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ABSTRACT

The Cavalieri method allows to estimate the volume of a compact object from area measurements in equidistant
parallel planar sections. However, the spacing and thickness of sections can be quite irregular in applications.
Recent publications have thus focused on the effect of random variability in section spacing, showing that
the classical Cavalieri estimator is still unbiased when the stack of parallel planes is stationary, but that the
existing variance approximations must be adjusted. The present paper considers the special situation, where
the distances between consecutive section planes can be measured and thus where Cavalieri’s estimator can
be replaced by a quadrature rule with randomized sampling points. We show that, under mild conditions, the
trapezoid rule and Simpson’s rule lead to unbiased volume estimators and give simulation results that indicate
that a considerable variance reduction compared to the generalized Cavalieri estimator can be achieved.

Keywords: Cavalieri estimator, perturbed spacing, randomized Newton-Cotes quadrature, variance
approximations.

INTRODUCTION

The Cavalieri estimator for the volume of a
compact object Y ⊂ Rn is given by

V̂ = h ∑
i∈Z

f (U + ih) . (1)

Here, for a fixed unit vector u ∈ Rn, the measurement
function

f (x) = λn−1(Y ∩Hx) (2)

is the (n− 1)-dimensional Lebesgue measure λn−1 of
Y intersected with the hyperplane Hx = {z∈Rn : z ·u=
x}. Furthermore, h is a fixed positive constant and U is
a uniform random variable in the interval [0,h]. Hence,
V̂ is based on intersections of Y with a stack of parallel
hyperplanes at distance h apart. It is not difficult to
show that V̂ is an unbiased estimator of the volume

V =
∫
R

f dx (3)

of Y . In applications, one usually considers the cases
n = 2 or n = 3, but we work with the slightly
more general setting of arbitrary n ≥ 1. Also, the
considerations below do actually not depend on the
interpretation of f (x) as the (n − 1)-dimensional
section volume, but only require that f :R→R is some

Lebesgue-integrable function with compact support.
Under this assumption on f the estimator in Eq. 1
is unbiased for V given by Eq. 3. Classical theory
(see (Baddeley & Jensen, 2005, Section 13.2) and the
references therein) yields variance approximations for
V̂ based on a general form of the Euler-Maclaurin
formula for the geometric covariogram of f .

It was remarked in Baddeley et al. (2006) that
the assumption of equidistant section spacing may
not be satisfied in applications, for instance when
V̂ is derived from physical sections of a material.
Hence, instead of at the ideal sampling positions
{U + ih : i ∈ Z}, f is evaluated at the points in X =
{. . . ,x−2,x−1,x0,x1, . . .} ⊂ R, where one can think of
xi as being a blurred version of the exact point U + ih.
We will assume throughout that the points of X are
given in ascending order, that is,

· · ·< xi−2 < xi−1 < xi < xi+1 < xi+2 < · · ·

The (random) point set X will be considered as a
point process in R, and we assume throughout that
X is stationary; see the next section for details. The
generalized Cavalieri estimator based on the sampling
points in X is given by

V̂ = h ∑
xi∈X

f (xi) , (4)
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x−2 x−1 x0 x1 x2 x3

x−2 x−1 x0 x1 x2 x3

Fig. 1. The rectangular quadrature rule for equidistant
points (xi) as used in the classical Cavalieri estimator
(top) and the corresponding rule when applied
to points that are not equidistant (bottom). The
measurement function is in both cases f (x) = 2(1−x2)
for x ∈ [−1,1].

with h now being the average section spacing. It is
still unbiased for V , but classical variance predictors
may underestimate the true variance substantially;
see Baddeley et al. (2006). In the two follow-
up papers Ziegel et al. (2010) and Ziegel et al.
(2011) the variances have been calculated under three
realistic error models and variance predictors based
on the observed values f (xi), xi ∈ X , are derived. In
particular, the model with cumulative error, where
the increments between successive sampling locations
are independent and identically distributed, exhibits
a rather drastic variance increase compared to the
equidistant case. A geometric comparison between the
classical Cavalieri estimator in the equidistant case and
the generalized Cavalieri estimator in the perturbed
case, is shown in Fig. 1.

In the following we argue that this undesirable
behavior can be avoided if more information on the
positions of the sections can be collected. This is
detailed in the following main section. In certain
applications it is possible to study the collection
of serial sections after the actual section process.

x−2 x−1 x0 x1 x2 x3

x−2 x−1 x0 x1 x2 x3

Fig. 2. The same measurement function and sample
points as in the lower Fig. 1, but now the midpoint rule
is used (top) leading to non-overlapping rectangles
with varying base lengths. The trapezoid rule (bottom)
approximates with a piecewise linear function and
leads to the same estimator as the midpoint rule.

This is typically the case when sections originate
from the surfaces of thick parallel slabs of uneven
thickness. Thus, one example is when the individual
slab thicknesses (corresponding to the individual
intersectional distances) may be measured directly
using a micrometer or digital caliper. Another example
is when the final set of slabs may be observed and
imaged from the side relative to the faces of the slabs;
see Fig. 1 in Baddeley et al. (2006) for the kind
of images that we have in mind. In the latter case,
individual section positions may then be determined
from the image.

The precise general assumptions for the present
investigations are that we can

(i) keep track of the order of the sections,

(ii) (at least approximately) measure the distances
between consecutive sections.

Note that many classical stereological estimators do
not require this additional information, as they rely
exclusively on samples with planar sections, but not
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on their relative positions. However, if this information
is available, one can use quadrature formulae to
obtain better approximations to the integral of the
measurement function.

