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ABSTRACT

Comparison of the quality of despeckled US medical images is complicated because there is no image of
a human body that would be free of speckles and could serve as a reference. A number of various image
metrics are currently used for comparison of filtering methods; however, they do not satisfactorily represent
the visual quality of images and medical expert’s satisfaction with images. This paper proposes an innovative
use of relative multivariate kurtosis for the evaluation of the most important edges in an image. Multivariate
kurtosis allows one to introduce an order among the filtered images and can be used as one of the metrics
for image quality evaluation. At present there is no method which would jointly consider individual metrics.
Furthermore, these metrics are typically defined by comparing the noisy original and filtered images, which is
incorrect since the noisy original cannot serve as a golden standard. In contrast to this, the proposed kurtosis is
the absolute measure, which is calculated independently of any reference image and it agrees with the medical
expert’s satisfaction to a large extent. The paper presents a numerical procedure for calculating kurtosis and
describes results of such calculations for a computer-generated noisy image, images of a general purpose
phantom and a cyst phantom, as well as real-life images of thyroid and carotid artery obtained with SonixTouch
ultrasound machine. 16 different methods of image despeckling are compared via kurtosis. The paper shows
that visually more satisfactory despeckling results are associated with higher kurtosis, and to a certain degree
kurtosis can be used as a single metric for evaluation of image quality.

Keywords: forward-backward diffusion, multivariate kurtosis, nonlinear coherent diffusion, speckle filtering,
ultrasound images.

INTRODUCTION

Ultrasound (US) imaging is a common diagnostic
tool used all over the world, compare the books by
Schäberle (2005) and Sanches et al. (2012). However,
the US medical images have some limitations due to
the fact that they are covered with bright speckles,
which mask the true edges/contours of the tissues in
the image.

Image quality comparison and assessment is a
comprehensive subject, compare the book by Wang
and Bovik (2006) for all kinds of images, the book
by Loizou and Pattichis (2015) specific to US images,
the review papers by Chandler (2013) or Lin and Kuo
(2011). In the following only a couple of most relevant
aspects of image quality are discussed.

Certainly evaluation of the quality of edges
is particularly critical. For this purpose, the edge
detection figure of merit was introduced by Pratt
(2007), p. 514. The trouble is that the figure of merit is
simple to calculate for straight line edges but otherwise
it becomes quite complicated. In fact, Pratt (2007)
considers an example of a vertical edge only.

An obvious way to evaluate image quality is
through subjective tests (Chandler, 2013). In these

tests, a group of human subjects are asked to judge
the quality. The scores given by observers are averaged
to produce the mean opinion score (MOS). However,
subjective tests of medical images are quite expensive
and difficult to conduct. The other approach to evaluate
image quality is the objective one (Chandler, 2013). In
this case one can choose among full reference (FR),
reduced reference (RR), and no reference (NR) image
quality evaluation.

FR quality assessment of US images would involve
the use of a computer-generated image and there
are some doubts whether the results can really be
carried over to natural images. Examples of FR
quality assessment include the structural similarity
measure (SSIM; Wang et al., 2004) and edge-strength-
similarity-based metric (ESSIM; Zhang et al., 2013).

NR quality assessment has been a subject of a
very active research in recent years (Ferzli and Karam,
2009; Li et al., 2016; Narvekar and Karam, 2011;
Tong et al., 2005; Zhu and Karam, 2014). A more
or less typical example of NR quality assessment is
the following (Tong et al., 2005). Examples of images
are prepared and two classes are composed: one of
high quality images and one of low quality. These
classes are defined based on the external knowledge.

79



NIENIEWSKI M ET AL: Comparison of ultrasound image filtering methods

Then a binary classifier is built for separation of
these classes. For this purpose a quality metric is
formulated based on probability of a new image
being classified as belonging to high quality class.
Virtanen et al. (2015) describe a database developed
for purposes of testing NR image quality assessment
algorithms. Wu et al. (2015) use a publicly available
LIVE II database for subjective evaluation of images.
It would be tempting to adapt the developed NR
techniques to comparisons of medical US images.
Unfortunately, there is no similar database for speckle-
contaminated US images. Under these circumstances,
Mateo and Fernández-Caballero (2009) propose the
use of computer-simulated US images, where both
the noise-free and noisy versions of the same image
are obtained and filtering effects of various algorithms
are compared. Rosa and Monteiro (2014) present
a table comparing 17 despeckling filters via 15
different metrics calculated for computer simulated
images. Thangavel et al. (2009) present a comparative
study of removal of speckled noise based on various
filters. Mittal et al. (2013) propose NR image quality
assessment based on natural image statistics and do not
use prior human opinion score.

