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ABSTRACT

In this paper an algorithm for accurate delineation of object boundaries is proposed. The method employs
a superpixel algorithm to obtain an oversegmentation of the input image, used as a constraint in the task.
A shape model is built by applying Principal Geodesic Analysis on angular representation of automatically
placed uniformly distant landmark points. The shape model is used to detect the boundaries of an object on a
given image by iterative elongation of a partial boundary along borders of superpixels. Contrary to many state-
of-the-art methods, the proposed approach does not need an initial boundary. The algorithm was tested on two
natural and two synthetic sets of images. Mean Dice coefficients between 0.91 and 0.97 were obtained. In
almost all cases the object was found. In areas of relatively high gradient magnitude the borders are delineated
very accurately, though further research is needed to improve the accuracy in areas of low gradient magnitude
and automatically select the parameters of the proposed error function.

Keywords: constrained global optimization, pattern recognition, principal geodesic analysis, watershed
segmentation.

INTRODUCTION

An important tasks in pattern recognition is
detection of an object belonging to a predefined class
within an analysed scene. Existing powerful methods
for the detection of objects of a predefined class
are based on statistical description of objects shapes
and/or appearances. These methods rely on statistical
learning theory where the variations of objects shapes
are captured during training which involves analysis
of expert annotated training images. In particular, in
an annotated training image there is a plurality of
points manually set along the contour of an object
leading to the concept of a point distribution model
(PDM; Srivastava, 2012). Given a set of training
images, each one associated with a fixed number of
expert-annotated landmarks, a statistical shape model
is created and then used in combination with a set
of independent landmark detectors to regularize their
output. Examples of such models include Active
Shape Model (Cootes et al., 1995), Pictorial Structures
(Felzenszwalb and Huttenlocher, 2005), Constrained
Local Models (Cristinacce and Cootes, 2008) and
Regression-Voting (Lindner et al., 2015). In principle,
all aforementioned methods work as follows: after
initializing the candidate landmarks, the final solution
is searched iteratively by minimizing a cost function
which reflects a trade-off between the strength of the
landmark detector’s responses and the quality of fitting
a statistical shape model to the actual position of the
landmarks.

Although PDMs are undoubtedly powerful
segmentation methods they have weaknesses. The
final success of these approaches depends on a proper
selection of features and feature detectors, locating
landmarks in salient regions of the training images,
and sufficiently good model initialization. Moreover,
even if the landmarks in the training images are placed
exactly at edge locations (as indicated by some edge
detector) there is absolutely no guarantee that the
same will hold for any tested image. It is a direct
consequence of the definition of the aforementioned
PDMs which perform global optimization based
on a cost function not constrained by the existing
object edges. In many approaches, especially those
involving quantitative analysis of object properties
this property of PDMs is undesirable as it leads to
low quality of measurement results (Hum et al., 2014;
Wojciechowski et al., 2016).

On the other hand edge detectors (Canny, 1986)
perform low level processing tasks which does not
account for the statistical knowledge about typical
object shapes. Even if an edge detector detects object
contours well, an edge image typically contains also
contours of other objects and one is finally left with
a postprocessing task of selecting and grouping the
contours corresponding to an object which has to
be detected in the background of plenty of edges
returned by an edge detector. In another step gaps
between detected edges also need to be filled. If
the problem in hand can be classified as a novelty
detection (i.e., detection of objects not previously seen)
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some saliency measure can be assigned to the edges
to help rejecting the false ones (Tabor, 2010). Ideally
the high-level statistical approach and the low-level
edge detector approach should be merged leading to
edge-constrained statistical shape models. As far as
we know models considering edges as hard constraints
for combinatorial fitting of a trainable statistical model
of shape do not currently exist. The present paper
demonstrates the first step along this line.

