Pesquet-Popescu and Véhel (2002); Huang and Li (2005); Richard and Bierne (2010); Atto et al. (2014). Isotropic FBF is a one-parameter model. Its parameter, called Hurst parameter, is representative of stochastic regularity (texture roughness, in practice). In this respect, it suits for the description of the heterogeneous HRTEM image background.

In the literature, several methods exist for estimating the Hurst parameter of the 2-D FBF, for instance, maximum likelihood estimates (see Fieguth and Willsky, 1996; Tafti et al., 2009), box-counting approach (see Huang et al., 1994) and log-periodogram methods (see Geweke and Porter-Hudak, 1983; Robinson, 1995). Because FBF admits one pole located at zero frequency in the spectral domain (infinite spectral value at zero), these estimators lack robustness on small sample sizes. In order to obtain a robust Hurst parameter estimator, we consider the extension to FBF (see Tan et al., 2015) of the wavelet packet method of Atto et al. (2010) dedicated to fractional Brownian motion Hurst parameter estimation. This extension, based on 2-D wavelet packet spectrum, is called Log-Regression on Polar representation of Wavelet Packet spectrum (Log-RPWP).

In this paper, we propose an ARFBF based morphology analysis so as to capture HRTEM fringe information. This method relies on:

1. the integration of 2-D FBF and 2-D AR by using a convolution operator in order to define HRTEM ARFBF (Auto-Regressive Fractional Brownian Field, see Tan et al., 2015) features and
2. morphological analysis on the basis of the HRTEM ARFBF features.

Summarizing, the originality of the approach consists in identifying the image background as an FBF, subtracting this background, modeling the residual by a 2-D AR which is able to characterize the pseudo-periodic structure of the active phase deposited on the support of catalyst. The contributions presented in this work involve:

- assessing, in comparison with the state of the art (see Van De Ville et al., 2005; Tafti et al., 2009), the performance of Log-RPWP Hurst parameter estimation method introduced in Tan et al. (2015) on different FBF generators,
- deriving an analysis framework by integrating morphological analysis of the ARFBF description,

\(^1\)CoMoS refers to catalysts consisting of nanolayers of MoS\(_2\), decorated at the edges with Co atoms.
- addressing HRTEM micrograph morphological texture characterization by using this ARFBF morphological framework,
- discriminating different catalysts from obtained characterizations. A comparison is proposed with a Fourier-based spectrum analysis in order to show the interest of using model-based HM method.

In the next section, we present the 2-D ARFBF model after some recalls about 2-D AR model and FBF model, and after the new results about Hurst parameter estimation. In section “Results”, 2-D ARFBF morphological analysis of HRTEM is detailed and experimental results about catalyst discrimination are provided. In section “Conclusion”, the conclusion of this study is provided with some perspectives.

MATERIALS AND METHODS

ARFBF MODEL

The 2-D ARFBF introduced in Tan et al. (2015) is defined as the convolution with respect to deterministic spatial variables, of AR field A and isotropic FBF B_H. This 2-D ARFBF, hereafter denoted $Z(x,y)$, is defined as follows,

$$Z(x,y) = (A * B_H)(x,y). \quad (1)$$

Particularly, Z behaves as an FBF when AR is a white noise; Z is an AR when FBF is a white noise ($H = 0$).

When an image is associated to an ARFBF observation Z, this means that the image content can be seen as an AR based filtering of a fractional Brownian texture. The model applies on spatial texture level by describing the spatial covariance structure, in contrast with pixel level models such as marked point processes.

The following Section “2-D AR model” presents the 2-D AR framework used in the paper. Then, Section “2-D FBF isotropic model and Hurst parameter estimation” presents the isotropic FBF, as well as an estimation procedure for the parameter of this model, in addition with a performance validation stage (main contribution of the Section) through a comparison with respect to the state of the art.

2-D AR MODEL

Let us define a centered second-order stationary field as $A = \{A(x,y)\}, (x,y) \in Z^2$. A is a 2-D AR process if

$$A(x,y) = - \sum_{m \in D} \beta_m A(x-m_1,y-m_2) + E(x,y), \quad (2)$$

where D is the prediction support, $m = (m_1,m_2) \in D$, $E(x,y)$ is an independent and identically distributed process with zero mean and variance σ^2_e, β_m are 2-D transverse coefficients.

Different prediction supports can be defined (Alata and Olivier, 2003). In this paper, we will use two prediction supports with Quarter Plan (QP) forms respectively denoted $QP_\ell, \ell = 1,2$ (Fig. 2 shows an illustrative example of these QPs), with:

$$D_{QP_1} = \{0 \leq m_1 \leq M_1, 0 \leq m_2 \leq M_2\} \setminus \{(0,0)\} , \quad (3)$$

and

$$D_{QP_2} = \{-M_1 \leq m_1 \leq 0, 0 \leq m_2 \leq M_2\} \setminus \{(0,0)\} . \quad (4)$$

Fig. 2. Quarter plan prediction supports denoted (a) D_{QP_1} (Eq. 3) and (b) D_{QP_2} (Eq. 4) with finite order $(M_1,M_2) = (2,2)$ and $(x,y) \in Z^2.
(\(M_1, M_2\)) is the 2-D AR order. Let us denote the set of AR parameters associated with \(QP_{\ell}\), \(\ell \in \{1, 2\}\), as
\[
\theta_{\text{OP}}^{M_1, M_2} = \{\sigma_{c, \ell}^2; \{\beta_{m, \ell}, m \in D_{QP_{\ell}}\}\}. \tag{5}
\]

At a fixed order, the parameters of \(\theta_{\text{OP}}^{M_1, M_2}\), \(\ell \in \{1, 2\}\), are estimated thanks to minimization in the least-squares sense of prediction errors, see Ranganath and Jain (1985); Alata and Cariou (2008a). This procedure involves Yule-Walker equations and it is equivalent to the maximum likelihood estimation, when the random variables are Gaussian.