The aim of the current paper is to provide a new
metric, that is relative multivariate kurtosis, which
could serve as a NR measure for comparison of image
despeckling methods and which would be consistent
with subjective human feeling. The innovation of
this metric in comparison with those available in
the literature is that it is the absolute measure,
meaning that multivariate kurtosis is calculated for
the filtered image independently of any other image,
whereas the vast majority of the known metrics do
make comparisons, by necessity with the original
noisy image since the ideal noiseless image does not
exist. Further innovation stems from the empirically
confirmed observation that although the relative
multivariate kurtosis directly deals only with the edges,
it provides a numerical measure which is in a good
agreement with a visual evaluation of the quality of
images and with the medical expert’s satisfaction.
The important point is that the existing metrics are
numerous and somewhat complementary; for example,
Loizou (2013) and Loizou and Pattichis (2015) use
17 metrics and it is very hard, if not impossible, to
summarize their individual contributions in a single
number representing the image quality.

MATERIALS AND METHODS

THEORETICAL BACKGROUND
The multivariate and in particular bivariate kurtosis

is a generalization of the well-known univariate

kurtosis β2, which is defined for a (univariate)
probability density as a ratio of the fourth central
moment to the square of the second central moment

β2 = m4/m2
2 . (1)

The respective central moments are defined as

m2 = σ
2
x = E[(X −µx)

2] (2)

and
m4 = E[(X −µx)

4] , (3)

where µx is the mean value of the random variable
X , σ2

x is a variance, and the symbol E denotes the
expectation operator.

The meaning of kurtosis is nicely explained in
DeCarlo (1997). For the normal distribution kurtosis
β2 = 3. For β2 > 3 the distribution has a higher peak
and heavier tails than the normal distribution. For β2 <
3 the distribution has lower peak and lighter tails.

The original idea of the univariate kurtosis was
generalized by Mardia (1970) for measuring how
much a given multivariate probability density deviates
from the multivariate normal distribution.

For our purposes a simpler set of equations
referring to bivariate distribution is appropriate in
accordance with the fact that we are dealing with 2-
D images. A set of equations used for the calculation
of the bivariate kurtosis is as follows (Caviedes and
Oberti, 2004; Zhang et al., 1999). The mean values of
the X and Y variables are

µx = E[X ] =
n

∑
i=1

xi

m

∑
j=1

f (xi,y j) , (4)

µy = E[Y ] =
m

∑
j=1

y j

n

∑
i=1

f (xi,y j) , (5)

where f (xi,y j) denotes the probability density.
Similarly, the variances σ2

x and σ2
y are

σ
2
x =

n

∑
i=1

(xi −µx)
2

m

∑
j=1

f (xi,y j) , (6)

σ
2
y =

m

∑
j=1

(yi −µy)
2

n

∑
i=1

f (xi,y j) . (7)

The covariance between variables X and Y is given
by the equation

σ
2
xy =

m

∑
i=1

n

∑
j=1

(xi −µx)(y j −µy) f (xi,y j) , (8)

and the correlation coefficient ρ is

ρ = σ
2
xy/[σxσy] . (9)
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The marginal distributions f (x) and f (y) are

f (x) =
m

∑
j=1

f (x,y j) , f (y) =
n

∑
i=1

f (xi,y) . (10)

Now the auxiliary parameters γk,l are defined with
indices k, l assuming the values from 0 to 4

γk,l =

n
∑

i=1

m
∑
j=1

(xi −µx)
k(yi −µy)

l f (xi,y j)

(
n
∑

i=1
(xi −µx)2 f (xi))k/2 (

m
∑
j=1

(y j −µy)2 f (y j))l/2
.

(11)

The bivariate kurtosis β2,2 is calculated according
to the following equation

β2,2 =
γ4,0 + γ0,4 +2γ2,2 +4ρ(ργ2,2 − γ1,3 − γ3,1)

(1−ρ2)2 .

(12)

It is explained in Romeu and Ozturk (1993)
and in the book by Timm (2002), p. 121, that the
sample estimate of multivariate kurtosis converges in
distribution to normal distribution with mean µ =
p(p + 2) and variance σ2 = 8p(p + 2)/n, where p
is the dimensionality of the variable, and n is the
number of points in the sample. In our case testing
for normality would not give the information we need
since we want to use kurtosis precisely for evaluating
the quality of edges contained in an image. Obviously,
filtering an image results in the change of the shape
of edges and in the change of the local kurtosis,
which is calculated in a frame covering the edge. We
assumed frames of size 8 × 8 pixels, which seems
to be a reasonable choice. For a given frame we
calculated the 2-D Fourier transform and shifted the
origin of the transform to the center of the frame.
Then we found the magnitude of the transform and
normalized it by dividing by the sum of all the
pixel values. This normalized magnitude played the
role of the probability density distribution described
approximately by a 2-D Gaussian function.

SOFTWARE AND HARDWARE

All the described calculations were executed in
Matlab. One notable exception worth mentioning is the
selection of the corner points of the frames used for
calculating local kurtosis. For each frame one corner
point has to be specified, and we found that it can be
speedily done using a plugin Point Picker in ImageJ
(Thevenaz, 2016).