While certainly numerous procedures can be
proposed for constructing edge-constrained statistical
shape models, in the present paper we decided to
focus on statistical shape models defined on graphs.
Our approach is inspired by modern achievements
in the field of superpixel algorithms (Neubert and
Protzel, 2014) as well as results in mathematical
morphology (Beucher and Meyer, 1993). Good
overviews of the watershed segmentation used in
this paper are given in (Meyer, 2001; 2005), with
various strategies for marker placement discussed
in (Beucher, 1990; Meyer and Beucher, 1990). The
obvious motivation for our approach is that superpixel
transform of an image is aimed at simplifying an
image in such a way that uniform image regions
are replaced with superpixels while object boundaries
follow the boundaries of superpixels. Consequently,
the search for an object boundary based on a statistical
shape model can be constrained to the superpixel
boundaries what greatly reduces (at least conceptually)
the problem of an edge-constrained statistical shape
model. Similar concepts are present in the graph
cuts algorithms (Boykov et al., 2001; Veksler et al.,
2010), although in our approach boundary of an object
is represented by a path in a graph instead of a
cut. Moreover, as a side effect, using the proposed
approach, the problem of detecting object’s boundaries
can be formulated as a global search without the
need for a good initialization. Within the proposed
framework the final success of the boundary detection
depends only on the selection of the feature (boundary)
detector but, contrary to PDMs, not on landmark
selection or initialization.

METHODS

The developed image recognition algorithm
consists of two main stages: training and matching.
In the first stage, a statistical model of the shape
is extracted from a given set of non-intersecting
open or closed planar curves γ i : [0,1] → C, i =
1,2, . . . ,M. The curves are typically extracted from
hand-annotated training images. During the second
stage the shape is identified in a given image using the
learned model.

TRAINING
Training begins with sampling each training curve

γ i, i = 1,2, . . . ,M at n points {pi
1, pi

2, . . . , pi
n} (n is a

fixed number). The points are equidistant with respect
to the euclidean metric in C, that is

|pi
2− pi

1|= |pi
3− pi

2|= · · ·= |pi
n− pi

n−1| . (1)

In the next step the ordinary procrustean matching
(Kendall, 1984) of sampled curves is performed with
points {p1

j}n
j=1 selected as the reference. Points pi

j
after matching are denoted by pi

j. Two sets of features
are extracted from the adjusted points pi

j:

1. The angles α i
j,0 = arg(pi

j+1 − pi
j) where j =

1,2, . . . ,n and pi
n+1 = pi

1 is assumed.

2. The angles α i
j,k = arg(pi

( j+1)2k − pi
j·2k) where

j = 1,2, . . . ,
⌊
n/2k

⌋
, k = 1,2, . . . ,dlog2(n)−1e and

pi
( j+1)2k = pi

( j+1)2k−n is assumed where necessary.

The second set of features increases the robustness
of shape representation. They represent a multiscale
approach and although these angles can be computed
from the angles α i

j,0, they are not redundant as a
part of the statistical model of shape. Similar point
distribution model based on angles has been discussed
in, e.g., Sommer et al. (2009). In that work a different
approach to ensuring scale and rotation-invariance of
representation was taken.

The last step of training involves performing of
the Principal Geodesic Analysis (Fletcher et al., 2004)
(see also Sommer et al., 2010), PGA in short, in
the feature space. This is necessary as the extracted
features belong to a torus Sdim(n) where

dim(n) =
dlog2(n)−1e

∑
b=0

⌊
n/2b

⌋
. (2)

The mean shape µ , equal to

µ =(µ1,0,µ2,0, . . . ,µn,0,

µ1,1, . . . ,µbn/2c,1,

. . . ,

µ1,dlog2(n)−1e, . . . ,µ
⌊

n/2dlog2(n)−1e
⌋
,dlog2(n)−1e

)
,

(3)

is calculated using the extrinsic mean algorithm
(Fletcher et al., 2004) in Cdim(n). Next, the PGA modes
wi ∈ TµSdim(n) (where TµSdim(n) is the space tangent
to Sdim(n) at point µ) and variances λi ∈ R for i =
1,2, . . . ,dim(n) are computed. The mean shape is then
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rotated by a function ϕ : Sdim(n) → Sdim(n) given by
equation

ϕ

(
γ1,0, . . . ,γ⌊n/2dlog2(n)−1e

⌋
,dlog2(n)−1e

)
=(

γ1,0−µ1,0, . . . ,γ⌊n/2dlog2(n)−1e
⌋
,dlog2(n)−1e

−µ1,0

)
,

(4)

to ensure the rotation invariance of the model.
Please note that shift in the angular representation
corresponds to rotation of modelled shape. The rotated
mean is hereafter called µ:

µ = ϕ(µ) , (5)

and rotated PGA modes are called wi:

wi = dϕµ(wi) , (6)

for i = 1,2, . . . ,dim(n) where dϕµ is the differential
of ϕ at point µ . Finally, the highest-energy modes
w1,w2, . . . ,wL where 1 ≤ L ≤ M corresponding to at
least 95% of total energy are selected.

