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ABSTRACT

The nucleator is a design unbiased method of local stereology for estimating the volume of a bounded object.
The only information required lies in the intersection of the object with an isotropic random ray emanating
from a fixed point (called the pivotal point) associated with the object. For instance, the volume of a neuron can
be estimated from a random ray emanating from its nucleolus. The nucleator is extensively used in biosciences
because it is efficient and easy to apply. The estimator variance can be reduced by increasing the number of
rays. In an earlier paper a systematic sampling design was proposed, and theoretical variance predictors were
derived, for the corresponding volume estimator. Being the only variance predictors hitherto available for the
nucleator, our basic goal was to check their statistical performance by means of Monte Carlo resampling on
computer reconstructions of real objects. As a plus, the empirical distribution of the volume estimator revealed
statistical properties of practical relevance.
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INTRODUCTION

The nucleator (Gundersen, 1988) is a geometric
sampling method to estimate the volume of a particle.
In stereology the term ‘particle’ refers to a compact
subset of three dimensional Euclidean space with
piecewise smooth boundary. The particle should bear
an observable associated point, called the pivotal point,
from which one or more isotropically oriented rays
can be generated. Details are given in Nucleator
representation of volume section.

Because the sampled rays emanate from a common
pivotal point, the nucleator is a method of local
stereology (Jensen, 1998). The direction of an isotropic
random (IR) ray corresponds to a uniform random
point on the unit sphere. If the ray is chosen directly in
space, then we have the 3D nucleator. In practice, the
nucleator is implemented in two stages: first, a pivotal
plane (namely a IR plane through the pivotal point) is
generated, and then a IR ray is generated in the pivotal
plane. The latter version (Gundersen, 1988), generally
called the IR nucleator, was called the pivotal nucleator
by Cruz-Orive and Gual-Arnau (2015) to distinguish
it from the 3D nucleator. Another two stage nucleator
is the vertical nucleator: first, a local vertical plane
(namely a plane containing an arbitrary fixed vertical
axis through the pivotal point), is generated, and then a
sine weighted ray is sampled in this plane (Tandrup,
1993; Jensen, 1998; Howard and Reed, 2005; West,
2012). The three nucleator versions are unbiased for
particle volume, but they are different estimators, and

will generally have different variances for a given
number of rays.

Gual-Arnau and Cruz-Orive (2002) proposed a
systematic design based on coaxial vertical sections a
fixed angle apart (see Estimation of volume with the
nucleator section), and obtained theoretical variance
prediction formulae for the corresponding volume
estimator (Section Nucleator error variance predictors
considered here). The purpose of this paper is to
check the performance of these variance prediction
formulae by means of Monte Carlo replications
of vertical systematic nucleator samples (Section
Assessment of the nucleator variance predictors by
Monte Carlo resampling) on digitized versions of
various test objects (Fig. 1 and Section Material and its
processing). As a plus, the empirical distribution of a
popular version of the nucleator based on two opposite
rays exhibited statistical properties of practical interest
(Subsection Distribution of the nucleator estimators).
The empirical variances computed on the different
objects for different sample sizes, and the performance
of the variance predictors, are displayed in Subsection
Precision of the nucleator estimators and Subsection
Performance of the variance predictors, respectively.
The conclusions pertaining to the performance of
the variance predictors are mainly negative (Section
Discussion and conclusions).

While the nucleator estimator is unbiased for the
volume of an object irrespective of the orientation of
the vertical axis relative to the object, for the proposed
design the distribution of the estimator generally
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depends on that orientation. For this reason, two
mutually perpendicular orientations were considered
for one of the objects (Fig. 1b, c).

VA

a

d

b c

Fig. 1. Test objects studied in this paper, see Material
and its processing section. (a) Synthetic particle whose
radius vector has a known explicit expression. VA:
vertical or polar axis. (b, c) Reconstruction of the right
hemisphere (named H1 in the tables) of a rat brain,
with approximately transversal (b) and longitudinal
(c) vertical axis through the centre of mass of the
object. (d) Reconstructions of the right (H1) and left
(H2) hemispheres of the same rat brain, placed in
antithetic position. The white dot represents the centre
of mass of the union H1∪H2 of both hemispheres.

NUCLEATOR REPRESENTATION
OF VOLUME

Consider a particle Y ⊂ R3 of volume V , which
is the parameter of interest. Let O represent a fixed
pivotal point associated with Y .

