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ABSTRACT

The volume tensor provides a robust estimate of the shape and orientation of an object in space. In this paper,
we introduce Fakir method for estimating the tensor of an object in 3D data set based on the intersections of
objects boundary with virtual lines. We calculate the precision of shape estimates by predicting the variance
of estimators of integrals based on systematic sampling. To demonstrate the ability of the Fakir method, we
measure changes in shape and orientation of compartments in the pheasant brain during development.
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INTRODUCTION

The shape and orientation of an object can be
expressed by an equivalent ellipsoid (Ziegel et al.,
2015) and calculated using a centered second moment
volume tensor. Current volume tensor estimators
use either a triangulated surface (Schröder-Turk et
al., 2011) or random sections (Rafati et al., 2016).
However, neither is suitable when handling volumetric
data for an object that cannot be easily segmented. Our
aim therefore was to design and evaluate a method
that uses intersections with a spatial grid sparser then
a voxel lattice, enabling intersections to be assessed
interactively.

The virtual grid approach was originally designed
to measure surface areas (Barbier, 1860; Cruz-Orive,
1997; Kubı́nová and Janáček, 1998). It was later
implemented as the Fakir method for estimating the
surface area and volume of 3D objects in images via
3D modalities such as confocal microscopy (Kubı́nová
et al., 1999), magnetic resonance imaging or computed
tomography (Jirák et al., 2015). The estimators are
based on two propositions of integral geometry
(Santaló, 1976): 1) the mean number of intersections of
the object boundary with the grid is in direct proportion
to the surface area of the object. 2) the mean length of
the grid lines inside the objects is in direct proportion
to the volume of the object; where the mean is assessed
with respect to the random position of the grid. The
coefficients of proportionality are the products of the
grid length density (m−2) and constants equal to one
half and one, respectively.

Using randomly oriented grids, the variance of an
estimator can be determined from the grid density and
properties of the objects measured (Kendall, 1948;
Hlawka, 1950; Matheron, 1965). For example, the
variance of volume estimator using a spatial grid
with an isotropic uniform random (IUR) position can
be efficiently estimated from the asymptotic term
proportional to the surface area of the object divided by
the square of the length density (Janáček, 2006; 2008)
with a constant characteristic for the arrangement of
the grid lines.

Arranging a line grid is the best way of reducing
further workload. One particularly efficient line
arrangement is found in a garnet crystal, where
the atoms are aligned in three orthogonal and four
diagonal directions (O´Keefe, 1992).

The aim of this paper is to demonstrate the ability
of the Fakir method to evaluate a volume tensor
and effectively estimate the equivalent ellipsoid and
orientation of an object. We propose an formula
for precision of the semi-axes approximation. The
variance of semi-axes is calculated from spatial grid
density and object properties. The approximation is
valid for bounded objects with finite surface area
(Janáček and Jirák, 2019).

We apply the Fakir method to assess changes in
shape in the compartments of a phaesant brain during
development. The results of the study (Jirák et al.,
2015) reveal changes to the volume in divisions of the
pheasant brain with ontogeny.
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MATERIAL AND METHODS

ESTIMATION OF AN EQUIVALENT
ELLIPSOID FROM LINE SEGMENTS
Let K be a measurable subset of 3-dimensional

Euclidean space R3. The elements of the second-
moment Minkowski volume tensor Φ3,2,0 (K) =

{
φi, j
}

are defined by integrals (Hug et al., 2008):

φi, j =
1
2

�

K

xix jdx1dx2dx3, i, j = 1 . . .3. (1)

We combine Φ3,2,0 with center of mass and
volume of the object to obtain the translation-invariant
centered second-moment volume tensor Θ(K) ={

τi, j
}

(Ziegel et al., 2015):

τi, j =
2φi, j

V
− cic j, i, j = 1 . . .3, (2)

where

ci =
mi

V
, mi =

�

K

xidx1dx2dx3, i = 1 . . .3 (3)

are coordinates of the centre of mass and

V =

�

K

dx1dx2dx3 (4)

is the volume of K.

Eigenvalues and eigenvectors of the centered
tensor provide information on shape and orientation
of the object, respectively. Let λi and vi, i = 1 . . .3 be
the eigenvalues and eigenvectors of the centered tensor
Θ(K). The anisotropy of the set is characterized by the
Procrustes anisotropy (PA) (Dryden et al., 2009):

PA(K) =

√√√√√3
2

∑
3
i=1

(√
λi− 1

3 ∑
3
j=1
√

λ j

)2

∑
3
i=1 λi

. (5)

PA achieves values between 0 and 1.