This approach is similar to Kendall’s shape
manifolds (Kendall, 1989) but due to the existence of
additional constraints on the positions of points (see
Eq. 1) a lower-dimensional manifold is obtained.

MATCHING
Matching starts with a given image

Imat : {1,2, . . . ,W} × {1,2, . . . ,H} → R. First, an
oversegmentation of the gradient magnitude of the
image is computed to obtain constraints for model
matching. Any superpixel algorithm (Achanta et al.,
2012), in particular watershed segmentation (Beucher
and Meyer, 1993) can be used. The oversegmentation
results in a set of pixels V ⊂ {1,2, . . . ,W} ×
{1,2, . . . ,H} that form the borders between segments.
This set is then used to construct an undirected
graph G = (V,E) where E is the set of unordered
pairs of Moore-neighbouring pixels in V (eight pixel
neighbourhood).

The graph G is then reduced to a multigraph Gred =
(Vred ,Ered ,rred). Let G′ = (V ′,E ′) be a subgraph of
G that contains only vertices v′ of degree 3 or more
and vertices on the edges of image (v′ ∈ V ′ such that
v′=(1, j), v′=(W, j), v′=(i,1) or v′=(i,H) for some
i = 1,2, . . . ,W and j = 1,2, . . . ,H). Then Vred is the
set of connected components of G′ and κV : V ′→Vred
assigns to vertex v ∈ V ′ the connected component in
V ′ it belongs to. Each vertex of Gred corresponds to
a place in the segmented image where either three or
more superpixels meet, or two superpixels meet at the

image boundary. The set of edges Ered contains all
trails (i.e., sequences of vertices where only the first
one and the last one may be the same) v1v2 . . .vk,k ∈
N,k > 1 such that v1 and vk belong to connected
components of G′, vertices vi for i = 2,3, . . . ,k− 1
belong to V and are of degree 2 and {vi,vi+1} ∈ E
for i = 1,2, . . . ,k− 1. The partial function κE : E →
Ered assigns to the edge e ∈ E the edge ê ∈ Ered that
contains e. Finally, rred : Ered → {{v̂1, v̂2} : v̂1, v̂2 ∈
Vred} transforms an edge v1v2 . . .vk in Gred to the set
of connected components its endpoints belong to, that
is {κV (v1),κV (vk)}. See Fig. 1 for an example of graph
reduction.

Fig. 1: A fragment of a graph G where each square
corresponds to a single pixel. This part of G contains
four vertices of the reduced graph (v̂1 to v̂4, marked
by thick slanted stripes) and eight of its edges (ê1 to
ê8, marked by thin vertical stripes). The vertex v̂3 is a
connected component comprised of five pixels. Two of
the vertices (v̂3 and v̂4) are connected by two edges (ê6
and ê7).

In the next step a pattern, that is a trail in the
graph Gred , that matches the model best is searched.
To facilitate the description of the process of pattern
matching, the following definition is necessary.

Definition 2.1. A multitrail t in a multigraph Gred =
(Vred ,Ered ,rred) is one of the following:

1. an empty set {}, which is called an empty
multitrail,

2. a pair (v̂,(ê1, . . . , ê f )) where v̂ ∈ Vred is the
first vertex and (ê1, . . . , ê f ) is a (possibly empty)
sequence of edges in Gred such that f ∈N, êi ∈Ered
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for i = 1,2, . . . , f , rred(ê1) = {v̂, v̂1}, rred(ê2) =
{v̂1, v̂2}, . . . , rred(ê f ) = {v̂ f−1, v̂ f } and v̂, v̂1, . . . , v̂ f
are pairwise different, except v̂ might be equal to
v̂ f . The sequence (v̂, v̂1, . . . , v̂ f ) is called the vertex
sequence of t and is denoted by V̂ (t).