The orientation of a ray emanating from O is
determined by a point u on the unit sphere S2 centred
at O. Henceforth u will indistinctly refer to a point

on S2, or to a spatial orientation. If a ray emanating
from O hits Y , then the corresponding intersection
will generally consist of say m(u) separate intercept
segments. The distances of the end points of these
intercepts from O, arranged in increasing order of
magnitude, may be denoted as follows,

{li−(u), li+(u); i = 1,2, ...,m(u)} . (1)

Thus, (li−(u), li+(u)) denote respectively the closer
and the farther distances of the end points of the
i-th intercept segment from O. Integration of the
conic volume element associated with a ray (see, e.g.
Cruz-Orive, 1987, Appendix B) leads to the general
nucleator representation of volume, namely,

V =
∫
S2

f (u)du , (2)

where

f (u) =
1
3

m(u)

∑
i=1

(
l3
i+(u)− l3

i−(u)
)

(3)

is the measurement function. Note that, if O ∈ Y , then
l1−(u) = 0 for all u. Further, if Y is star shaped with
respect to O ∈ Y , then m(u) = 1, and

V =
1
3

∫
S2

l3(u)du , (4)

where l(u) ≡ l1+(u) is the length of the radius vector
of Y .

ESTIMATION OF VOLUME WITH
THE NUCLEATOR

An unbiased estimator (UE) of V may be easily
constructed by observing f at an isotropic orientation
u ∈ S2. Isotropy means that u is a uniform random
(UR) variable on S2, whereby its probability element is
proportional to the area element du on the unit sphere,
namely,

P(du) =
du
4π

, u ∈ S2 . (5)

From Eq. 2 it follows that

V̂ = 4π f (u) (6)

is a UE of V from a single isotropic ray.

To describe a sampling design involving more
than one ray it is convenient to parametrize u by
its spherical polar coordinates, namely the longitude
angle φ , and the colatitude angle θ , see Fig. 2a, so that
du = sinθdφdθ . The origin of θ is the polar axis Ox3,
which is regarded as the vertical axis. The origin O is
the pivotal point. Now Eq. 2 may be written as follows,

V =
∫ 2π

0
dφ

∫
π

0
f (φ ,θ) sinθ dθ . (7)
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Fig. 2. Basic definitions for the nucleator design. (a) A
direction u, or equivalently a point u on the unit sphere,
of spherical polar coordinates (φ ,θ) with respect to
an orthogonal frame Ox1x2x3, where Ox3 is the polar
vertical axis (VA). (b) A local vertical section of the
object shown in Fig. 1b, through a fixed pivotal point O
which is the centroid of the object. Within this section
a nucleator ray of length l(u) has been drawn along a
direction u.

In Gual-Arnau and Cruz-Orive (2000) it was
proposed to estimate V with a systematic design in
which φ would be sampled at an integer number n1≥ 1
of systematic UR points in [0,2π), whereas y = cosθ

would be sampled at an integer number n2 ≥ 1 of
systematic UR points in [−1,1). The fact that f (φ ,θ)
is periodic modulo 2π in φ , but not periodic modulo
π in θ , however, makes it difficult to represent the
variance of the estimator of V . For this reason it was
proposed to replace the measurement function f (u)
with F(u) = 1

2 [ f (u)+ f (−u)], namely,

F(φ ,θ) =
1
2
[ f (φ ,θ)+ f (φ +π,π−θ)] , (8)

because−u = (φ ,θ +π) = (φ +π,π−θ). It is easy to
verify that F(φ ,θ) is periodic in both φ and θ , namely,

F(φ ,θ) = F(φ +2kπ,θ + lπ) , k, l ∈ Z , (9)

which, as shown in Gual-Arnau and Cruz-Orive
(2002), renders the mathematical problem tractable.
Now the target parameter may be written,

V =
∫ 2π

0
dφ

∫
π

0
F(φ ,θ) sinθ dθ

=
∫ 2π

0
dφ

∫ 1

−1
F(φ ,cos−1 y)dy. (10)

The systematic sampling design consists in observing
F at n1n2 points{

Fi j ≡ F(φi,θ j), i = 0,1, ...,n1−1, j = 0,1, ...,n2−1
}

(11)

where

φi = (U1 + i)T1, T1 = 2π/n1 ,

θ j = cos−1[1− (U2 + j)T2], T2 = 2/n2 ,
(12)

and (U1,U2) is a pair of independent UR numbers in
the interval [0,1). The preceding procedure uses the
fact that φ0 and cosθ0 are independent UR variables in
the intervals [0,T1) and [1−T2,1), respectively, where
T1,T2 are the corresponding sampling periods. The
resulting UE of V is,

V̂n1,n2 = T1T2

n1−1

∑
i=0

n2−1

∑
j=0

Fi j , (13)

which is random via the UR pair (U1,U2).