The program used for artificial US image
generation was the Pseudo B-Mode Ultrasound Image

Simulator available at Sheet (2016). The size of the
generated image was 128× 129 pixels. The phantom
images were taken using the general purpose high
resolution and low contrast phantom model 1525
(Fig. 6) and the extra large cyst phantom model 571
(Fig. 9), as specified by Dansk (2016a;b).

The natural and phantom US images were taken
by means of the SonixTouch ultrasound system from
Ultrasonix Medical Corp., from its output which gives
access to logarithmically compressed images which
have not been subjected to any preprocessing and in
fact are quite noisy. The SonixTouch is a specialized
ultrasound machine that gives access to various signals
otherwise inaccessible in a standard equipment.

The settings on the SonixTouch for the general
purpose phantom image were: frequency 13.3 MHz,
focal depth 4 cm, gain 61 %, dynamic range 75 dB,
persistence 2, map 7, and the size of the image was
456 × 444 pixels. The setting for the cyst phantom
image were: frequency 6.6 MHz, depth 6 cm, and the
rest of parameters as for the general purpose phantom,
with the size of the image 456 × 258 pixels. The
settings for the thyroid image were: frequency 10
MHz, focal depth 4 cm, gain 50 %, dynamic range
75 dB, persistence 2, and map 4. The settings for the
carotid artery were the same, except gain was 50 %,
with the size of the thyroid and carotid artery images
equal to 520×256 pixels.

A number of tests of despeckling methods were
conducted using filters available from various sources.
In particular, the code for the filters developed by
Loizou and other researchers was taken from Loizou
(2013) and Loizou and Pattichis (2015). Various
aspects of these filters are also discussed in Loizou et
al. (2005; 2006; 2012).

Consideration of the details of Loizou filters
would take too much place and here only the names
of the filters and their popular abbreviations are
specified (compare also Fig. 2): Diffusion Filter
DsFad; Linear Scaling Filters DsFca, DsFlecasort,
DsFls; Geometric Filter DsFgf4d; Homomorphic
Filter DsFhomo; Maximum Homogeneity over Pixel
Neighborhood Filter DsFhomog; Homogeneous
Mask Area Filter DsFlsminsc; First-Order Statistics
Filter DsFlsmv; Median Filter DsFmedian; Speckle-
Reducing Anisotropic Filter DsFsrad; Wavelet Filter
DsFwaveltc; Wiener Filter DsFwiener2.

The Non-Local Means Filter, denoted DsNLM
here, was obtained from Buades et al. (2005) and
Manjon-Herrera (2016). The Nonlinear Coherent
Diffusion Filter, denoted DsNCD, was taken from
Nieniewski and Zajączkowski (2014), and Forward-
Backward Diffusion Filter DsFBD from Nieniewski
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and Zajączkowski (2016). In order to make possible
comparisons all filters have to process a common
image, and it was assumed that this image is log-
compressed since this was the most common case from
the point of view of the software availability.

KURTOSIS VS. MEDICAL EXPERT
ASSESSMENT OF FILTERED IMAGES

In order to compare kurtosis with medical
assessment of the quality of filtered images we
juxtaposed two tables. The first, that is Table 1
contains results of calculating kurtosis for the image
of the carotid artery adapted from Nieniewski (2014),
Fig. 1(a), and filtered as shown in Fig. 12 below.
The second, that is Table 2 contains ranking the
filters according to the neurovascular specialist and
is adapted from Loizou et al. (2014), Table 4. It is
based on the evaluation of 100 asymptomatic and
symptomatic images of a carotid artery.

A direct one-by-one comparison of the entries of
both tables is impossible because some of their filters
are different or just have different names (the code
indicates that DsFmedian from Table 1 is DsFhmedian
in Table 2). However, a subset of filter names is
common to both tables. Comparing this common part
of Tables 1 and 2 as well as Fig. 12 one comes
to the following conclusions. Increasing kurtosis
corresponds to better visual quality of edges in filtered
images, the best being DsFlsmv and DsFsrad, and
the worst DsFwiener2 and DsFlsminsc. In this range
there is a good agreement between calculated kurtosis,
visual evaluation, and medical expert’s satisfaction.
The range of higher values of kurtosis cannot be
compared with available medical expert’s opinion;
however, inspection of Fig. 12 indicates further visual
improvement of filtered images, which is desirable in
case of further processing of images, when certain
tissues are to be segmented automatically.

RESULTS

EXPERIMENTS WITH COMPUTER-
GENERATED IMAGE

The first example of the calculation of kurtosis
relates to the computer-generated image of an artery
depicted in Fig. 1. The obvious advantage of this image
is its utmost simplicity. In order to get a clear picture
of how quality of edges is related to kurtosis, a certain
number of frames are selected from the image such
that they cover the interesting area in the image. The
results given below refer to the average kurtosis of

these frames so the influence of individual frames is
reduced. In this way a local kurtosis rather than the
global one for the whole image is calculated. The
particular arrangement of frames covering one edge in
the image is shown in Fig. 1(c). The image of Fig. 1(b),
and others to be presented below, were filtered using 14
methods collected and implemented by Loizou as well
as the DsNLM filter, and the results for Fig. 1(b) are
depicted in Fig. 2.