An initial (possibly empty) multitrail t0 is given.
In each of n− |t0| iterations (where n is the number
of points the training curves were sampled at and |t0|
is the number of vertices in the multitrail t0) a set of
elongated multitrails Pi is constructed as follows:

Pi = {(v̂,(ê1, . . . , êk−1, êk)) : (v̂,(ê1, . . . , êk−1)) ∈ Pi−1,

êk ∈ Ered and (v̂,(ê1, . . . , êk−1, êk)) is a multitrail} ,
(7)

when i > 0, P0 = {(t0,())} for non-empty p0. In
practice the set Pi is constructed by considering each
multitrail t from Pi−1, selecting edges êk incident to
the last vertex of the vertex sequence of t and checking
if t elongated with êk is a multitrail. In case t0 is
an empty multitrail, P1 is defined as {(v̂,()) : v̂ ∈
Vred} and Pi for i > 1 is calculated from Eq. 7. Pi−1
is a subset of Pi−1 with nsel multitrails of lowest
error Êtotal(t,center(κ−1

V (v̂)),α0) (see Eq. 24), where
center : 2V → C is a function that calculates the
arithmetic mean of positions of nodes from a given set,
v̂ is the first vertex of t and α0 is the shape rotation:

α0 = arg min
α∈(−π,π]

Êtotal(t,x0,α) . (8)

The calculation of optimal rotation α0 is performed
when the step number i is a power of 2 and the
computed angle is retained for subsequent steps. The
final match is the multitrail t ∈

⋃
i∈{0,1,...,n−|p0|}Pi with

the lowest total error Etotal(t,n,x0,α0) (see Eq. 21).

ESTIMATION OF THE MULTITRAIL
ERROR

A number of different multitrail error estimation
methods have been developed for the present paper
based on existing approaches to comparing sequences
of points. In this section they are described and a
way to combine them into a single error function is
proposed.

Submodel extraction

Let (µ,{w1,w2, . . . ,wL}) be the model
corresponding to the set of shape samplings
{pi

1, pi
2, . . . , pi

n}, i = 1,2, . . . ,M. During the
construction of the full multitrail it is necessary to
estimate the error for incomplete multitrails, thus
corresponding to just a part of the full model.

Let npart , the number of points the full multitrail
needs to be truncated to, be given. Now we have
to construct the model corresponding to samplings
{pi

1, pi
2, . . . , pi

npart}. In general this model has to be
independently constructed but this can be quite costly,
especially when n is large. Instead, an approximation
to the exact truncated model can be extracted from
the full model. This reduces the amount of memory
needed to represent a model from O(n3) to O(n2).

Let Sub(Sdim(n),npart) be the submanifold of
Sdim(n) such that

Sub(Sdim(n),npart)∼={(
β1,0,β2,0, . . .βnpart ,0,µnpart+1,0, . . . ,µn,0,

β1,1,β2,1, . . .βnpart ,1,µnpart+1,1, . . . ,µbn/2c,1,

. . .

β1,dlog2(n)−1e, . . . ,βnpart ,dlog2(n)−1e,µnpart+1,dlog2(n)−1e, . . . ,

µ⌊
n/2dlog2(n)−1e

⌋
,dlog2(n)−1e

)
: β j,k ∈ (−π,π] ,

j = 1,2, . . . ,
⌊

n/2k
⌋

;k = 0,1,2, . . . ,dlog2(n)−1e
}

⊆ Sdim(n).
(9)

In this submodel the parameters β j,k are free
parameters while µ j,k are fixed, in contrast to the full
model. This submodel is an approximation to a model
corresponding to first npart + 1 points. The truncated
model is then given by(

µ,{PTµ Sub(Sdim(n),npart)
w1,PTµ Sub(Sdim(n),npart)

w2, . . . ,

PTµ Sub(Sdim(n),npart)
wL}

)
(10)

where PTµ Sub(Sdim(n),npart)
is the orthogonal projection

onto space tangent to submanifold Sub(Sdim(n),npart)
at point µ .