The following two special cases are of practical
interest because the data can be collected on two axes
through a single vertical section containing the vertical
axis Ox3 through the pivotal point O, namely,

V̂12 = 2π[F(φ0,θ0)+F(φ0,θ1)],

φ0 = 2πU1,θ j = cos−1(U2− j) , j = 0,1 .
(14)

see Fig. 3a, and

V̂21 = 2π[F(φ0,θ0)+F(φ1,θ0)],

φi = π(U1 + i),θ0 = cos−1(1−2U2) , i = 0,1 ,

(15)
see Fig. 3b. Out of the preceding two nucleator
estimators, the more usual one is V̂12, see for instance
Tandrup (1993).

Fig. 3. Special cases of the vertical nucleator design
on a single vertical section through the pivotal point
O. The design in (a) corresponds to the estimator V̂12,
the one in (b) to V̂21.
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NUCLEATOR ERROR VARIANCE
PREDICTORS CONSIDERED
HERE

Our purpose is to explore the performance of
the predictor varm1,m2(V̂n1,n2) of the error variance
var(V̂n1,n2) of the nucleator volume estimator V̂n1,n2 ,
see Eq. 13, proposed in Gual-Arnau and Cruz-
Orive (2002). The predictor depends on the value
of two constants m1,m2 entering in the underlying
covariogram model. The latter was the product of
two polynomials of degrees 2m1 + 1 and 2m2 + 1
corresponding to the individual covariogram models
for φ and θ , respectively. Here we are considering only
two cases: the choice m1 = m2 = 1 should in principle
be more adequate than m1 = m2 = 0 for smoother,
relatively more regular objects. It should be stressed
that the predictors are theoretical approximations, and
not unbiased estimators of var(V̂n1,n2), in general. Their
performance depends on the shape of the object Y of
interest.

For n1,n2 ≥ 2 the predictors considered here have
the following expressions,

var00(V̂n1,n2) =
4π2

9n1n2(n1−1)(n2−1)
·
[
6(n1−1)(C00−C01)

+6(n2−1)(C00−C10) (16)

− (n2
1 +n2

2−1)

· (C00−C01−C10 +C11)
]
,

var11(V̂n1,n2) =
4π2

225n1n2(n1−1)2(n2−1)2

·
[
30(n1−1)2(C00−C01)

+30(n2−1)2(C00−C10) (17)

− (n4
1 +n4

2−1)

· (C00−C01−C10 +C11)
]
,

where

Ckl =
n1−1

∑
i=0

n2−1

∑
j=0

Fi jFi+k, j+l ,

k = 0,1, ..., [n1/2] , l = 0,1, ..., [n2/2] ,
Fi+n1, j =Fi, j+n2 = Fi+n1, j+n2 = Fi j . (18)

For the special case (n1 = 1,n2 ≥ 2) the following
formulae are used,

var00(V̂1,n2) =
8π2

3
· C00−C01

n2(n2−1)
,

var11(V̂1,n2) =
8π2

15
· C00−C01

n2(n2−1)2 .

(19)

For (n1 ≥ 2,n2 = 1), the corresponding formal
expressions are obtained by replacing C01 with C10 in
the preceding ones. In particular,

var00(V̂12) =
4π2

3
(F00−F01)

2 ,

var11(V̂12) =
4π2

15
(F00−F01)

2 ,

(20)

and for V̂21 it suffices to replace F01 with F10 in the
preceding formulae.

MATERIAL AND ITS PROCESSING

Here we describe the imaging procedures
necessary to perform automatic Monte Carlo
resampling of the nucleator in each of the following
three dimensional objects, (see Fig. 1).

(1) Synthetic particle model (Fig. 1a) studied in
Section 6 from Gual-Arnau and Cruz-Orive
(2002). The radius vector of this particle had
a known mathematical expression consisting
of a linear combination of three non random
exponential terms of Gaussian type (Foley et al.,
1990). The position of the vertical axis (VA) was
kept unchanged. In the former paper the volume
of the particle (namely 6.919) and the nucleator
replications, were obtained with Mathematica R©

using exact expressions. Here, however, we have
applied the same reconstruction techniques and
the same numerical resampling procedures to
all the objects. The previously published results
therefore enabled us to check the correctness of our
software. For instance, the approximate volume
was now found to be 6.914, only 0.07% less than
the more exact one.

(2) Rat brain no.5 illustrated in Fig.6 from Cruz-Orive
et al. (2010). The input consisted of the projections
of an exhaustive series of 19 nonempty, 1.2 mm
thick serial slabs, obtained on a 1.5 T MRI scanner
(Gyroscan Intera, Philips). The right hemisphere,
consisting of 14 serial slabs, was studied in detail
for each of two different orientations of the VA,
see Fig. 1b,c. The left hemisphere consisted of 9
slabs, see Table 1 from the latter paper. Finally,
the union of both hemispheres was also studied in
the antithetic arrangement suggested in Fig.2 of the
latter paper, see Fig. 1d here.