In practice, the selection of an accurate prediction support determines model performance. Although a number of works focus on the order \((M_1, M_2)\) selection, see references Akaike (1974); Alata and Olivier (2003) among others, this paper considers, from preliminary experimental model validation, \(M_1 = M_2 = 10\) as the order of the prediction support.

The 2-D AR Power Spectral Density (PSD), \(S_{AR}(u, v)\), is then derived as the harmonic mean of the two spectra associated with prediction supports \(QP_{\ell}\), \(\ell = 1, 2\) (Jackson and Chien, 1979):
\[
S_{AR}(u, v) = \frac{2S_{QP_1}(u, v)S_{QP_2}(u, v)}{S_{QP_1}(u, v) + S_{QP_2}(u, v)}, \tag{6}
\]
where
\[
S_{QP_{\ell}}(u, v) = \frac{\sigma_{c, \ell}^2}{|F_{QP_{\ell}}(u, v)|^2}, \tag{7}
\]
and
\[
F_{QP_{\ell}}(u, v) = 1 + \sum_{m=(m_1, m_2) \in D_{QP_{\ell}}} \beta_{m, \ell} e^{-i2\pi u m_1} e^{-i2\pi v m_2}.
\]

The 2-D spectrum estimated from this method is easy to compute and has good estimation properties with respect to the other existing methods, see Alata and Cariou (2008b) for details.

2-D FBF ISOTROPIC MODEL AND HURST PARAMETER ESTIMATION

2-D FBF model

The 2-D isotropic FBF with Hurst parameter \(H\), \(0 < H < 1\), denoted here as \(B_H(x, y)\), is defined to be a non-stationary Gaussian zero-mean real-valued field with auto-correlation function defined as
\[
R_{B_H}(t, s) = \frac{\sigma_b^2}{2} (||t||^{2H} + ||s||^{2H} - ||t - s||^{2H}), \tag{8}
\]
where \(\sigma_b^2\) is a constant representing the variance of a white Gaussian noise.

Although FBF is a non-stationary process, this random process has stationary-increments and stationary wavelet projections. The spectrum of FBF can then be defined by association with respect to the above stationary FBF instances and is given by (see Pesquet-Popescu and Vehe (2002); Huang and Li (2005); Richard and Bierme (2010); Atto et al. (2014)):
\[
S_{FBF}(u, v) = \xi(H) \frac{1}{(u^2 + v^2)^{H+1}} = \xi(H) \frac{1}{\| (u, v) \|^{2H+2}}, \tag{9}
\]
where \(\| (u, v) \| = \sqrt{u^2 + v^2}\),
\[
\xi(H) = \frac{2^{-(2H+1)} \pi^2 \sigma_b^2}{\sin(\pi H) \Gamma^2(1 + H)}
\]
and \(\Gamma\) is the standard gamma function.

<table>
<thead>
<tr>
<th>Generator #1</th>
<th>Generator #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H = 0.2)</td>
<td>(H = 0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(H = 0.8)</td>
<td>(H = 0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Examples of sample FBFs used for Monte-Carlo simulations in Table 1.
Table 1. Mean values and standard deviations for estimated Hurst parameters from Monte-Carlo simulations with 10 FBF realizations.

<table>
<thead>
<tr>
<th>Sample FBF</th>
<th>Log-RPWP</th>
<th>Log-RPHW</th>
<th>ML-PHW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>\hat{H}</td>
<td>std</td>
</tr>
<tr>
<td>Generator #1</td>
<td>0.2</td>
<td>0.210</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.427</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.643</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.877</td>
<td>0.017</td>
</tr>
<tr>
<td>Generator #2</td>
<td>0.2</td>
<td>0.156</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.424</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.579</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.815</td>
<td>0.048</td>
</tr>
</tbody>
</table>

For Hurst parameter estimation, we propose the Log-RPWP method introduced in Tan et al. (2015). Log-RPWP Hurst parameter estimation method consists of three steps.

- In the first step, the spectrum with polar coordinates S_p is computed as,
 \[
 S_p(r, \theta) = T(\hat{S}_{FBF}(u,v)),
 \]
 where $\hat{S}_{FBF}(u,v)$ is the wavelet packet spectrum (Atto et al. (2013)), in Cartesian coordinates (u,v), estimated from FBF samples and T is the Cartesian-to-polar transform.

- In the second step, averages are done over the angles:
 \[
 S_p(r_i) = \frac{1}{J} \sum_{j=1}^{J} S_p(r_i, \theta_j),
 \]
 with $1 \leq i \leq N$ denoting the radial sampling index.