Eigenface-like error
The first error estimator is inspired by the

eigenface method (Sirovich and Kirby, 1987). The
idea of pattern matching based on shape alone is also
present in the Active Shape Model approach (Cootes
et al., 1995). Let us describe the algorithm where the
given multitrail t in graph Gred is matched to the full
model. The procedure is analogous in case of matching
to a submodel.

The multitrail t = (v̂,(ê1ê2 . . . ê f )) where f is the
number of edges in t is first converted into a curve Ξ(t)
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– a polygonal chain defined by the following points:(
center(κ−1

V (v̂)),v1,1,v1,2, . . . ,

v1, j1 ,center(κ−1
V (v̂1)), . . . ,

v f ,1,v f ,2, . . . ,v f , j f ,center(κ−1
V (v̂ f ))

)
, (11)

where (v̂, v̂1, . . . , v̂ f ) = V̂ (t) is the vertex sequence of
t, center(κ−1

V (v̂i)) is the coordinate-wise arithmetic
mean of coordinates of nodes in the set κ

−1
V (v̂i) for

i = 1,2, . . . , f . Furthermore, κ
−1
E (êi) = vi,1vi,2 . . .vi, ji

for i = 1,2, . . . , f . The curve Ξ(t) is then sampled at
n equidistant points

z(Ξ(t)) = (z1,z2, . . . ,zn) , (12)

where z : C→Cn is the sampling function and C is the
set of polygonal chains in C. The points are converted
into a collection of angles like in Section “Training”
and the first angle in subtracted like in Eq. 5, which
results in a point ω(z(Ξ(t)))∈ Sdim(n), where ω : Cn→
Sdim(n) performs the described conversion.

The point ω(z(Ξ(t))) is transformed into TµSdim(n)

using the logarithmic map (the inverse of the
exponential map1) Logµ : Sdim(n) → TµSdim(n). The
result is then compared to the model and the error is
calculated:

Eeig(t,npart) = ‖(I−UUT )(Logµ(ω(z(Ξ(t))))‖2 ,
(13)

where npart is the number of points in the employed
submodel Sub(Sdim(n),npart) and U = [w1,w2, . . . ,wL]
is the matrix composed of coordinates of selected
orthonormal eigenvectors and (Logµ(ω(z(Ξ(t))))) is
the column matrix of coordinates of that vector. Both
matrices of coordinates are computed in the same
orthonornal basis Bµ composed from basis vectors
from spaces tangent to

Sµ; j,k =

{(
µ1,0, . . . ,µn,0, . . . ,µ j−1,k,β j,k,µ j+1,k, . . . ,

µ1,dlog2(n)−1e, . . . ,µ
⌊

n/2dlog2(n)−1e
⌋
,dlog2(n)−1e

)
: β j,k ∈ (−π,π]

}
⊆ Sdim(n),

(14)

at µ for j = 1,2, . . . ,
⌊
n/2k

⌋
, k= 0,1,2, . . . ,dlog2(n)−1e.

High deviation error
In the PCA (and therefore PGA) method the

eigenvalues λ are the empirical variances. It is possible

that a certain vector lies in the PCA subspace but
much further from the mean than the training vectors.
Such a vector does not fit the data well despite its low
eigenface error. Therefore the high deviation error term
is introduced to reject such vectors.

The high deviation error is defined as:

Ehde(t) =

√
∑

L
i=1 λi

L

L

∑
i=1

ci√
λi

, (15)

where ci = 〈Logµ(ω(z(Ξ(t)))),wi〉. The factor
appearing in the Eq. 15 before the sum normalizes
the high deviation error.

Gradient error

The information carried by the image Imat can
be used in one more way. It can be observed that
the training shapes cover areas of training images of
relatively high gradient. This property is exploited to
define the gradient error term:

Egrad(t) = exp

(
−1

agrad |Ξ(t)|

|Ξ(t)|

∑
i=1
‖∇Imat (bqi,1c,bqi,2c)‖2

)
,

(16)

where Ξ(t) = (q1,q2, . . . ,q|Ξ(t)|) and agrad , gradient
magnitude rescaling constant, is equal to 70. Terms
qi,1 and qi,2 are coordinates of qi for i = 1,2, . . . , |Ξ(t)|.
Fourth order central finite difference formulas are used
to compute the gradient.