For convenience both brain hemispheres were
processed simultaneously because they were scanned
together. The reconstructions were separated at the
end. The relevant steps may be summarized as follows.
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Step 1. The consecutive slab projections were
regarded as parallel thin sections 1.2 mm apart. The
field of view of each section was of 190 × 190
pixels, and the side length of each pixel represented
2/7 ≈ 0.29 mm. The gray scale resolution was of
8bpp (bits per pixel) where the extreme values 0
and 255 corresponded to black and white pixels,
respectively. Initially each section image was thereby
represented by a 190 x 190 matrix of grey scale values.
Using ‘PIL’ (Python Imaging Library) the latter values
were filtered to retain values less than 150 – this
thresholding led to a black-and-white image which
was judged to be satisfactory to represent the type of
sections analyzed here.

Step 2. Within Blender V 2.68a (www.blender.org),
each pixel of each section was replaced with a point,
whereby each section was represented by one or more
clouds of points in the same plane. To each point
belonging to the section, a vector (x,y,z) was assigned
its Cartesian coordinates. The Oz axis was normal to
the sections. If a point did not belong to the section, the
corresponding coordinate vector was replaced with ‘0’.
Then a script was written to remove the interior points
of each cloud, leaving only the points at the periphery
of the cloud. The software did this automatically, first
scanning the rows, and then the columns of the matrix.

Step 3. The surviving points at the periphery of
each section were interpolated by means of Bezier
curves using the ‘Auto Handle’ facility from Blender.
The curves were automatically fit according to an
optimality smoothing criterion.

Step 4. The initial set of sections thereby became a
set of parallel smooth Bezier contours in serial planes
1.2 mm apart. Moreover the number of control points
of each contour was forced to be the same for all
the contours. In this way it was possible to apply
a ‘knitting’ or ‘needlework’ algorithm (Klein et al.,
1999) whereby the closest nodes from each pair of
consecutive contours were automatically linked one-
to-one, to form a closed ribbon of triangles between
the corresponding planes. The result was a closed three
dimensional triangular mesh constituting a primary
reconstruction of the boundary of the object.

Step 5. From the primary triangulation,
the enclosed object volume was computed
with the command ‘calc volume()’ from the
‘bmesh’ Blender library. Further, the command
‘origin set(type=’ORIGIN CENTER OF MASS’)’
from the ‘bpy’ Blender library computed the centre of
mass of the object and adopted it as the new origin,
which played the role of the pivotal point of the
object from which the nucleator rays were generated.
Thereafter ‘Auto Handle’ refined and optimized the

triangulation automatically, respecting the previously
computed volume. The secondary triangulation of the
complete rat brain consisted of 21764 triangles, whose
areas lied in the interval [4.43 ·10−5,1.80 ·10−3] cm2.
The total surface area was 16.022 cm2, split into
7.682 cm2 for the right hemisphere (Fig. 1b,c) and
8.340 cm2 for the left one. The corresponding volumes
were 2.856, 1.419 and 1.437 cm3 respectively.

Step 6. The vertices and edges of the secondary
triangulation were further recalculated to obtain a
smoother version of the object boundary (Fig. 2) by
reducing the number of triangles and optimizing their
shape. This was done automatically with the aid of
the ‘Remesh Dual Contour Algorithm’ provided by
Blender (Ju et al., 2002). Here the following settings
were used: Octree Depth = 7; Scale = 0.99; Sharpness
= 1.000; Threshold = 1.000; Smooth Shading =
Enabled. This step had no influence on the volume and
the position of the centroid of the object.

ASSESSMENT OF THE
NUCLEATOR VARIANCE
PREDICTORS BY MONTE CARLO
RESAMPLING

For each object and each pair (n1,n2) of sample
sizes, the volume estimator V̂n1,n2 , and its variance
predictor varm,m(V̂n1,n2), m = 0,1, were replicated a
number N of times according to a systematic protocol.
The rectangular tile [0,T1)× [1−T2,1) was partitioned
into N = N1N2 rectangular subtiles of horizontal and
vertical side lengths t1 = T1/N1 and t2 = T2/N2,
respectively, namely,

{[kt1,(k+1)t1)× [1− (l +1)t2,1− lt2),

k = 0,1, ...,N1−1, l = 0,1, ...,N2−1} .
(21)

For the first sample replication, the starting point
(φ0(0),cosθ0(0)) was UR in the first subtile [0, t1)×
[1− t2,1), and so forth, see below.