Table 1. Ranking of filters for an exemplary image of
the carotid artery. The results are ordered according to
decreasing kurtosis.

Rank Relative Kurtosis
Original 1
DsFls 1 4.4144
DsFhomog 2 4.1529
DsNCD 3 4.0832
DsFlecasort 4 4.0829
DsFwaveltc 5 3.1433
DsFca 6 2.7545
DsFsrad 7 2.6541
DsFhomo 8 2.4299
DsFad_ver_1 9 2.4116
DsNLM 10 1.9442
DsFad_ver_2 11 1.9269
DsFlsmv 12 1.7418
DsFmedian 13 1.3890
DsFgf4d 14 1.3553
DsFwiener2 15 1.3407
DsFlsminsc 16 0.9959

Table 2. Ranking of filters for carotid artery images
by a neurovascular specialist. The DsFhmedian filter
is the same as DsFmedian in Table 1, and the
inferior DsFmedian filter in the current table should
be dropped. DsFlndif, DsFkuwahara denote Coherent
Nonlinear Anisotropic Diffusion Filter and Kuwahara
Filter, respectively.

Rank Score
Original 82
DsFlsmv 1 91
DsFhmedian 2 90
DsFkuwahara 3 83
DsFsrad 4 79
DsFad 5 77
DsFmedian 6 76
DsFnldif 7 75
DsFlsminsc 8 74
DsFgf 9 73
DsFwiener 10 71
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(a) (b) (c)

Fig. 1. (a) Original image of the ideal carotid artery without speckles. (b) Computer-generated image with
speckles. (c) Frames used for calculating kurtosis.

Fig. 2. Results of Loizou and DsNLM filtering for the
computer-generated image in Fig. 1(b). The upper left
image Ds is a repetition of Fig. 1(b).

The results of calculating kurtosis for the
computer-generated image under consideration are
shown in column entitled Fig. 1(b) in Table 3.

One can observe in Table 3 that various original
images have widely different kurtosis and comparisons
may be simplified if we use a relative kurtosis rather
than the absolute one. For this purpose all values in any
column are divided by kurtosis of the original image
in that column, and the results of this operation are
presented in Table 4.

Some caution should be exercised when analyzing
Tables 3 and 4 since no effort was made to
optimize various filtering methods by adjusting their
parameters. Whenever possible, simply the default
parameters specified in Loizou (2013) were used. In
the case of the DsNLM filter the parameters were:
search window of side t = 5, similarity window of side
f = 2, and filtering parameter h = 10 (Buades et al.,
2005; Manjon-Herrera, 2016). For the DsNCD filter
the parameters were taken from Nieniewski (2014).
Inspection of the column designated Fig. 1(b) in Table
4 reveals that the maximum of relative kurtosis of
approx. 1.48 was obtained with the DsFls, and the
minimum of 1.09 for DsFlsminsc. Comparing the
images one could say the DsFls filter is characterized
by relatively sharp edges, whereas for DsFlsminsc
the edges are more fuzzy. In summary, the filtering
by means of Loizou methods results in a certain
increase of kurtosis, but it is hard to actually see better
quality when a small change in the value of kurtosis is
considered. The human eye is not that sensitive. It may
be noteworthy that strictly speaking kurtosis attempts
to assess the quality of the edges rather than the overall
appearance of the image, and the overall improvement
is rather a by-product of improving the edges.
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Table 3. Kurtosis for images of Figs. 1(b), 6(a), 9(a), 11(a) with Loizou, DsNLM, and DsNCD filters. The entries
for DsFsrad filter were calculated, but the filtered images are visually unsatisfactory and are omitted in Fig. 2
and others.

Fig. 1(b) Fig. 6(a) Fig. 9(a) Fig. 11(a) Carotid artery,
Ds in Fig. 12

Noisy original 16.3634 25.0361 17.9990 9.9953 21.2495
DsFad_ver_1 19.2793 30.5570 24.2368 14.0957 51.2456
DsFad_ver_2 18.7665 27.2560 21.1573 12.1885 40.9450
DsFca 20.3625 35.7851 28.9888 14.4012 58.5322
DsFgf4d 19.8570 29.6929 21.2105 11.5301 28.7991

DsFhomo 21.0617 35.5243 23.7662 15.4907 51.6340
DsFhomog 22.3698 28.8664 24.6762 21.3712 88.2466
DsFlecasort 21.5025 39.8675 36.0942 18.2440 86.7599
DsFls 24.2665 50.6443 41.7878 21.5752 93.8030
DsFlsminsc 17.8642 20.3367 16.7258 9.5927 21.1627

DsFlsmv 19.0897 32.9382 18.9452 12.6113 37.0118
DsFmedian 18.0387 28.1476 19.1778 11.8536 29.5164
DsFsrad 18.6870 60.7419 18.4322 20.1639 56.3978
DsFwaveltc 18.9927 27.0561 27.4129 18.9772 66.7940
DsFwiener2 19.1694 32.4901 19.6838 12.7861 28.4884
DsNLM 18.2604 40.6894 23.5129 12.4956 41.3123
DsNCD (3 iters.) 22.8319 39.2659 34.3443 18.9755 86.7670

Table 4. Relative kurtosis for images of Figs. 1(b), 6(a), 9(a), 11(a) with Loizou, DsNLM, and DsNCD filters.