Scale error

In certain cases it has been observed that the
described algorithm has a tendency to overestimate the
scale of the curve. To overcome this tendency a scale
error term is introduced:

Escale(t) =
1

n−1

n−1

∑
i=1
|z(Ξ(t))i+1− z(Ξ(t))i| . (17)

In ideal case, the expression in Eq. 17 is equivalent
to Escale(t) = |z(Ξ(t))2− z(Ξ(t))1| but in practice the
points z(Ξ(t)) are only approximately equidistant.

Curve distance error

Let’s assume that the a multitrail t is matched to
the full model at the initial angle α0, initial position
x0 and scale d. The curve distance error is the distance
between curves Ξ(t) and the polygonal chain defined

1Exponential map Expµ : Tµ Sdim(n) ⊃U → Sdim(n) maps a subset U of the space tangent to Sdim(n) at point µ to the torus Sdim(n).
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by points ω(β1,0, . . . ,βn−1,0,x0,d,α0) where βi,0 for
i = 1,2, . . . ,n−1 is defined by(

β1,0, . . . ,β⌊n/2dlog2(n)−1e
⌋
,dlog2(n)−1e

)
=

Expµ

(
PSpan{w1,w2,...,wL}Logµ

(
ω (z(Ξ(t)))

))
, (18)

and the function ω is given by the following formula:

ω(β1,0, . . . ,βn−1,0,x0,d,α0) =(
x0,x0 +dei(α0+β1,0), . . . ,x0 +d

(
n−1

∑
i=1

ei(α0+βi,0)

))
.

(19)

The curve distance error is given by

Ecde(t,npart ,x0,α0) = 1/n‖z(Ξ(t))−
ω(β1,0, . . . ,βn−1,0,x0,d,α0)‖1 . (20)

Curve distance model for partial matches can
be obtained by truncating the full model and using
the formulas for the extracted submodel (see Section
“Submodel extraction”).

Total error

The total error is a linear combination of eigenface
error, high deviation error, gradient error, scale error
and curve distance error multiplied by an occlusion
factor Occl(t):

Etotal(t,npart ,x0,α0) = Occl(t)
(

eeigEeig(t,npart)+

ecdeEcde(t,npart ,x0,α0)+ egradEgrad(t)+

escaleEscale(t)+ ehdeEhde(t)
)
, (21)

where eeig, ehde, egrad , escale and ecde are nonnegative
coefficients of the linear combination.

The occlusion factor is introduced to help reject
model matchings where the model curve is not
fully contained within the image Imat . An expected
continuation of the model fitted to the multitrail
t is calculated by taking the dot products ci =
〈PTµ Sub(Sdim(n),npart)

wi,Logµ(ω(p))〉, i = 1,2, . . . ,L in

the appropriate submodel Sub(Sdim(n),npart) and using
them in the full model:(

β1,0, . . . ,β⌊n/2dlog2(n)−1e
⌋
,dlog2(n)−1e

)
= Expµ

(
L

∑
i=1

ciwi

)
,

(22)

(see Eq. 18). The occlusion factor is then defined as an
exponential of fraction of points W (t) in the multitrail
given by ω(β1,0, . . . ,βn−1,0,x0,d,α0) that lie outside of
the image Imat :

Occl(t) = eaocclW (t), (23)

where aoccl is an occlusion error coefficient.

The minimization of total error over npart between
nmin(t) and nmax(t) results in the submanifold-
minimized total error:

Êtotal(t,x0,α0) =

arg min
i=nmin(t),nmin(t)+1,...,nmax(t)

Etotal(t, i,x0,α0) . (24)

The following formulas are used for the functions nmin
and nmax:

nmin(t) = max
{

2,
l(t)n

(W +H)smin
,nlast(t)− cminn

}
nmax(t) = min

{
n,

l(t)n
(W +H)smax

,nlast(t)+ cmaxn
}
(25)

where l(t) is the length of the polygonal chain
described by Eq. 11, nlast(t) is the number i that
minimized the error in Eq. 24 before the last elongation
of t (or zero if t ∈ P0) and smin, smax, cmin and cmax are
certain constants that depend on the dataset.