For convenience, the centred tensor T (K) can be
visualised by the equivalent ellipsoid with semi-axes
in direction vi with lengths si, i = 1 . . .3, (Ziegel et al.,
2015), where:

si =
√

5λi. (6)

The Fakir estimate of the tensor entries φ̃i, j, i, j =
1 . . .3 uses line grid G with intensity LV (m−2), which
is randomly shifted by uniform random vector U :

φ̃i, j =
1

2LV

�

G+U∩K

xix jdH (x) , (7)

where H is the 1-dimensional Hausdorff measure.
The values of si in Eq. 6 are estimated from the
intersections of the grid G+U with object K. Let the
intersections of the set K and the grid consist of N
line segments with endpoints ak =

(
ak,1,ak,2,ak,3

)
and

bk =
(
bk,1,bk,2,bk,3

)
and let lk be the length of the k-th

segment. Calculating the estimate φ̃i, j in Eq. 7 as the
sum of integrals over individual line segments gives:

φ̃i, j =
1

12LV
∑

N
k=1 lk

(
2ak,iak, j +ak,ibk, j+

+bk,iak, j +2bk,ibk, j
)
, i, j = 1 . . .3.

(8)

Estimates of the volume V , of the center of mass c
and of the first volume moment m =V c are:

c̃i =
m̃i

Ṽ
, m̃i =

1
2LV

N

∑
k=1

lk
(
ak,i +bk,i

)
, (9)

Ṽ =
1

LV

N

∑
k=1

lk. (10)

Formulas in Eq. 8, 9 and 10 are discrete analogues
of Eq. 1, 3 and 4, respectively. The natural estimate of
centered tensor element is then:

τ̃i, j =
2φ̃i, j

Ṽ
− c̃ic̃ j. (11)

We estimate the equivalent ellipsoid and its
Procrustes anisotropy by plugging the eigenvalues λ̃i
of the estimated tensor τ̃i, j into formulas in Eq. 5 and
6.

PRECISION OF SEMI-AXES ESTIMATES

The precision of estimates of semi-axis is
calculated from the variances and covariances of the
tensor components, i.e. from variances of estimates
of integrals of polynomials, and from covariances of
simultaneous estimates of two such integrals. Special
case (when the polynomial is constant) is known,
because variance of the volume estimate by isotropic
Fakir probe

Ṽ (K,U,R) =
1

LV

�

RG+U∩K

dH (x) ,

where U is random shift and R is random rotation, is
approximately

var
(

Ṽ (K,U,R)
)
∼=CGS (K)L−2

V (12)
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where CG is the grid constant (Kendall, 1948; Hlawka,
1950; Matheron, 1965; Janáček, 1999).

The grid constant CG can be calculated from the
Fourier transform of the grid (Janáček and Kubı́nová,
2010). For the optimized Fakir grids we have

CG =
1

8π3

(
3ζ (Z2,4)−

21
2

ζ (4)
)

with value 0.02707533 for the threefold grid,

CG =
1

8π3

(
4ζ (A2,4)−

63
4

ζ (4)
)

with value 0.02453877 for the fourfold grid and

CG =
1

8π3 (3ζ (Z2,4)+4ζ (A2,4)−

−21
8

(
10+

√
3
)

ζ (4)
)

with value 0.0317757 for the sevenfold grid, where

ζ (Z2,s) = ∑
′∞
i, j=−∞

(
i2 + j2)− s

2

is the Epstein zeta function of square point grid,
ζ (Z2,4)∼= 6.02681,

ζ (A2,s) = ∑
′∞
i, j=−∞

(
2

i2 + i j+ j2
√

3

)− s
2

is the Epstein zeta function of unit triangular point
grid, ζ (A2,4)∼= 5.78336 and

ζ (s) =
∞

∑
i=1

i−s

is the Riemann zeta function, ζ (4)∼= 1.082323.

A generalization of Eq. 12 yields the approximate
formula for covariance of the estimates of integrals of
complex functions

Ĩ ( fi,U,R) =
1

LV

�

RG+U∩K

fi (x)dH (x) , i, j = 1 . . .2.

which is:

cov
(

Ĩ ( f1,U,R) , Ĩ ( f2,U,R)
)
∼=

∼=CG
�

∂K f1 (x) f2 (x)dS (x)L−2
V .