Fig. 1(b) Fig. 6(a) Fig. 9(a) Fig. 11(a) Carotid artery,
Ds in Fig. 12

Noisy original 1 1 1 1 1
DsFad_ver_1 1.1782 1.2205 1.3466 1.4102 2.4116
DsFad_ver_2 1.1469 1.0887 1.1755 1.2194 1.9269
DsFca 1.2444 1.4293 1.6106 1.4408 2.7545

DsFhomo 1.2871 1.4189 1.3204 1.5498 2.4299
DsFhomog 1.3671 1.1530 1.3710 2.1381 4.1529
DsFlecasort 1.3141 1.5924 2.0053 1.8253 4.0829
DsFls 1.4830 2.0229 2.3217 2.1585 4.4144
DsFlsminsc 1.0917 0.8123 0.9293 0.9597 0.9959

DsFlsmv 1.1666 1.3156 1.0526 1.2617 1.7418
DsFmedian 1.1024 1.1243 1.0655 1.1859 1.3890
DsFsrad 1.1420 2.4262 1.0241 2.0173 2.6541
DsFwaveltc 1.1607 1.0807 1.5230 1.8986 3.1433
DsFwiener2 1.1715 1.2977 1.0936 1.2792 1.3407
DsNLM 1.1159 1.6252 1.3063 1.2501 1.9442
DsNCD (3 iters.) 1.3953 1.5684 1.9081 1.8984 4.0832
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Fig. 3. Results of filtering the computer-generated
image from Fig. 1(b) using NCD iterations in the range
from 0 through 15 in steps of 3. The upper left image is
a repetition from Fig. 1(b).

The aim of Tables 3 and 4 is not to find out
which filtering method is the best one, but rather
to illustrate what values of kurtosis are obtained
and how they compare with the visual evaluation
of the respective images. The filtering results can
be modified by changing parameters; for example,
changing the number of iterations in iterative methods
obviously would modify Table 3. Having said this we
can make a number of comments on Table 3. The
ideal image of Fig. 1(a) has low kurtosis of 9.7167,
and kurtosis of the speckled image in Fig. 1(b) is
16.3634 (compare also Fig. 4(a) below). This means
that kurtosis increases when speckles are added to a
noiseless image. Inspection of Table 4 reveals that
in practically all cases kurtosis increases as a result
of filtering. The only exception is the DsFlsminsc
filter. The Speckle Reducing Anisotropic Diffusion
DsFsrad filter from Loizou (2013) is included in Tables
3 and 4; however, the respective filtered images are
omitted. The reason for this omission is that Figs. 6(a),
9(a), 11(a) were obtained in an US machine and
have a nonuniform background. The DsFsrad filter
gave good results for kurtosis of the filtered images;
however, these images have too high nonunifomity of
background in comparison with originals and cannot
be accepted. The case of the computer-generated
image does not present this problem.

In another experiment the same image of Fig. 1(b)
was filtered by means of the DsNCD filter (Nieniewski
and Zajączkowski, 2014). In this case the conditions
were more uniform in the sense that only one filter
was used. The filtering results are shown in Fig. 3.
The dependence of kurtosis on the number of iterations
is illustrated in Fig. 4(a), which shows that kurtosis
increases almost linearly with a number of NCD
iterations in a relatively wide range.

In the next experiment the computer-generated
image of Fig. 1(b) after NCD despeckling was
subjected to further filtering by means of the DsFBD
filter. The parameters of this filter were taken from
Nieniewski and Zajączkowski (2016). In particular,
Fig. 5 illustrates results of three NCD iterations
followed by a number of FBD iterations in the range
from 0 to 10. It can be observed in Fig. 5 that the
DsFBD filter really emphasizes the edges, although the
number of iterations should not be too large. Fig. 4(b)
shows that the DsFBD filter reduces kurtosis for higher
number of FBD iterations, but this is the situation when
the speckles have been filtered out.
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Fig. 4. (a) Kurtosis as a function of number of NCD
iterations for image in Fig. 1(b). For comparison, the
lower red point on the vertical axis represents kurtosis
of image in Fig. 1(a), and the upper green point
corresponds to kurtosis for image in Fig. 1(b) filtered
with a simple median filter of size 7× 7. (b) Kurtosis
as a function of number of FBD iterations for image in
Fig. 1(b). The number of prior NCD iterations changes
from 1 to 15 and is specified as a parameter for each
curve.