EXPERIMENTS

The algorithm was tested on four datasets: two
medical sets (50 standing frontal X-ray images of the
knee and 34 lateral X-ray images of the foot, see
Fig. 3) and two generated sets (40 stars obscured by
noise and mixed set of 20 images of triangles and 20
images of squares obscured by noise, see Fig. 4). All
images have been rescaled to contain approximately
fifty thousand pixels. In case of the foot dataset the
heel bone was detected, the femur was matched in the
knee datasets and respective shapes were detected on
stars and triangles and squares datasets. In the foot
dataset it was necessary to introduce a hand-drawn line
separating the heel bone from the talus bone. These
two bones overlap on the X-ray images which results
in poorly selected boundaries of superpixels.

The number n of sampling points is chosen as
the smallest power of two that accurately represents
features of detected objects. The choice of n is
limited to powers of two because the multiscale
approach is applied. The value of n cannot be too
large as it significantly increases computation time
and introduces additional errors due to equidistance
assumption (Eq. 1) being only approximately satisfied.
Fig. 2 presents the mean squared error from this source
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by comparing angles {α i
j,0}i=1,...,M, j=1,...,n obtained

from reduced-scale images used for testing to angles
{α̂ i

j,0}i=1,...,M, j=1,...,n obtained from higher-resolution
images having 1 to 1.5 megapixels. The formula for
mean squared error is

ds =
1

(n−1)M

M

∑
i=1

n

∑
j=2

(
α

i
j,0−α

i
1,0− (α̂ i

j,0− α̂
i
1,0)
)2
,

(26)
where all angles are assumed to be in (−π,π].
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Fig. 2: Relation between error ds (see Eq. 26)
introduced by unequal distances between successive
points. Error for knee dataset is marked by circles
while error for triangles and squares dataset is marked
by triangles

The chosen oversegmentation algorithm is the
watershed from markers method (Meyer and Beucher,
1990). The selected markers are local minima of
the gradient image in a square 2nm + 1 × 2nm + 1
neighbourhood centred on the pixel where nm is a
certain constant. The compact watershed and SLIC
algorithms (Neubert and Protzel, 2014) were also
tested but found inferior due to worse adherence to the
real boundaries in the images.

Depending on the selected oversegmentation
method the graph G may or may not be biconnected.
Typically there is a single largest biconnected
component of the graph G containing the shape to be
found and other, much smaller ones, can be removed
to speed up the computations.

The minimization in Eq. 8 is calculated using dlib’s
single-variable optimization algorithm (King, 2009).
The accuracy parameter is set to 0.01 and at most thirty
iterations are allowed.

(a) (b)

Fig. 3: Example images from the foot (a) and knee (b)
datasets.

(a) (b)

Fig. 4: Example images from the squares and triangles
(a) and the star (b) datasets.

For each dataset a model was created. The given
shape was matched in each image of the respective
dataset given initial paths with three edges. For each
dataset the mean Dice coefficient (Dice, 1945) dmean,
standard deviation dsd of Dice coefficients, minimum
dmin and maximum dmax of Dice coefficients were
calculated. The set A of pixels inside the true object
boundary and the set B of pixels inside the curve found
by the proposed algorithm were used to calculate the
Dice coefficient as (2|A∩ B|)/(|A|+ |B|), where |A|
denotes the number of elements in the set A.

The algorithm parameters were hand-selected for
each dataset. Relatively high dimensionality of the
parameter space and long matching time (a few
minutes to half an hour for a single image analysed
on a typical desktop computer) make use of general
purpose optimization algorithms infeasible.

The images in the knee dataset have been
segmented for comparison using the Active
Appearance Model (AAM) (Cootes et al., 2001)
method. Ten images have been selected for the training
set and the other forty were in the testing set.
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RESULTS

The results (the mean Dice coefficients, standard
deviation of Dice coefficients, minimum and
maximum Dice coefficient in a dataset obtained
using the leave-one-out cross-validation), selected
parameters and comparison with the AAM method
are summarized in Table 1. The obtained mean
Dice coefficients are comparable with state-of-the-
art pattern matching algorithms. Very high mean Dice
coefficient in the dataset with triangles and squares
indicates that the algorithm can learn more than one
shape at the same time.