Most of the computing time was taken by
calculating the nucleator ray lengths. Thus, we chose
N1 = 180/n1,N2 = 90/n2 to ensure that all the
replications of any given sample involved the same
number of rays, namely N = 16200. The sample
sizes n1,n2 were chosen so that N1,N2 were natural
numbers. The kl-th replication of V̂n1,n2 was computed
as follows,
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V̂n1,n2(k, l) = T1T2

n1−1

∑
i=0

n2−1

∑
j=0

Fi j(k, l) ,

Fi j(k, l) = F(φi(k),θ j(l)) ,

φi(k) =
(

U1 + k
N1

+ i
)

T1 ,

θ j(l) = cos−1
[

1−
(

U2 + l
N2

+ j
)

T2

]
,

(22)

where U1,U2 are two independent UR numbers in
the interval [0,1). Thus, all the replications of a
given sample depended on a single pair (U1,U2).
The relevant ray lengths involved in the computation
of Fi j(k, l) via Eq. 8 were computed from the
final triangulation of the object boundary using the
‘intersect ray tri’ facility available in the Blender
library ‘mathutils.geometry’.

The kl-th replication varm,m(V̂n1,n2(k, l)),m = 0,1,
was computed simultaneously by replacing each Fi j
with Fi j(k, l) in Eqs. 16-20. While the graphs display
individual raw variance predictors, whether positive or
negative, in practice one will take,

varm,m(V̂n1,n2(k, l))+ =

max
{

varm,m(V̂n1,n2(k, l)),0
}
. (23)

For the sake of convenience, renumber the double
sequences

{
V̂n1,n2(k, l)

}
and

{
varm,m(V̂n1,n2(k, l))

}
as
{

V̂n1,n2(i)
}

and
{

varm,m(V̂n1,n2(i))
}

, respectively,
where i = 1,2, ...,N. Then, the empirical mean and
variance of V̂n1,n2 , representing accurate estimators of
the true mean and variance, were computed as follows,

Ee(V̂n1,n2) =
1
N

N

∑
i=1

V̂n1,n2(i) ,

vare(V̂n1,n2) =
1
N

N

∑
i=1

[
V̂n1,n2(i)−Ee(V̂n1,n2)

]2
.

(24)

In the graphs, the preceding variance is normalized
with the square of the true volume to obtain the square
coefficient of error, namely,

CE2
e(V̂n1,n2) =

vare(V̂n1,n2)

V 2 . (25)

Likewise, the empirical mean and the mean square
error of the variance predictors were computed as
follows,

Ee

{
varm,m(V̂n1,n2)+

}
=

1
N

N

∑
i=1

varm,m(V̂n1,n2(i))+ ,

MSEe

{
varm,m(V̂n1,n2)+

}
=

1
N

N

∑
i=1

[
varm,m(V̂n1,n2(i))+−vare(V̂n1,n2)

]2
.

(26)

The corresponding coefficient of bias, and the relative
mean square error, were computed as follows,

CBe

{
varm,m(V̂n1,n2)+

}
=

Ee

{
varm,m(V̂n1,n2)+

}
vare(V̂n1,n2)

−1,

RMSEe

{
varm,m(V̂n1,n2)+

}
=

MSEe

{
varm,m(V̂n1,n2)+

}
[
vare(V̂n1,n2)

]2 .

(27)

For simplicity, the square root of either side of the
second Eq. 27 is denoted by CEe

{
varm,m(V̂n1,n2)+

}
in

Table 3.

If desired, the actual error variance of the variance
predictors can be easily recovered via the following
identity,

MSE(X) = var(X)+Bias2(X), (28)

where X represents a random variable standing for
varm,m(V̂n1,n2)+ in this case.

RESULTS

DISTRIBUTION OF THE NUCLEATOR
ESTIMATORS
Consider first the simplest nucleator estimators,

namely,

V̂1 =
4π

3
· l3
+ , (one ray),

V̂11 = 4πF00 =
2π

3
· (l3

++ l3
−) , (two opposite rays).

(29)

The corresponding Monte Carlo histograms for
H1 are plotted in Fig. 4. In accordance with
Assessment of the nucleator variance predictors by
Monte Carlo resampling section, each of the two
histograms incorporated 16 200 replicated estimates.
The following features are worth mentioning.
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(a) Each density function is independent of the
orientation of the VA relative to the object, because
the Monte Carlo procedure samples UR points on
the unit sphere according to Eq. 5. In fact, for each
of the two estimators V̂1 and V̂11, the histograms
corresponding to either orientation could hardly be
visually distinguished. In Fig. 4, both histograms
correspond to the transversal orientation.