85



NIENIEWSKI M ET AL: Comparison of ultrasound image filtering methods

Fig. 5. Results of filtering the computer-generated
image from Fig. 1(b) using 3 NCD iterations and
subsequent FBD iterations in the range from 0 through
10. The upper left image is a repetition from Fig. 1(b)
and the next image is the result of 3 NCD iterations.

EXPERIMENTS WITH IMAGES OF
PHANTOMS
The first example is an image of a general purpose

phantom shown in Fig. 6(a) in which one of the
cylinders imitating a blood vessel is clearly visible
and other cylinders on the same level are much less
distinct. Fig. 6(b) depicts the zoom of the cylinder
area with the assumed frames imposed. The results of
Loizou and DsNLM filtering for this case are shown in
Fig. 7, and kurtosis values are specified in Tables 3 and
4 in the column entitled Fig. 6(a). Fig. 8 shows kurtosis
as a function of a number of NCD iterations for the
image in Fig. 6(a). This figure might be compared with
kurtosis in Fig. 4. The linearity of the curve is not as
good as in Fig. 4(a); nevertheless, the trend obviously
is the same.

The second example is the image of the phantom
with an imitation of a cyst (there are no speckles inside
the cyst) shown in Fig. 9(a). For this image the selected
frames are depicted in Fig. 9(b). Results of Loizou
and DsNLM filtering are illustrated by Fig. 10(a), and
kurtosis values are given in Tables 3 and 4 in the
column designated Fig. 9(a).

EXPERIMENTS WITH NATURAL US
IMAGE

A natural image of a thyroid, in which an artery
is visible, is shown in Fig. 11(a). For this image the
selected frames are depicted in Fig. 11(b). Results
of Loizou and DsNLM filtering are illustrated by
Fig. 10(b), and kurtosis values are given in Tables 3
and 4 in the columns designated Fig. 11(a). Another
natural image, of a carotid artery, is also shown and
discussed in detail below (compare Fig. 12).

DISCUSSION

KURTOSIS VS OTHER IMAGE QUALITY
METRICS

Basically the purpose of the current paper is
a development of such image quality metric which
would be consistent with visual perception and
medical expert’s satisfaction and would be preferable
in comparison with other metrics. For this reason the
actual state of affairs in this area will be considered
in more detail. Loizou and Pattichis (2015) present
a number of metrics for evaluation of filtered image
quality. Their book is not an exclusive source of
information in this respect, but it is a recent one and is
by far the most comprehensive. The metrics considered
in Loizou and Pattichis (2015) measure the quality
change between the noisy, unprocessed image and the
image filtered by any of the above mentioned methods.
The specific names of the metrics and their commonly
used abbreviations are the following:

– Universal quality index (Q) defined by the equation

Q =
σg f

σ f σg
× 2 f g

( f )2 +(g)2
×

2σ f σg

σ2
f +σ2

g
, (13)

where g and f denote the mean of the original
and filtered images, respectively; σg and σ f are
standard variations of the original and filtered
images, and σg f denotes the covariance between
both images. The value of the universal quality
index satisfies the condition −1 ≤ Q ≤ 1, and
higher values of Q indicate better agreement of
compared images.

– Mean-square error (MSE).

– Root mean-square error (RMSE).

– Minkowski metric (Err).

– Geometric average error (GAE).
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(a) (b)

Fig. 6. (a) Phantom image with a cross section of a cylinder in the upper left corner of the image. (b) Frames
used for calculating kurtosis.

Fig. 7. Results of Loizou and DsNLM filtering the general purpose phantom image in Fig. 6(a).

– Signal-noise-ratio (SNR).

– Peak signal-noise ratio (PSNR).

– Structural similarity index (SSIN or SSIM), which

is a generalization of the universal quality index Q.

– Speckle index (C) defined by the equation
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Fig. 8. Kurtosis as a function of number of NCD iterations filtering the general purpose phantom image in
Fig. 6(a).

(a) (b)

Fig. 9. (a) Phantom image of a cyst to the right of the image center. (b) Frames used for calculating kurtosis.

C =
1

MN

M

∑
i=1

N

∑
j=1

σ2
i, j

µi, j
. (14)

The speckle index is an average measure of the
amount of speckle present in the image of size M×
N, with ratio variance/means computed locally.
This is the only metric which uses exclusively
the filtered image. The speckle index in general
is lower for filtered images in comparison with
unfiltered ones.

– Contrast-to-speckle ratio (CSR).

– Average difference between the original and
dispeckled image (AD).

– Structural content (SC).

– Normalized cross-correlation (NCC).

– Maximum difference (MD).

– Laplacian mean-square error (LMSE).

– Normalized absolute error (NAE).

The details of particular metrics are not of primary
importance for us, and besides they can be easily
found in the cited literature. The universal quality
index is specified more fully here in order to show
an example how quality metrics are typically defined.
All of the metrics specified in Loizou and Pattichis
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(a) (b)

Fig. 10. (a) Results of Loizou and DsNLM filtering the cyst phantom image of Fig. 9(a). (b) Results of Loizou and
DsNLM filtering the natural thyroid image of Fig. 11(a).