- In the third step, H is estimated by:
 \[
 \hat{H}_{RPWP} = \frac{1}{2C} \sum_{1 \leq i < k \leq N} \log S_p(r_i) - \log S_p(r_k) - \log r_k - \log r_i - 1
 \]
 where $C = \frac{N!}{2(N-2)!}$ is the number of all possible combinations of indices (i,k) such that $0 < i < k \leq N$.

Performance assessment of Log-RPWP Hurst parameter estimator

In this section, we compare the 2-D Log-RPWP Hurst parameter estimation method to two standard estimators: the first estimator performs Log-Regression based on Poly-Harmonic Wavelets (denoted hereafter as Log-RPHW) and the second estimator performs Maximum Likelihood (ML-PHW) on Poly-Harmonic Wavelets, both estimators being proposed in Tafti et al. (2009).

The experimental setup concerns FBF sampling from random number generators. Two generators are used for experimental tests: the Generator #1 of Van De Ville et al. (2005) is an FBF synthesis via projections on PolyHarmonic wavelets and the Generator #2 proposed by Kroese and Botev (2013) is a direct spatial synthesis by imposing the covariance structure of Eq. 8.

Table 1 gives, for FBF Generators #1 and #2 (see sample FBFs given by Fig. 3), the best relevant Hurst parameter estimations for all Log-RPWP, Log-RPHW and ML-PHW, when the maximal wavelet decomposition level is limited to 7 (sample realizations are with sizes 512×512). Hurst parameter estimation was realized from Monte-Carlo simulations on 10 FBF realizations and $H \in \{0.2, 0.4, 0.6, 0.8\}$.

One can observe from Table 1 that accuracy of Log-RPHW and ML-PHW methods are limited to the Polyharmonic FBF: this is due to that the latter is synthesized by using the same wavelets as those involved in Log-RPHW and ML-PHW estimation routines. However, Log-RPHW and ML-PHW methods fail to estimate Hurst parameter of Generator #2’s FBF, which uses no a priori on a specific wavelet generating function.

In contrast to Log-RPHW and ML-PHW, the Log-RPWP method gives relevant results whatever the generator used to derive FBF samples, as it can be seen in Table 1. In the following experimental tests on real world data, we thus focus on Log-RPWP estimator which guarantees robustness of the Hurst parameter estimation.
ARFBF MODELING PROCEDURE FOR HRTEM IMAGE

From Eq. 1, the spectrum associated with the non-stationary ARFBF model is

\[S_{\text{ARFBF}}(u,v) = S_A(u,v)S_{\text{FBF}}(u,v) \]

and reduces to (Eqs. 6, 9):

\[S_{\text{ARFBF}}(u,v) = \frac{2S_{QP_1}(u,v)S_{QP_2}(u,v)}{S_{QP_1}(u,v) + S_{QP_2}(u,v) \| (u,v) \|^{2H+2}}, \]

where \(S_{QP_1} \) and \(S_{QP_2} \) are defined by Eq. 7.

From Eq. 13, the spectrum of ARFBF has one singular frequency at the zero frequency point. Let us denote one HRTEM image as \(I \). The modeling procedure of the of \(I \) by using an ARFBF involves the following spectral processing:

1. First step, calculate the spectrum \(S_I \) of \(I \) from the periodogram or by using the wavelet packet method of Atto et al. (2013);

2. Second step, estimate, by using the Log-RPWP method presented in Section “2-D AR model”, the parameter \(H \) from \(S_I \) and thus \(S_{\text{FBF}} \) is derived.

3. Third step, remove the contribution of the FBF in \(I \). The spectrum of the residual part is denoted as:

\[S_{\text{residual}}(u,v) = \frac{S_I(u,v)}{S_{\text{FBF}}(u,v)}. \]

4. Final step, model the residual part by the 2-D AR and calculate its PSD \(S_{AR} \) from the AR estimated parameters (\(S_{AR} \) is a smoothed version of \(S_{\text{residual}} \) in general).

MORPHOLOGY BASED ARFBF ANALYSIS AND APPLICATION TO HRTEM

ARFBF modeling

Fig. 4 shows an HRTEM image of fringes (Row 1—Left). Such an image shows high frequency disturbances (thin and almost horizontal lines) induced by the alumina support of the catalyst and a pre-processing step is required in order to remove these disturbances. Once the pre-processing is performed\(^2\),

\(^2\)We consider Wavelet based High Frequency Removal, WHFR, by forcing wavelet details to zero and reconstructing an image from wavelet approximations, see Nason and Silverman (1995).

Fig. 4. ARFBF modeling of HRTEM image. In the first row, the original image \(I_1 \) and its PSD \(S_1 \); in the second row, the image \(I_2 \) (after WHFR pre-processing) and its PSD \(S_2 \); in the third row, the image \(I_3 \) (after removing the FBF contribution from the image \(I_2 \)) and its PSD \(S_3 \). Finally, the last row presents the PSD calculated with the parameters estimated by AR modeling in Cartesian coordinate (left) and in polar coordinate (right – lines are associated with radii and columns to angles).
we obtain in the second row of Fig. 4, a preprocessed HRTEM image I_2 which is free of very high frequencies (Row 2–Left). We then remove the FBF contribution from the image I_2 and derive the image I_3 shown in ‘Row 3–Left’ of Fig. 4. Fig. 4 also shows, in the second (right) column, the spectral information S_1, S_2, S_3 associated with images I_1, I_2, I_3 respectively.