Table 1: Algorithm parameters selected for the used
datasets and matching results (mean Dice coefficients
dmean, minimum dmin and maximum dmax of Dice
coefficients in a set, standard deviation dsd of Dice
coefficients). For comparison, the second column
contains results obtained using the AAM method.

dataset knee
(AAM) knee foot star triangle,

square

n - 128 64 128 64
nsel - 300 500 300 500
nm - 5 6 5 5

eeig - 1 1 1 1
ehde - 0.005 0 0.005 0

egrad - 10 10 0.02 70
escale - 1.0 0.6 2.0 1.0
ecde - 0.01 0.1 0.001 0.01

aoccl - 10 10 10 10
smin - 2.0 1.5 2.0 3.0
smax - 1.0 0.3 0.5 0.5
cmin - 0.1 0.1 0.1 0.1
cmax - 0.1 0.3 0.3 0.3

dmean 0.94 0.95 0.91 0.94 0.97
dmin 0.77 0.47 0.66 0.21 0.74
dmax 0.985 0.996 1 1 1

dsd 0.06 0.07 0.1 0.16 0.05

Figure 5 displays the results of pattern matching
in two cases from different datasets. The accuracy
of matching is very good in areas of high gradient
magnitude. In areas of low gradient magnitude the
oversegmentation is does not follow the edges of
the object and, as a result, the accuracy decreases.
Application of a better oversegmentation algorithm or
matching the parts of shape in low gradient magnitude
areas using a different approach might improve the
accuracy of the match.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5: An example of pattern matching on an image
from the knee dataset ((a)–(c)), foot dataset ((d)–(f)),
star dataset ((g)–(i)) and triangles and squares ((j)–(l))
dataset. From the left column to the right column: the
watershed segmentation of the selected image ((a), (d),
(g) and (j)), watershed segmentation overlaid on top
of the original image ((b), (e), (h) and (k)), the shape
(nodes in the graph G) matched using the proposed
approach, coloured black, on top of the watershed
segmentation ((c), (f), (i) and (l)).

In a few cases, the object was not found. This
may happen when there is a large area of low gradient
magnitude instead of a sharp boundary. In many such
cases increasing the parameter nsel leads to better
results at the cost of significantly increased matching
time. Dynamic adjustment of nsel could reduce this
issue.

DISCUSSION

A new algorithm for pattern matching has been
described and tested. In contrast to typical approaches,
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a constant distance constraint is imposed on the
features points. This allows for a very efficient shape
representation using angles. The method employs a
PGA-based shape model to deal with angular data.

The matching process is driven by a constraining
multigraph generated from an oversegmentation of
gradient magnitude of the given image. This results
in a very good matching of the borders of the
searched shape. The best match is constructed by
iterative elongation of multitrails with a composite
error function used to evaluate them. This process is
similar to the Generalized Hough Transform (Ballard,
1981) pattern matching to a curve family described
by L parameters ci ∈ R for i = 1,2, . . . ,L. Curves in
this family are determined by the sequence of angles
calculated as the exponential map at point µ of a linear
combination of PGA modes Expµ

(
∑

L
i=1 ciwi

)
. This,

together with four parameters for translation, rotation
and uniform scaling fully describe a parametrized
curve that can be matched using Generalized Hough
Transform (GHT). The key difference between GHT
and the proposed approach is a new way of
searching the parameter space for optimal matching
and a different method of selecting the best match.
Obviously, GHT is not defined for graphs, in contrast
to the proposed approach. In general terms the most
substantial difference between existing segmentation
methods and the proposed method is that we are trying
to merge information about the edges as present in
superpixel images and statistical information about
objects shapes. It appears that the presented results
support conjecture that the proposed algorithm solves
problem so stated.

The experiments show relatively high Dice
coefficients and good reproduction of borders present
in original images. The results are very encouraging.
Further research is needed to improve the efficiency
and matching accuracy in areas with low gradient
magnitude where the watershed oversegmentation
does not represent the borders of the searched object
well.

Additionally, the method does not need an external
initialization for the shape matching (the case when
the initial multitrail is empty). This increases the
time needed to find the best match. On the other
hand the algorithm is highly parallelizable, as the
error calculation, the most time-consuming part of the
matching, can be done in parallel for each path in the
set of paths considered at the current iteration.
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