(b) The density functions are rather asymmetric, with
long tails. Only about 27% and 24% of the V̂1 and
the V̂11 replicates, respectively, exceeded the true
volume V . The conditional means of the estimates
that ‘can be seen’ in Fig. 4, namely,

Ee(V̂1|V̂1 < 6)≈ 1.235,

Ee(V̂11|V̂11 < 6)≈ 1.226,
(30)

are about −13% biased, and this bias has to be
compensated by only about 3% of all the possible
estimates namely by the estimates greater than 6.
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Fig. 4. Empirical probability densities of the
nucleator estimator of the volume of the right
rat brain hemisphere from one ray and from two
opposite rays, see Eq. 29. Neither of the two
density functions depends on the relative position
of the polar VA relative to the object. As soon
as n1 > 1, or n2 > 1, however, the corresponding
densities will generally depend on the choice of the
vertical axis, see Fig. 5.

(c) As soon as n1 > 1, or n2 > 1, however, the
distribution of V̂n1,n2 may depend significantly on
the relative orientation of the VA, see Fig. 5.

Fig. 5. Individual Monte Carlo replications of the
nucleator estimator V̂n1,n2 of the volume of the right
rat brain hemisphere for various sample sizes (n1,n2).
Each dot represents a replication. As expected, the
means (white circles) practically coincide with the
true volume in all cases, because the estimator is
unbiased. Note, however, that for each pair (n1,n2) the
distribution of the estimates depends on the choice of
the vertical axis relative to the object.

PRECISION OF THE NUCLEATOR
ESTIMATORS

Percent empirical coefficients of error — namely
100 times the square root of Eq. 25 — are displayed
in Table 1 for each of the objects represented in Fig. 1.
The following remarks are opportune.

(a) As a cross check of our Monte Carlo procedure,
the data corresponding to the Gaussian particle
(Fig. 1a) coincide with those in Table 1 from Gual-
Arnau and Cruz-Orive (2002).

(b) For small sample sizes (n1,n2), the large CEs are
a consequence of the long tails of the probability
densities of the corresponding estimators, see
Fig. 4.

(c) For small sample sizes the orientation of the VA
relative to the object had a small effect on the
precision of the estimator.
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Table 1. Empirical percent coefficient of error (Eq. 25) of the nucleator volume estimator (Eq. 13) for each of the
four test objects illustrated in Fig. 1, and for various sample sizes. Gaussian: synthetic particle model (Section
Material and its processing). H1,H2: right and left rat brain hemispheres respectively. H1∪H2: union in antithetic
arrangement, see Fig. 1d. V : empirical, nearly true object volume.

Object V
CEe(V̂n1,n2)% for sample sizes (n1,n2)

(1) (1,1) (1,2) (2,1) (2,2) (3,3) (4,4) (5,5)

Gaussian 6.914 73.0 45.1 27.3 38.6 22.5 10.4 7.0 4.3

H1 transverse 1.419 110.1 102.0 64.2 69.3 62.0 12.1 24.3 2.6

H1 longitudinal 1.419 112.1 102.4 61.5 96.8 59.2 38.9 30.2 23.0

H1∪H2 2.856 154.7 127.0 99.2 120.0 97.7 13.7 23.4 6.6

(d) An object like the union of both rat brain
hemispheres in antithetic position is not ideal
for the nucleator. First, in practice it may be
inconvenient to apply the nucleator to the union
of two or more separate objects. And second, the
corresponding estimator may also be inefficient
because, if the pivotal point O lies outside the
object (Fig. 1d), then a proportion of the volume
estimators may be equal to zero whenever a ray
misses the object. In fact, for that object,

P(V̂1 = 0)≈ 0.629 , (one ray),

P(V̂11 = 0)≈ 0.506 , (two opposite rays). (31)

PERFORMANCE OF THE VARIANCE
PREDICTORS

Statistical properties of the theoretical error
variance predictors varm,m(V̂n1,n2) given by Eqs.(16),
(17), are illustrated in Fig. 6 for the right brain
hemisphere, and for a number of sample sizes.
Numerical summaries are displayed in Tables 2, 3 for
each of the four object cases shown in Fig. 1.

A salient feature of Fig. 6 is that the variance
predictions can be negative, specially for (n1,n2) =
(2,2) in the transverse VA case. To a lesser extent
this was also observed for all the objects, see Table
4. An explanation of this fact is provided in the next
subsection.

For the particular estimators V̂12 and V̂21, see Fig. 3,
the error variance predictors are always non negative
(Eq. 20) and their performance is illustrated separately
in Fig. 7 for the right brain hemisphere. With reference
to the notation used in Fig. 3, for a star shaped
object the corresponding predicted square coefficients
of error simplify as follows,

ce2
00(V̂12) =

1
3

(
F00−F01

F00 +F01

)2

,

ce2
11(V̂12) =

1
15

(
F00−F01

F00 +F01

)2

,

F00 =
1
6
(l3

1++ l3
1−) ,

F01 =
1
6
(l3

2++ l3
2−) .