Finally, we estimate from I_3 the AR parameters associated to the two QPs (see Section “2-D AR model”) and derive the corresponding spectral information. In the last row of Fig. 4, the 2-D AR PSD (Eq. 6) is shown in Cartesian coordinates ($S^S(u, v)$, Row 4–Left, origin at the center) and in polar coordinates ($S^S(r, \theta)$, Row 4–Right, origin at the top left). These are the spectral fringe features derived from ARFBF analysis. When considering a large amount of HRTEM images, we observe that any spectrum $S^S(u, v), S^S(r, \theta)$ can contain one or several main bump(s) whose forms are associated to the active phase inside the HRTEM image.

One can notice that spectra S_1 and S_2 both contain a peak at the center (zero frequency) whereas this peak has been removed (it is not related to the active phase we wish to model) in spectrum S_3, due to FBF subtraction. Moreover, the consequence of FBF subtraction enhances fringe spectral features (ring around the center of the spectrum). This justifies the combination of AR and FBF models proposed in this paper.

We now address in the next section, morphological analysis of the bumps (lobes) involved in the fringe spectral rings.

Morphological analysis

The nanolayer morphology, size and organization on the support of active phases can be observed directly by HRTEM imaging. The analysis of these fringes is generally composed of several steps: noise reduction, contrast enhancement, segmentation and morphological analysis such as length and tortuosity measurements (see Yehliu et al., 2011). We propose hereafter a completely different approach with characteristic in the frequency domain to obtain information about regularity of spacing or regularity of curvature of layers of fringes. Another advantage of the frequency domain is to separate the information associated with “superimposed” fringes with different main orientations which produces different bumps. However, analysis in this domain is an intricate work because of high frequency disturbances due to acquisition noise, and low frequency disturbances due to the effect of the catalyst support in HRTEM image acquisition. Our approach uses wavelet filtering, suppression of catalyst support contribution by means of an FBF modeling, and an AR model to smooth the residue image corresponding to fringe information. The processed spectral images (see last row of Fig. 4 for instance) show some lobes corresponding to the fringes. A morphological characterization of these lobes will allow us to: 1) obtain information about inter fringe distance and regularity of fringe spacing, 2) observe fringe distance variations and regularity of a fringe curvature by looking at the tangential length of the lobe characterizing the fringe under consideration.

In the following, we propose a morphological analysis of these lobes which are present in the polar representation of the PSD calculated from AR estimated parameters (image $S^S(r, \theta)$ in Fig. 4). First, we search the point $P_1[r^S, \theta^S]$ denoting maximum value of S^S and we calculate an adaptive threshold α_1 as follows:

$$P_1 = \arg\max_{r, \theta} S^S(r, \theta),$$ \hspace{1cm} (14)

and

$$\alpha_1 = \lambda_1 S^S(P_1),$$ \hspace{1cm} (15)

with $\lambda_1 \in [0; 1]$.

In our application, we chose $\lambda_1 = 0.8$ after validation tests. Segmentation with α_1 can lead to several connected components. This issue can be easily handled by using a morphological reconstruction (see Serra, 1988) with P_1 as a marker. A first lobe is obtained on a binary image Q_1:

$$Q_1 = r_{rec}(P_1),$$ \hspace{1cm} (16)

and

$$S^{**}(r, \theta) = \begin{cases} 1, & \text{if } S^S(r, \theta) > \alpha_1, \\ 0, & \text{otherwise}. \end{cases} \hspace{1cm} (17)$$

If a second lobe is located on S^S, it can be obtained using a similar procedure. The contribution of the first lobe is removed on S^S using morphological dilation with a disc of radius R on Q_1:

$$S_1^S(r, \theta) = \begin{cases} S^S(r, \theta), & \text{if } \delta_{R}(Q_1) \neq 0, \\ 0, & \text{otherwise}. \end{cases} \hspace{1cm} (18)$$

From available HRTEM data (see samples given in Fig. 1 for illustration), $R = 2$ is efficient. Then a new threshold α_2 is calculated and a binary image Q_2 is obtained by:

$$\alpha_2 = \lambda_2 S^S(P_1),$$ \hspace{1cm} (19)

- **PSD estimated using periodogram which is based on the square modulus of discrete Fourier transform. The origin is at the center of the images which exhibit central symmetry.**
with \(\lambda_2 \in [0; \lambda_1] \),

\[
P_2 = \arg\max_{r, \theta} S'_1(r, \theta),
\]

\[
Q_2 = \gamma_{rec}^* (P_2),
\]

and

\[
S'_1(r, \theta) = \begin{cases}
1, & \text{if } S'_1(r, \theta) > \alpha_2, \\
0, & \text{otherwise}.
\end{cases}
\]

In our application, we chose \(\lambda_2 = 0.6 \) (selection from validation tests). In contrast with \(Q_1 \), \(Q_2 \) value is not necessarily non-zero (if there is no remaining significant second lobe). We limit the study to the detection of two lobes in this experimental setup, with the knowledge that observation of more than two layers of overlapping fringes is rare in our application.