(2015), with exception of the speckle index, are based
on comparison between the reference image and the
filtered image. Since the noiseless reference image
in unavailable, the original noisy image is taken as
a reference. The speckle index, also presented in

more detail above, certainly does not take directly
into account all details of the filtered images, such as
tissue edges, etc. With lack of ideal noiseless image
it is even hard to say in general whether a given
metric should increase or decrease in order to get
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(a) (b)

Fig. 11. (a) Natural image of a thyroid. (b) Frames used for calculating kurtosis.

a better image. Loizou and Pattichis (2015), vol. I,
pp. 38 explicitly say that “the quality measures ...
do not necessarily correspond to all aspects of the
expert’s visual perception ... , but if they are all
combined together, and with the subjective tests, may
offer a more accurate evaluation result. It is noted
that subjective tests are tedious, time consuming, and
expensive, and the results depend on the expert’s
background, motivation, and other factors.” All the
proposed measures cover the visual quality only in
part, and it would be desirable to have a measure that
is consistent with visual perception as well as medical
expert’s satisfaction. The combination of such a large
number of metrics is hard to implement since all of
them should be included with some weight, and all
the weights should be adjusted in such a way that
the expert’s satisfaction could be predicted. Of course,
one can analyze one metric at a time for a particular
example of image of, say, carotid artery or any other
anatomical structure, but this is far from universal
approach.

In order to be more specific we will discuss
some details from Loizou and Pattichis (2015).
Three major sets of filtered images are presented
in vol. I, section 7.3, of this book. In particular,
Figs. 7.4, 7.5, and 7.6 show, respectively, carotid artery
images, cardiac images, and carotid artery video. The
calculated metrics are contained in Tables 7.3–7.5. An
investigative look at this plethora of data confirms

that it may be very hard to combine these metrics
in a single measure which would be consistent with
medical expert’s opinion. And obviously Loizou and
Pattichis (2015) do not suggest any particular solution.

As indicated somewhat loosely in Loizou and
Pattichis (2015), vol. I, page 114, and vol. II,
page 66, the best visual results as assessed by
two experts were obtained for the filters DsFlsmv,
DsFlsminsc and DsFkuwahara. The filters DsFgf4d,
DsFad, DsFncdif, and DsFnldif showed good visual
results but smoothed the image, loosing subtle details
and affecting the edges. Table 3.5A in vol. II is more
specific and shows the results of the visual evaluation
of the original and despeckled images made by a
cardiovascular surgeon and a neurovascular specialist.
They evaluated 100 ultrasound images of carotid
artery before and after filtering: 50 asymptomatic and
50 symptomatic. For the cardiovascular surgeon, the
best despeckle filter was the DsFlsmv followed by
DsFgf4d, DsFhmedian, DsFhomog and original. For
the neurovascular specialist, the best filter was the
DsFgf4d, followed by DsFlsmv, original, DsFlsminsc,
and DsFhmedian. The difference in the score between
the two vascular specialists stems from the fact that
the cardiovascular surgeon was primarily interested
in the plaque composition and texture evaluation,
whereas the neurovascular specialist was interested in
the degree of stenosis and the lumen diameter in order
to identify the plaque contour.
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Table 5. Ranking of filters by relative kurtosis vs
neurovascular specialist. The table is valid for carotid
artery images. The results in the left column are
ordered according to decreasing kurtosis.

Relative Kurtosis Neurovascular specialist
DsFsrad DsFlsmv
DsFad DsFhmedian
DsFlsmv DsFsrad
DsFmedian DsFad
DsWiener2 DsFlsminsc
DsFlsminsc DsWiener

Although the above description seems clear, there
is a technical difficulty arising from the fact that the
stack of available filters is changing in time. In this
situation it turned out more practical to use evaluated
common filters taken from Loizou et al. (2014) rather
than the book of the same author. Based on the Loizou
et al. (2014) we juxtaposed their results with our own
in Table 5. The filters in this table are ranked by
kurtosis in the left column, and by the neurovascular
specialist in the right column. The positions of the
“namesake” filters are relatively close. In fact Table 5
contains the information extracted from Tables 1 and
2, and its contents could be compared with a collection
of filtered images in Fig. 12, in which Ds denotes the
unfiltered image.