(32)

For V̂21 the corresponding formulae are formally the
same because F01 reads the same as F10 in this case.

In practice, a negative prediction will be taken to
be equal to zero, hence the statistical summaries were
computed with the non negative variance predictors
only, see Eq. 23. Also, because the variance predictors
were generally biased, the CE’s displayed in Table 3
were computed via the mean square errors, see the
second Eq. 27.

NEGATIVE VARIANCE PREDICTION: AN
EXPLANATION
The fact that var00(V̂22), and to some extent

var11(V̂22), may take negative values in a non
negligible proportion of cases (Table 4 and Fig. 6) calls
for a brief scrutiny.

Set

F11 = F00 + e00 ,

F10 = F01 + e01 .
(33)

Then, Eq. 16 becomes,

var0,0(V̂22) =
π2

9
[
−4(F00−F01)(F11−F10)

+(e00 + e01)
2 +4(e2

00 + e2
01)
]
. (34)
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Fig. 6. Performance of the predictors of CE2(V̂n1,n2) based on Eqs. 16, 17, for each of the two positions of the
vertical axis relative to the right brain hemisphere. Each dot represents a replicated predictor, and the white
circles represent their means (negative replications included). Numerical data summaries are displayed in Tables
1–4.

Table 2. Empirical percent coefficient of bias (see the first Eq. 27) of the variance predictors given by Eqs. 16, 17.
Negative predictions were replaced with zero, Eq. 23.

Object
CBe{var00(V̂n1,n2)+}% CBe{var11(V̂n1,n2)+}%

(1,2) (2,1) (2,2) (3,3) (4,4) (1,2) (2,1) (2,2) (3,3) (4,4)

Gaussian -42.6 -87.9 -14.2 64.1 115.5 -88.5 -97.6 -83.2 -83.0 -86.5

H1 tr. -49.3 -61.2 -92.2 269.5 -36.2 -89.9 -92.2 -97.8 -58.3 -96.4

H1 lon. -42.6 -96.7 -28.8 -37.3 -35.3 -88.5 -99.3 -86.9 -93.6 -95.8

H1∪H2 -78.8 -95.8 -81.7 712.2 103.6 -95.8 -99.2 -96.3 -16.3 -87.1
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Fig. 7. Completion of Fig. 5 with the special cases illustrated in Fig. 3. Corresponding numerical data summaries
are displayed in Tables 1–3

Table 3. Empirical percent coefficient of error of the variance predictors given by Eqs. 16, 17. More precisely, the
data are square root relative mean square error (namely the square root of the second Eq. 27).

Object
CEe{var00(V̂n1,n2)+}% CEe{var11(V̂n1,n2)+}%

(1,2) (2,1) (2,2) (3,3) (4,4) (1,2) (2,1) (2,2) (3,3) (4,4)

Gaussian 97.5 91.1 100.1 169.8 192.7 90.2 97.7 85.6 84.5 87.1

H1 tr. 127.4 108.2 93.8 391.1 69.0 92.9 93.9 97.9 66.3 96.5

H1 lon. 129.8 96.9 141.4 107.6 98.1 91.9 99.3 90.9 94.2 96.0

H1∪H2 85.5 96.1 87.2 770.8 161.5 96.0 99.2 96.5 33.3 87.4

Table 4. Empirical percent of negative error variance predictions.

Object
var00(V̂n1,n2) var11(V̂n1,n2)

(2,2) (3,3) (4,4) (5,5) (6,6) (2,2) (3,3) (4,4) (5,5) (6,6)

Gaussian 13.9 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0

H1 tr. 37.2 1.6 4.7 0.0 0.0 19.8 0.6 11.7 305 40.9

H1 lon. 16.6 0.0 0.0 0.0 0.0 7.7 0.0 0.0 2.2 0.0

H1∪H2 9.9 0.0 0.0 0.0 0.0 4.7 0.0 0.0 0.0 0.0
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Fig. 8. The special vertical nucleator design for V̂22,
whose variance predictors var00(V̂22) and var11(V̂22)
may yield negative values, see Fig. 6, Table 4,
and Negative variance prediction: an explanation
subsection.