For each lobe on images \(Q_i \), \(i = 1 \) or 2, denoting a layer of fringes, an average spatial distance between atomic layers is estimated by the distance value \(G \),

\[
G = \frac{T_e}{r^2},
\]

associated to the maximum of the lobe \(P_i = [r^*, \theta^*] \), \(i = 1 \) or 2, \(T_e \) is the sampling period (here, \(T_e = 0.057 \)).

Lobe on binary image \(Q_i \), \(i = 1 \) or 2, can be considered as an ellipse embedded in a bounding box \((r_{\min}, r_{\max}, \theta_{\min}, \theta_{\max}) \) (Fig. 5). The extension of the lobe allows us to describe the changes in the distance between atomic layers (regularity of spacing) and in the curvature of atomic layers (regularity of curvature). The regularity of spacing and regularity of curvature can be estimated by distance variation \(\Delta_G \) (Eq. 24) and tangential length \(L_\theta \) (Eq. 27) respectively. \(\Delta_G \) and \(L_\theta \) are defined by:

\[
\Delta_G = |G_{\max} - G_{\min}|,
\]

with

\[
G_{\max} = \frac{T_e}{r_{\min}},
\]

\[
G_{\min} = \frac{T_e}{r_{\max}},
\]

where \(T_e = 0.057 \), and

\[
L_\theta = |\theta_{\max} - \theta_{\min}|.
\]

In the next section, we present our statistical analysis for the discrimination of catalyst active phases.

STATISTICAL ANALYSIS FOR CATALYST DISCRIMINATION

Based on the geometric features described previously, a comparison between two catalysts is presented. The point-to-point resolution of the TEM is 0.23 nm. The pixel size of the images is 0.057 nm, at an image resolution of 1024 \(\times \) 1024. For catalyst 1 (Cat1), 78 sub-images containing active phases are taken from 21 HRTEM images. For catalyst 2 (Cat2), 88 sub-images containing active phases are taken from 19 HRTEM images. For each sample, we calculate geometric features \(G \), \(\Delta_G \) and \(L_\theta \) on detected lobes.

Cat 1 is a CoMoS catalyst supported on alumina. It presents a high loading of active phase, corresponding to a Mo density of 7 at/nm\(^2\). Cat 2 is a CoMoS catalyst supported on silica. It presents a low loading of active phase, with a Mo density of 1 at/nm\(^2\). The mean length and stacking of slabs were measured by HRTEM on a minimum of 200 slabs, using an in-house image processing application (Celse et al., 2008); the image is pre-processed in order to stretch contrast, then a region growing algorithm and active contour techniques are used to obtain slab contours. Cat1 presents a mean slab length of 3.89 nm and a mean stacking number of 2.73; Cat 2 presents a mean slab length of 2.49 nm and a mean stacking number of 2.09.

RESULTS

STATISTICAL DISTRIBUTIONS OF \(G \), \(\Delta_G \) AND \(L_\theta \)

The distributions of the features are studied by using a Kernel smoothing function \(f_w \) which is defined as follows (Rosenblatt, 1956; Parzen, 1962):

\[
f_w(x) = \frac{1}{nw} \sum_{i=1}^{n} K(\frac{x - x_i}{w}),
\]

Fig. 5. The spectral lobe detected can be considered as an ellipse embedded in a bounding box \((r_{\min}, r_{\max}, \theta_{\min}, \theta_{\max}) \).
Table 2. Using AR-based method for PSD estimation in polar coordinates (Fig. 4 & 5), statistics of distance (Eq. 23), distance variation (Eq. 24) and tangential length (Eq. 27) features of the detected lobe of catalyst image databases (Cat1 and Cat2).

<table>
<thead>
<tr>
<th>Catalyst (n)</th>
<th>Cat1 (93)</th>
<th>Cat2 (109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stat</td>
<td>G</td>
<td>△G</td>
</tr>
<tr>
<td>Mean</td>
<td>0.62</td>
<td>0.124</td>
</tr>
<tr>
<td>Variance</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.991</td>
<td>1.222</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>7.21</td>
<td>4.784</td>
</tr>
</tbody>
</table>

Table 3. Using interpolated periodogram in polar coordinates (Fig. 7): statistics of distance (Eq. 23), distance variation (Eq. 24) and tangential length (Eq. 27) features of the detected lobe of catalyst image databases (Cat1 and Cat2).

<table>
<thead>
<tr>
<th>Catalyst (n)</th>
<th>Cat1 (93)</th>
<th>Cat2 (109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stat</td>
<td>G</td>
<td>△G</td>
</tr>
<tr>
<td>Mean</td>
<td>0.63</td>
<td>0.067</td>
</tr>
<tr>
<td>Variance</td>
<td>0.002</td>
<td>0.0006</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.56</td>
<td>2.155</td>
</tr>
</tbody>
</table>

Fig. 6. Kernel distributions of distance (left), distance variation (center) and tangential length (right) of the detected lobe S^\ast_{LobeD} of Cat1 (— in blue) and Cat2 (— in red). First row: using PSD estimated in polar coordinates with HM method based on the AR model. Second row: Using interpolated periodogram in polar coordinates.

where n is the sample size, $\{x_i\}_{i=1,...,n}$ are the set of considered samples, $x \in \mathbb{R}$, $K(\cdot)$ is the kernel smoothing function and w is the bandwidth.