(13)

The approximate expansions in Eq. 12 and 13
are obtained by replacing the function Φ

(√
LV
)

with
properties Φ ≥ 0 and limx→+∞

1
x

� x
0 Φ(y) dy = 1,

provided that the functions are smooth and have

bounded supports and the set has finite perimeter, by
constant equal to 1 in the variance formula (Janáček
and Jirák, 2019, Theorem 4).

The surface integral in Eq. 13 can be estimated
from intersections xk of the Fakir probe with the
surface of the set K as�

∂K

h(x)dS (x)∼=
2

LV
∑

xk∈RG+U∩∂K
h(xk) .

We obtain an approximation of cov
(
τ̃i, j, τ̃k,l

)
for

i, j,k, l = 1 . . .3 by linearization of the formula

τ̃i, j =
2φ̃i, j

Ṽ
−

m̃im̃ j

Ṽ 2
, i, j = 1 . . .3

(Eq. 11), and by the use of bilinearity of covariance:

cov
(
τ̃i, j, τ̃k,l

)∼= 4

Ṽ 2
cov
(

φ̃i, j, φ̃k,l

)
−

4φ̃i, j

Ṽ 3
cov
(

φ̃k,l,Ṽ
)

−
4φ̃k,l

Ṽ 3
cov
(

φ̃i, j,Ṽ ,
)
+

4φ̃i, jφ̃k,l

Ṽ 4
var
(

Ṽ
)

−2m̃l

Ṽ 3
cov
(

φ̃i, j, m̃k

)
− 2m̃k

Ṽ 3
cov
(

φ̃i, j, m̃l

)
−

2m̃ j

Ṽ 3
cov
(

φ̃k,l, m̃i

)
− 2m̃i

Ṽ 3
cov
(

φ̃k,l, m̃ j

)
+

2m̃km̃l

Ṽ 4
cov
(

φ̃i, j,Ṽ
)
+

2m̃im̃ j

Ṽ 4
cov
(

φ̃k,l,Ṽ
)

+
2φ̃i, jm̃l

Ṽ 4
cov
(

m̃k,Ṽ
)
+

2φ̃i, jm̃k

Ṽ 4
cov
(

m̃l,Ṽ
)

+
2φ̃k,lm̃ j

Ṽ 4
cov
(

m̃i,Ṽ
)
+

2φ̃k,lm̃i

Ṽ 4
cov
(

m̃ j,Ṽ
)

−
4φ̃i, jm̃km̃l

Ṽ 5
var
(

Ṽ
)
−

4φ̃k,lm̃im̃ j

Ṽ 5
var
(

Ṽ
)

+
m̃ jm̃l

Ṽ 4
cov(m̃i, m̃k)+

m̃ jm̃k

Ṽ 4
cov(m̃i, m̃l)

+
m̃im̃l

Ṽ 4
cov(m̃ j, m̃k)+

m̃im̃k

Ṽ 4
cov(m̃ j, m̃l)

−
2m̃ jm̃km̃l

Ṽ 5
cov
(

m̃i,Ṽ
)
− 2m̃im̃km̃l

Ṽ 5
cov
(

m̃l,Ṽ
)

−
2m̃im̃ jm̃l

Ṽ 5
cov
(

m̃k,Ṽ
)
−

2m̃im̃ jm̃k

Ṽ 5
cov
(

m̃ j,Ṽ
)

+
4m̃im̃ jm̃km̃l

Ṽ 6
var
(

Ṽ
)
.

We apply Eq. 13 to the summands on the right side of
the equation above and by proper grouping of factors
we obtain

cov
(
τ̃i, j, τ̃k,l

)∼=
257
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CG

Ṽ 2L2
V

�

∂K

((xi− c̃i)(x j− c̃ j)− τ̃i, j)

(
(xk− c̃k)(xl− c̃l)− τ̃k,l

)
dS (x) .

Now we can calculate the variance of semi-axes by
the use of linearization of formulas for eigenvalues and
linearization of Eq. 6.

Characteristic polynomial P(λ ) and invariants T ,
Q, D of the tensor Θ are related with τi j by formula:

P(λ ) =

∣∣∣∣∣∣
τ11−λ τ12 τ13

τ12 τ22−λ τ23
τ13 τ23 τ33−λ

∣∣∣∣∣∣=
=−λ

3 +T λ
2−Qλ +D.