If e00,e01 are large enough, then var0,0(V̂22) ≥ 0.
However, if e00,e01 are small relative to the Fi j, i, j =
0,1, then,

var0,0(V̂22)≈−
4π2

9
(F00−F01)(F11−F10) . (35)

Thus, if F00,F11 on the one hand, and F01,F10 on the
other, are not too different from each other (Fig. 8),
then F00 − F01 and F11 − F10 are likely to be of the
same sign, in which case we may get var0,0(V̂22) < 0.
In the extreme case in which F00 ≈ F11 and F01 ≈ F10
we have,

var0,0(V̂22)≈−
4π2

9
(F00−F01)

2 ≤ 0 . (36)

DISCUSSION AND
CONCLUSIONS

Monte Carlo resampling. For each object Y
with O ∈ Y , and for each direction u ∈ S2, the
corresponding ray will hit one of more triangles from
the reconstructed boundary of the object. The first
step consisted in identifying the hit triangles, and the
second was to compute each distance l(u) from O
of the intersection between the ray and the relevant
triangle. This was computer intensive because, in the
first step, every triangle was interrogated. There is
scope for improving the efficiency of the procedure.

Statistical distribution of the more usual nucleator
estimators. Because the nucleator estimator involves
ray length raised to the power 3, its probability
density may exhibit a long tail, specially for low
sample sizes, see Fig. 4. Consequently, the correctness
of ray sampling should be carefully controlled. In
addition, the sample size (e.g., the total number of

neurons analyzed) should not be too small because
the coefficient of error of V̂11, for instance, can
be greater than 100% for a cell, see Table 1. The
invariator (Cruz-Orive and Gual-Arnau, 2015) may be
worth considering as an alternative, but this requires
isotropically oriented pivotal sections.

Nucleator observations were strongly non normal,
and trying to model their distribution via some
transformation is likely to be futile because the data are
strongly shape dependent. For this reason the model
based approach suggested by Hobolth and Jensen
(2002) is unlikely to succeed in this context.

Precision of the nucleator. The precision of V̂
increases rapidly for about n1,n2 > 5, specially for
the right hemisphere with transverse VA. Here we
have represented only a few data points with n1 =
n2. We also resampled with n1 6= n2, but the results
did not add much information and their graphical
representation was less convenient. In practice, the
most interesting estimators are V̂11, and V̂12, because
they can be implemented on a single vertical section
(either physical, or virtual).

Performance of the theoretical error variance
predictors. The variance of V̂11 cannot be predicted
because the sample is based on a single axis. For V̂12,
the relative bias of the predictor given by Eq. 20 was
lower for m1 = m2 = 0 than for m1 = m2 = 1, see Table
2 and Fig. 7.

Under systematic sampling a certain degree of bias
can always be expected from a variance predictor. In
the present case, in addition to the bias the variance
predictors exhibited a large degree of variation, see
Table 3 and Figs. 6, 7. Still worse, the predictors
were negative at times, see also Table 4. Actually,
Fig. 8 suggests that the case n1 = n2 = 2 may provide
a similar information as n1 = n2 = 1, which points
toward inefficiency of the design in some cases. There
is certainly scope to improve the design proposed
in Gual-Arnau and Cruz-Orive (2002). Nucleator
variance predictors will hardly ever be satisfactory,
however, because the interesting estimators are based
on very little information, and variance estimators
(even the unbiased ones in classical statistics) tend to
be unstable. On the other hand, for large sample sizes
the true error variance soon becomes very small, and
to predict it lacks interest.

Main conclusions:

(1) The nucleator is useful to estimate the mean
individual volume of a population of particles. For
the usual estimators V̂11, V̂12, it is important that
ray sampling is implemented correctly, because for
a single particle the probability density of these
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estimators may exhibit a very long tail (for V̂11 see
Fig. 4). Thus, truncation of a mere 2–3% of the
larger values may induce a bias of more than 10%,
even if the pivotal point or ‘nucleolus’ has a central
position in the particle. Moreover, the number of
particles analyzed should be large enough, because
the within cell coefficients of variation can be
greater than 100%, see Table 1. Unless vertical
sections are compulsory, the invariator (see Cruz-
Orive and Gual-Arnau (2015), for a recent survey)
may be a worthy alternative.

(2) As indicated in the preceding subsection, see
also Fig. 8, for n1 ≥ 2 and n2 ≥ 2, the design
studied here cannot be recommended because it
may generate redundant data. Discontinuities can
also be observed in the lower panel of Fig. 5 for
n1 = n2 ≥ 3, and in the corresponding empirical
error variances, see the lower left panel of Fig. 6.
This is probably due to interactions between the
configuration of the ray sample and the shape of
the particle.

(3) The performancae of the variance predictors was
poor in general as far as bias and variation. A
reason for this — apart from the deficiences of
the design itself — may be that the covariogram
model adopted in Gual-Arnau and Cruz-Orive
(2002) exhibited bilateral symmetries — in general
the true covariogram is symmetric only about the
origin.
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