Table 2 gives certain statistic information of distance G (measured in nm), distance variation ΔG (measured in nm) and tangential lengths L_θ (measured in degree) in terms of means, variances, third and fourth standardized moments (known as skewness and kurtosis) of the detected lobes on Cat1 and Cat2.
For these catalysts, the inter-distance between two neighboring white/black fringes G is known to be close to 0.615 nm (see Geantet and Sorbier (2012)). In Table 2, G has almost same value for Cat_1 and Cat_2 (0.611 nm vs 0.593 nm), it confirms G as a physical characterization. For Δ_G and L_θ of Cat_1 and L_θ of Cat_2, the positive skewness values in Table 2 indicates that the tail on the right side is longer or fatter than that of the left side. When the skewness values are bigger, this phenomenon will be clearer (Fig. 6). In contrast, for the other cases, the tail on the left side is longer or fatter than that of the right side (Fig. 6) because of negative skewness values. The kurtosis measures provided "tailedness" information of the distribution of variables G, Δ_G or L_θ. All kurtosis being larger than 3, one can conclude that G (for both of Cat_1 and Cat_2) and Δ_G (just for Cat_1) distributions are far from being Gaussian. In addition, when kurtosis are large, this implies that several outliers can be present in the corresponding variables. These observations are confirmed by Fig. 6 which shows the statistical distributions of G, Δ_G or L_θ for both catalysts.

KOLMOGOROV-SMIRNOV TEST FOR CATALYST DISCRIMINATION

In this section, we propose Kolmogorov-Smirnov (KS) test for comparing Cat_1 and Cat_2 ARFBF morphology characterizations. The KS measure is given by (see (Peacock, 1983) for details)

$$\mathcal{K} = \max_x(|\hat{f}_1(x) - \hat{f}_2(x)|),$$

where \hat{f}_1, \hat{f}_2 are the empirical cumulative distribution functions of catalyst datasets indexed by ‘1’ and ‘2’. Function \hat{f} is hereafter the kernel distribution for one of the three features: G, Δ_G and L_θ. A threshold, based on asymptotic of \mathcal{K}, is used to derive a decision between alternative hypotheses: null hypothesis ($\mathcal{K} = 0$) is that the two samples are drawn from the same catalyst or $\mathcal{K} = 1$ means that the test rejects the null hypothesis at 5% significance level.

First, Table 4 highlights that Kolmogorov-Smirnov test makes a clear discrimination between the two catalysts effective when considering parameters Δ_G and L_θ. Second, when performing Kolmogorov-Smirnov tests on sub-classes of catalysts Cat_1 and Cat_2 (2 sub-classes per catalyst due to the limited number of available samples), then the test still performs a relevant discrimination, as it can be seen in Table 6.

Table 4. Kolmogorov-Smirnov test for the discrimination of Cat_1 and Cat_2 based on features computed using PSD estimated with AR-based method in polar coordinates. Null hypothesis is rejected at the level $\alpha = 0.05$ if $\mathcal{K} > \mathcal{K}_\alpha$ with $\mathcal{K}_\alpha \approx 1.36 \sqrt{(N_1 + N_2)/(N_1 \times N_2)}$. With $N_1 = 78$ (number of samples of Cat_1) and $N_2 = 88$ (number of samples of Cat_2), $\mathcal{K}_\alpha \approx 0.212$.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>$Cat_1 \setminus Cat_2$</th>
<th>G</th>
<th>Δ_G</th>
<th>L_θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{K}</td>
<td>Cat_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cat_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$10^3 \mathcal{K}$</td>
<td>Cat_1</td>
<td>0</td>
<td>191</td>
<td>0</td>
</tr>
<tr>
<td>Cat_2</td>
<td>191</td>
<td>0</td>
<td>316</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5. Kolmogorov-Smirnov test for the discrimination of Cat_1 and Cat_2 based on features using interpolated periodogram in polar coordinates. Null hypothesis is rejected at the level $\alpha = 0.05$ if $\mathcal{K} > \mathcal{K}_\alpha$ with $\mathcal{K}_\alpha \approx 1.36 \sqrt{(N_1 + N_2)/(N_1 \times N_2)}$. With $N_1 = 78$ (number of samples of Cat_1) and $N_2 = 88$ (number of samples of Cat_2), $\mathcal{K}_\alpha \approx 0.212$.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>$Cat_1 \setminus Cat_2$</th>
<th>G</th>
<th>Δ_G</th>
<th>L_θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{K}</td>
<td>Cat_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cat_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$10^3 \mathcal{K}$</td>
<td>Cat_1</td>
<td>0</td>
<td>204</td>
<td>0</td>
</tr>
<tr>
<td>Cat_2</td>
<td>204</td>
<td>0</td>
<td>295</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 6. Kolmogorov-Smirnov test for the discrimination of sub-classes Catm and Catn of Cat\textsubscript{1} and Cat\textsubscript{2} respectively, m,n \in \{1, 2\}, based on features computed using PSD estimated with AR-based method in polar coordinates. Null hypothesis is rejected at the level \(\alpha = 0.05 \) if \(\mathcal{H} > \mathcal{H}_s \) with \(\mathcal{H}_s \approx 1.36 \sqrt{(N_1+N_2)/(N_1 \times N_2)} \): for Cat\textsubscript{1} (N\textsubscript{1} = 39) and Cat\textsubscript{2} (N\textsubscript{2} = 39), \(\mathcal{H}_s \approx 0.308 \); for Cat\textsubscript{1} (N\textsubscript{1} = 39) and Cat\textsubscript{2} (N\textsubscript{2} = 44), \(\mathcal{H}_s \approx 0.299 \); for Cat\textsubscript{1} (N\textsubscript{1} = 39) and Cat\textsubscript{2} (N\textsubscript{2} = 44), \(\mathcal{H}_s \approx 0.299 \); for Cat\textsubscript{1} (N\textsubscript{1} = 44) and Cat\textsubscript{2} (N\textsubscript{2} = 44), \(\mathcal{H}_s \approx 0.299 \).