Partial derivatives of the invariants are then

∂T
∂τii

= 1,
∂T
∂τi j

= 0,

∂Q
∂τii

= τ j j + τkk,
∂Q
∂τi j

=−2τi j,

∂D
∂τii

= τ j jτkk + τ
2
jk,

∂D
∂τi j

= 2τikτ jk−2τi jτkk,

where {i, j,k}= {1,2,3} .
Partial derivatives of centered tensor eigenvalues

are calculated solving the equations with partial
derivatives of invariants:

∂λ1

∂τi j
+

∂λ2

∂τi j
+

∂λ3

∂τi j
=

∂T
∂τi j

,

(λ2 +λ3)
∂λ1

∂τi j
+(λ1 +λ3)

∂λ2

∂τi j
+(λ1 +λ2)

∂λ3

∂τi j
=

∂Q
∂τi j

,

λ2λ3
∂λ1

∂τi j
+λ1λ3

∂λ2

∂τi j
+λ1λ2

∂λ3

∂τi j
=

∂D
∂τi j

.

The derivatives of eigenvalues are then:

∂λk

∂τi j
= (λl−λm)

(
λ

2
k

∂T
∂τi j

+λk
∂Q
∂τi j

+
∂D
∂τi j

)
Det−1,

where (k, l,m) is (1,2,3), (2,3,1) or (3,1,2) and

Det = λ
2
1 (λ2−λ3)+λ

2
2 (λ3−λ1)+λ

2
3 (λ1−λ2) .

Variance of eigenvalues λ̃m, m = 1 . . .3 is
approximately:

var
(

λ̃m

)
∼=

3

∑
i, j,k, l = 1
i≤ j,k ≤ l

∂λm

∂τi j

∂λm

∂τkl
cov
(
τ̃i, j, τ̃k,l

)
.

Finally, the variance of semi-axes lengths s̃m, m =
1 . . .3 is approximately:

var(s̃m)∼=
5

4λ̃m
varλ̃m. (14)

VERIFICATION OF THE VARIANCE
FORMULA

An ellipsoid with unequal semi-axes was measured
using a sevenfold grid of random orientation and
position. The variance in length of the semi-axes was
predicted by Eq. 14 and calculated based on this
measurement. The results presented in Tab. 1 show
excellent performance of the error prediction.

Ellipsoid (n=100) s1 s2 s3

Prediction 0.33 0.28 0.23
Simulation 0.34 0.30 0.24

Table 1. Estimate of ellipsoid semi-axes (s1=50,
s2=40, s3=30, in arbitrary units) using a Fakir
sevenfold grid (LV =0.01183) repeated 100x with
random grid orientation and position. Mean standard
deviation values (prediction calculated using Eq. 14)
of the ellipsoid semi-axes and standard deviation of the
simulated estimate are also shown. Standard deviation
of the predicted standard deviation was 0.01 in all
semiaxes.

SELECTING THE GRID PARAMETERS

The precision of the semi-axis length estimates
using selected parameters (grid type and LV ) and
given objects (adult male phaesant forebrain and
hatchling forebrain) is better than 0.5%. Semi-axis
length estimate with predicted errors in two selected
samples are presented in Tab. 2

Forebrain s1 s2 s3

Adult 12.16 (0.03) 7.95 (0.02) 6.48 (0.02)
Hatch. 7.18 (0.03) 5.21 (0.02) 4.76 (0.02)

Table 2. Semi-axis estimates (s1 ≥ s2 ≥ s3, in mm)
of selected samples (forebrain of adult male phaesant
and a hatchling) by Fakir sevenfold grid (LV = 0.76
mm−2) presented with predicted standard deviation
(calculated using Eq. 14) in parentheses.
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RESULTS

ANALYSIS OF THE DEVELOPING
PHEASANT BRAIN
The heads of 2 hatchlings, 4 juvenile and 6

adult ring-necked pheasants (Phasianus colchicus)
were fixed in formalin before scanning. Brain images
were acquired at high resolution (voxel volume =
0.002775 mm3) using a 4.7 T magnetic resonance
(MR) spectrometer (Bruker BioSpec) equipped with a
commercially available resonator coil, and 3D Rapid
Acquisition incorporating a Relaxation Enhancement
(RARE) multi-spin echo sequence (Jirák et al., 2015).
MR images were analyzed using home-made Fakir
software. The volume and surface area of each brain

Forebrain Midbrain Hindbrain
Hatch. (2) 0.30 (0.01) 0.83 (0.01) 0.39 (0.02)

Juv. (4) 0.36 (0.01) 0.85 (0.01) 0.44 (0.01)
Adults (6) 0.43 (0.01) 0.83 (0.01) 0.36 (0.02)