GENERAL EXAMINATION OF RELATIVE
KURTOSIS RESULTS

Several noisy US images have been presented.
They include computer-generated image, phantom
images, and natural images. All of these images
have been subjected to speckle filtering using 16
methods. For each filtered image kurtosis has been
calculated. Because of different image contents their
kurtosis may be quite different. To make comparisons
easier it is better to use relative kurtosis, calculated
with reference to the original unfiltered image.
The relative kurtosis quantitatively describes the
effectiveness of the filtering method for a given
image. The experiments have shown that with the
assumed parameters of the filters the strongest filtering
results are obtained for the Linear Scaling Filter
DsFls independently of the choice of the original
image (compare Table 4). Such filtering may be useful
when segmentation and finding the tissue borders are
desired, that is further image processing operations
are to be performed. From the medical point of view
relative kurtosis values in the range up to approx. 1.75
are interesting. It is noteworthy that according to the
rightmost column of Table 2 only the top three filters

achieved better medical score than 82 that is value
obtained for the original unfiltered image. Based on the
above assumptions we collected several filtered images
of the carotid artery in Fig. 12 taking into account
particularly those for which there are entries both in
Tables 1 and in 2. It should be pointed out that we tried
to use default filtering parameters; however, changing
their values, for example the number of iterations,
whenever applicable, one might influence to some
degree the ranking of a given filter.

It is obvious from Fig. 12 that there is some
oversmoothing of images for highest values of
kurtosis, and the best, from medical point of view,
images are for medium kurtosis, where the edges are
to some degree more pronounced and simultaneously
the details of the image are maintained.

ADDITIONAL REMARKS
It is noteworthy that vol. II of Loizou and Pattichis

(2015) deals with an even higher number of 65 textural
features. However, these features also serve another
purpose as they can differentiate between symptomatic
and asymptomatic images of carotid artery and are
calculated for appropriate image fragments. In this
case the quality metric based on multivariate kurtosis
can be of some use, but it would be a matter for further
investigation.

Although the conducted experiments were
conducted with log-compressed images, it is obvious
that the same approach could be used for comparisons
of various filters dealing with uncompressed images.
The comparison of filters for compressed and
uncompressed images would necessitate inclusion
of the logarithmic operation into the processing
channel of relevant filters. This is not a particularly
hard problem; however, there are no medical scores
available for such a case and it would be necessary
to develop a new dataset. Similarly, new varieties of
filters keep showing up in the literature all the time and
further collection of data might be necessary.

Apart from image quality assessment methods
mentioned above there exist some methods which
allow one to evaluate certain quality features of images
based on one-dimensional kurtosis (Caviedes and
Oberti, 2004; Ferzli et al., 2010; Zhang et al., 2011).
However, these papers do not consider despeckling
evaluation methods nor use multivariate kurtosis.

CONCLUSIONS AND FUTURE
DIRECTIONS

The objective of this paper has been to prove
the usefulness of relative multivariable kurtosis for
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Fig. 12. Comparison of the filtering results for the carotid artery arranged according to the decreasing kurtosis.

comparison of US image despeckling methods. The
main idea of the presented concept is to directly
evaluate the most interesting edges in the image
by means of relative multivariable kurtosis. Human
vision system is quite sensitive to edges and easily
differentiates between sharp and indistinct, imprecise,
fuzzy edges. Multivariable kurtosis offers a numerical
measure which is consistent with human perception
of edges. In a typical situation kurtosis increases
due to speckle-removing filtering. Because of the
predominant meaning of edges in an image the
usefulness of multivariable kurtosis carries over from
visual assessment to medical expert’s satisfaction with
images. In this way we can predict how he/she would
evaluate US image quality after filtering. This is
particularly important when various filtering methods
have to be compared. Multivariable kurtosis does
not need any auxiliary images for calculations. The
intuitive meaning of kurtosis is superior to numerous
image quality metrics, which are much less perception-
related and involve the use of a reference image, which
by necessity is the unfiltered noisy image. This usage
of unfiltered image obscures the meaning of the image

quality metrics described in the literature.

Kurtosis is a highly nonlinear function whose
behavior can best be observed by conducting
numerical experiments rather than theoretical
considerations. A number of despeckling filters have
been tested with a computer-generated image, images
of phantoms, and natural US images. In addition,
it has been shown that multiiterative filtering, such
as DsNCD, results in an approximately proportional
increase of kurtosis. Once the speckles have been
completely removed, one can sharpen the edges by “a
touch” of the DsFBD filtering. In this case the tissue’s
edges become steeper and kurtosis decreases.

In order to have more pronounced numerical
results it is recommended to calculate the average
of local kurtosis values over a number of frames
covering the most interesting edges in the image. It
has been found that selecting frames of size 8×8
pixels and transforming these frames into their Fourier
counterparts gives meaningful results that can be used
for calculating kurtosis and assessing the despeckling
effects.
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It should be emphasized that the use of the
multivariate kurtosis is not restricted to medical
images. In fact, multivariate kurtosis can be used for
any US images as well as other images contaminated
with speckle noise, for example, radar images.

The research reported in this paper can be
continued in several directions. The most obvious need
is the creation of comprehensive datasets of US images
annotated by medical experts as well as creation of
an expandable set of filters to which new filters could
be added and evaluated as they appear in such a way
that their evaluation would not require starting from
scratch every time. The more basic problem, however,
is a search for alternative evaluation metrics that would
not require reference image. Another possible research
direction is selection of filters that are optimal from
the point of view of anatomical tissues or organs
under investigation, from the point of view of a
medical specialist, or from the point of view of further
automatic image processing.
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