<table>
<thead>
<tr>
<th>Stat</th>
<th>Catm \ set \ Catn</th>
<th>G</th>
<th>(\Delta G)</th>
<th>(L_\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{H})</td>
<td>Cat\textsubscript{1}</td>
<td>0 0 0 0 0 0 1 1 0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{1}</td>
<td>0 0 0 0 0 0 1 1 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{2}</td>
<td>0 1 0 0 1 1 0 1 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{2}</td>
<td>0 0 0 0 1 1 0 1 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10^3 \mathcal{H})</td>
<td>Cat\textsubscript{1}</td>
<td>256 235 114 0 128 295 383 0 179 372 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{2}</td>
<td>256 366 265 128 0 306 374 179 0 206 195</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{2}</td>
<td>235 366 182 0 383 374 113 0 326 195 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{2}</td>
<td>113 265 0 0 383 374 113 0 326 195 91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Kolmogorov-Smirnov test for the discrimination of sub-classes Catm and Catn of Cat\textsubscript{1} and Cat\textsubscript{2} respectively, m,n \in \{1, 2\}, based on features computed using interpolated periodogram in polar coordinates. Null hypothesis is rejected at the level \(\alpha = 0.05 \) if \(\mathcal{H} > \mathcal{H}_s \) with \(\mathcal{H}_s \approx 1.36 \sqrt{(N_1+N_2)/(N_1 \times N_2)} \): for Cat\textsubscript{1} (N\textsubscript{1} = 39) and Cat\textsubscript{2} (N\textsubscript{2} = 39), \(\mathcal{H}_s \approx 0.308 \); for Cat\textsubscript{1} (N\textsubscript{1} = 39) and Cat\textsubscript{2} (N\textsubscript{2} = 44), \(\mathcal{H}_s \approx 0.299 \); for Cat\textsubscript{1} (N\textsubscript{1} = 39) and Cat\textsubscript{2} (N\textsubscript{2} = 44), \(\mathcal{H}_s \approx 0.299 \); for Cat\textsubscript{1} (N\textsubscript{1} = 44) and Cat\textsubscript{2} (N\textsubscript{2} = 44), \(\mathcal{H}_s \approx 0.299 \).

<table>
<thead>
<tr>
<th>Stat</th>
<th>Catm \ set \ Catn</th>
<th>G</th>
<th>(\Delta G)</th>
<th>(L_\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{H})</td>
<td>Cat\textsubscript{1}</td>
<td>0 0 0 0 0 0 0 0 1 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{1}</td>
<td>0 0 0 0 0 0 0 1 1 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{2}</td>
<td>0 0 0 0 0 0 1 0 1 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{2}</td>
<td>0 1 0 0 0 1 1 1 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10^3 \mathcal{H})</td>
<td>Cat\textsubscript{1}</td>
<td>197 185 218 0 286 187 402 0 322 167 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{1}</td>
<td>197 0 199 300 286 0 314 458 322 0 224 342</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{1}</td>
<td>185 199 0 126 187 314 0 300 167 224 0 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat\textsubscript{1}</td>
<td>218 300 126 0 402 458 300 0 105 342 118 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The motivation of using the PSD estimated from an AR model (Eqs. 6. 13) is also evaluated by providing a comparison with a direct use of the PSD. Figure 7 provides the periodogram (proportional to the square of the modulus of the Discrete Fourier Transform, DFT) obtained by using zero-padding method for the same input image as in Fig. 4 – [third row]. This periodogram lacks smoothness and 2D Gaussian filters with standard deviations \(\sigma = 3.6 \) have been used for its regularization (Fig. 7, second and third rows). The three proposed informative parameters are then computed from this periodogram in polar coordinates via spline interpolation (Fig. 7). For the morphological analysis, different values of the threshold \(\lambda_1 \) (Eq. 15) are used: 0.6, 0.7, 0.8 and 0.9. The best discrimination results have been obtained for \(\sigma = 3 \) and \(\lambda_1 = 0.8 \). For these values, statistics of the informative parameters (Table 3), kernel distributions (Fig. 6 second row) and Kolmogorov-Smirnov tests (Tables 5, 7) are performed.

The main conclusion remains the same (the two catalysts can be discriminated) but only with the distribution of the distance variation: the tangential length is no longer discriminant with the direct approach whereas the results obtained for some sub-populations show discriminations between catalysts for both the distance variation and the tangential length (Table 7).