Table 3. Procrustes anisotropy PA of pheasant
(hatchlings, juveniles and adults; number of samples
in parentheses) brain compartments calculated
according to Eq. 5. Anisotropy mean values are
presented with the standard error of the mean. The
differences in forebrain and hindbrain anisotropy
between age groups were statistically significant
(ANOVA p < 0.01).

a) Forebrain s1 s2 s3

Hatch. (2) 7.0 (0.0) 5.2 (0.1) 4.5 (0.1)
Juv. (4) 10.3 (0.2) 7.2 (0.1) 6.3 (0.1)

Adults (6) 11.7 (0.1) 7.8 (0.1) 6.3 (0.1)

b) Midbrain s1 s2 s3

Hatch. (2) 8.4 (0.1) 3.3 (0.1) 2.2 (0.0)
Juv. (4) 10.7 (0.1) 4.1 (0.1) 3.0 (0.1)

Adults (6) 11.1 (0.2) 4.1 (0.1) 3.6 (0.1)

c) Hindbrain s1 s2 s3

Hatch. (2) 5.1 (0.0) 3.4 (0.1) 3.0 (0.2)
Juv. (4) 7.4 (0.0) 4.6 (0.1) 4.2 (0.0)

Adults (6) 7.5 (0.1) 5.2 (0.2) 4.5 (0.1)

Table 4. Semi-axis lengths (s1 ≥ s2 ≥ s3, in mm)
of ellipsoids calculated according to Eq. 6 for the
phaesant (a) forebrain (b) midbrain and (c) hindbrain
(hatchlings, juveniles and adults; number of samples
is in parentheses). Mean values are presented with the
standard error of the mean in parentheses.

division were measured interactively using sevenfold
Fakir probe with a grid density of 0.76 mm−2 (for
results see Jirák et al. (2015)). Structures of the avian
brain were identified using a histological atlas (Karten
et al., 2013).

The major axis is oriented laterally in the forebrain
and midbrain and rostrally in the hindbrain. The
significant increase of PA in the forebrain (Tab. 3) is
caused by the increase in the length of the semi-major
axis, which was more pronounced that the lengths of
the other semi-axes (Tab. 4a). The major change in
forebrain shape during development was the increase
in relative width. In the same manner, we conclude
that the hindbrain significantly elongated in rostral
direction during brain development. The predicted
errors of the semi-axis estimates for selected brain
compartments and grid density 0.76 mm−2 using Eq.
14 were less than 0.4%.

DISCUSSION

Estimating linear dimensions of a 3D object
using the volume tensor method may be more robust
than direct measurement, depending on the subjective
selection of extreme points on the object.

The Fakir probe efficiently estimates the volume
tensor of a single object from 3D data using sparse
systematic sampling without explicit segmentation.
Predicting the precision of the method follows
classical works (Hlawka, 1950; Matheron, 1965) but
it had to be proved de novo using Wiener-Tauberian
and geometric measure theory (Janáček and Jirák,
2019) in order to achive sufficient generality. In this
study, we applied a special arrangement of line grids
in a sevenfold grid (O´Keefe, 1992) to increase the
precision of surface integral estimates (see Eq. 13) by
negative covariance between estimates using sets of
parallel lines in different directions.

The Fakir method is preferable to the surface-
based method (Schröder-Turk et al., 2011) in cases
where automatic segmentation of an object is not
possible. It can be used to efficiently measure the
shapes of pheasant brain compartments and detect
changes in shapes of the pheasant forebrain and
hindbrain during development (Tables 3 & 4). The
results may be of particular benefit for interpreting
the fossilised braincases of extinct birds and dinosaurs
(Beyrand, 2019).

The Fakir probe implemented with MS Visual
C++, which includes semi-axis and precision
calculations, can be downloaded from the author’s
website and used in morphometric studies of macro-
or microscopic objects.
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JANÁČEK J AND JIRÁK D: Volume Tensor Estimator

ACKNOWLEDGMENT

This work was supported by Czech Science
Foundation grant No. P302/12/1207, by MEYS
(project LM2015062 Czech-BioImaging, project
CZ.02.1.01/0.0/0.0/16 013/0001775 Modernization
and support of research activities of the national
infrastructure for biological and medical imaging
Czech-BioImaging funded by OP RDE) and MH
CR-DRO (Institute for Clinical and Experimental
Medicine IKEM, IN00023001).

REFERENCES
Barbier JE (1860). Note sur problème de l’aiguille et

le jeu du joint couvert, Journal de Mathématiques
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