31
Fig. 7. PSD estimated using the square of the modulus of the Discrete Fourier Transform. 1st row: left, periodogram with size 512 × 512 obtained using zero-padding method (PSD1); right, interpolated PSD1 in polar coordinates. 2nd row: left, PSD1 smoothed by a Gaussian filter with $\sigma = 3$ (PSD2); right, interpolated PSD2 in polar coordinates. 3rd row: left, PSD1 smoothed by a Gaussian filter with $\sigma = 6$ (PSD3); right, interpolated PSD3 in polar coordinates.

HRTEM observations of the two catalysts show important differences in the organization of the active phase on the support: Cat1, containing high amounts of active phase, presents as well stacks and aggregates of CoMoS slabs, in which slabs appear curved whereas Cat 2 presents isolated slabs of stacks of slabs, with a rather straight morphology. This difference is not clearly expressed by traditional measures of the length and stacking numbers. L_θ is higher in Cat 1 (the CoMoS/alumina catalyst with high Mo loading) as it can be observed in Table 2 and Fig. 6, first row. It is in coherence with the observation of aggregated slabs. L_θ translates the curvature of the slabs and can be a proper descriptor of the aggregation of the slabs. The discrimination of the catalysts using the distribution of L_θ is obtained using AR-based method for PSD estimation and not the Fourier-based method (Tables 4, 5).

Thus, ARFBF morphology characterization proposed in the paper seems to be a promising feature-based description to separate the two sets of HRTEM images representing active phases of the two catalysts.

CONCLUSION

In this paper, we have proposed an ARFBF based morphological description of HRTEM image morphological textures corresponding to the observation of material micro-structures at nanometer scale. This morphological description is based on 2-D parametric spectrum estimation.

We described the different components of the ARFBF model and we explained parameter estimation methods that lead to 2-D spectrum estimation. For the estimation of FBF Hurst parameter, we made a comparative study of different methods in order to select a robust one with respect to different sampling generators.

The obtained Hurst and AR features provide a description of heterogeneous HRTEM image as a stochastic field, where the active phase fringes are associated with AR parameters and geometric fringe features have been derived by morphology analysis of the spectral fringe information.

The analysis proposed allows to discriminate between two catalyst classes and opens some prospects on automatic monitoring of active phases associated with different materials, as well as material at nanoscale.

It would be interesting to investigate further, the relationship between the catalytic performance and the value of L_θ parameter.

ACKNOWLEDGMENT

This research was supported by ARC6 grant from Rhône-Alpes French region. The authors would like to thank the reviewers (their feedback has allowed significant improvement of the paper quality) and also Anne Sophie Gay from IFPEN for her valuable help.

LIST OF SYMBOLS

- A: 2-D Auto-Regressive (AR) field.
- QP_l: prediction domains for A and associated with quarter plans, $l = 1, 2$.
- $D \subset \mathbb{Z}^2$: prediction support for A. For instance,
 - $D_{QP_1} = \{0 \leq m_1 \leq M_1, 0 \leq m_2 \leq M_2\} \setminus (0,0)$;
\[D_{QP2} = \{-M_1 \leq m_1 \leq 0, 0 \leq m_2 \leq M_2\} \setminus (0, 0). \]

- \((M_1, M_2) \): order of the 2-D AR model \((M_1 = M_2 = 10\) are used for experimental results).
- \(\theta_{M_1 M_2} \): set of parameters with the form \(\{\sigma_{e_i}, \{\beta_{m,i}, m \in D_{QP2}\}\} \) of the AR model.
- \(B_H \): isotropic fractional Brownian field with Hurst parameter \(H, 0 < H < 1. \)
- \(R_H \): auto-correlation function of \(B_H \).
- \(Z \): ARFBF, spatial deterministic convolution of field \(A \) and field \(B_H \).
- \(S \): power spectral density (PSD).
- \(\hat{S}_{B}(u, v) \): wavelet packet spectrum in Cartesian coordinates \((u, v)\).
- \(S_p(r, \theta) \): PSD in polar coordinate.
- \(S'_{r}(r, \theta) \): PSD calculated from AR estimated parameters in polar coordinate.
- \(S^*_{r}(r, \theta) \): PSD after removing the contribution of the first lobe on \(S^* \).
- \(P_1, P_2 \): frequencies providing maximum values of \(S^*, S^*_1 \) respectively.
- \(\alpha_1, \alpha_2 \): thresholds for \(S^*, S^*_1 \) respectively.
- \(\lambda_1 \in [0, 1], \lambda_2 \in [0, \lambda_1] : \alpha_1 = \lambda_1 S^*(P_1) \) and \(\alpha_2 = \lambda_2 S^*(P_1) \).
- \(S^{**}, S^{**}_1 \): binary images from \(S^*, S^*_1 \) when using thresholds \(\alpha_1, \alpha_2 \), respectively.
- \(Q_1, Q_2 \): binary images obtained by using morphological reconstructions with markers \(P_1, P_2 \) respectively.
- \(R \): radius of disk in morphological dilation.
- \(T_c \): sampling period.
- \(G \): distance value.
- \(\Delta \theta \): distance variation (regularity of spacing).
- \(L_\theta \): tangential length (regularity of curvature).
- \(\Gamma \): standard gamma special function.
- \(T \): Cartesian-to-polar transform.

REFERENCES