The first method that might come to mind is the
midpoint rule, illustrated in Fig. 2 (top). Here, the
integral of the measurement function f between two
sections planes at consecutive positions xi and xi+1 is
approximated by

xi+1− xi

2
f (xi)+

xi+1− xi

2
f (xi+1) , (5)

and summing over all intervals would give the
estimator

V̂ = ∑
xi∈X

xi+1− xi−1

2
f (xi) . (6)

Note that the sum in Eq. 6 is finite: we have f (xi) = 0
for all but finitely many i∈Z as f has compact support.
Using the trapezoid rule as in Fig. 2, would yield
an approximation of the integral between xi and xi+1
given by

f (xi+1)+ f (xi)

2
(xi+1− xi) ,

which coincides with Eq. 5. Hence, both rules lead
to the same estimator given by Eq. 6. The trapezoid
rule corresponds to approximating f by a piecewise
linear function, with the important difference to
classical quadrature that this approximation is based
on random sampling points. Higher order Newton-
Cotes quadrature rules can be applied as well, in
a composite way. This will be outlined in the next
section. The main results of the subsequent section
are Corollaries 2 and 3, which state that the trapezoid
rule and Simpson’s rule both yield unbiased estimators
for the integral of the measurement function. For
the trapezoid rule the only requirement is that the
point process X is stationary. For Simpson’s rule, an
integrability condition must be satisfied. We continue
the technical report with a section on simulation
examples illustrating the variance reduction achieved
by the new estimators, and finish it with a short section
on Conclusions and future work.

QUADRATURE RULES AT
RANDOM POINTS

Throughout the following we assume that the
set X of sampling locations is a stationary point
process on R with intensity γ > 0. Then h = 1/γ is
the average section spacing. For background material

on point processes we refer to Chapter 3 in the
monograph Schneider & Weil (2008). Recall that we
assume f : R→ R to be an integrable function with
compact support. Newton-Cotes rules (see, e.g., Stoer
& Bulirsch (1980)) for numerical integration of order
n ∈ N0 on an interval [xi,xi+n] approximate a function
f (x) that is only known at the points xi, . . . ,xi+n by
the unique interpolating polynomial pn(x) of degree
at most n through the points (x j, f (x j))

i+n
j=i . Then∫ xi+n

xi
f (x)dx is approximated by∫ xi+n

xi

pn(x)dx . (7)

Commonly, the points xi, . . . ,xi+n are equidistant,
but we will need the more general form here. The
polynomial pn(x) can be expressed in Lagrange form
as

pn(x) =
i+n

∑
j=i

L j(x) f (x j)

with the Lagrange basis polynomials L j(x) =

∏k 6= j
x−xk
x j−xk

. Hence, the integral in Eq. 7 is of the form

Ii =
i+n

∑
j=i

β
(i)
j f (x j) , (8)

with β
(i)
j =

∫ xi+n
xi

L j(x)dx. A partial integration

argument shows that β
(i)
j can be expressed in terms of

the increments hk = xk− xk−1, k = i+1, . . . , i+n.

Usually, this quadrature is only used for small
values of n to avoid Runge’s phenomenon, that is,
oscillations of high order interpolating polynomials
destroying the quality of the approximation. Instead,
the nth order approximation is applied to consecutive
blocks of n intervals, a method that is usually referred
to as composite quadrature. In the present context,
where f is known at all the points xi of a point process,
the sum Ii in Eq. 8 can be calculated for any i ∈N, and
a composite integral approximation with start k ∈ Z is

Icomp
k = ∑

i∈Z
Ik+in . (9)

Clearly, Icomp
k = Icomp

k+n , and there is no reason to prefer
one start k in {1, . . . ,n} to any other, so we let the
final quadrature rule be given as the mean of these
n numbers V̂n = (1/n)∑

n
k=1 Icomp

k , when n > 0. For
n = 0 we put V̂0 = Icomp

1 , an estimator that is obtained
from the rectangular rule. In contrast to an equidistant
setting, this rectangular rule is in general different from
the midpoint rule. In view of Eq. 8 and Eq. 9 we have

V̂n = ∑
x∈X

αx(X) f (x) , (10)
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where the weights αx(X) ∈ R only depend on the n
increments to the left and the right of x. More precisely,
if X = (xi) is ordered,

αxi(X) = α̃(hi−n+1, . . . ,hi, . . . ,hi+n) , (11)

where α̃ is some function of 2n of the increments
h j = x j − x j−1, j ∈ Z. We will call n the order of
the estimator in Eq. 10. In the next section, α will be
determined for the quadrature of order n = 2. Note that
Eq. 11 implies that α is translation invariant, in the
sense that

αx+z(X + z) = αx(X) (12)

for all x ∈ X and z ∈ R.

UNBIASEDNESS

To discuss the unbiasedness of the estimator in
Eq. 10, a measurability assumption for α is needed.
In view of Eq. 12 we consider the Palm distribution
P0 of X , that is, the conditional distribution of X
given that the origin is a point of X and require that
α0(X) is quasi-integrable with respect to P0. Quasi-
integrability means here that α0(·) is measurable and
at least one of the numbers E0α

+
0 (X) and E0α

−
0 (X) is

finite. Here and in the following we write E0 for the
expectation with respect to the Palm distribution P0.
When X has a point at the origin, we will always apply
the convention that the ordered sequence X = (xi)
satisfies x0 = 0. Standard facts on the Palm distribution
of a stationary point process can be found in Sections
3.3 and 3.4 in Schneider & Weil (2008). For the
present investigations it is enough to note that the Palm
distribution is invariant under bijective point shifts.
In particular, it is unaltered if the point process X is
shifted in such a way that the origin is moved to its
kth next right neighbor in X ; see, for instance, Satz 4.3
in Mecke (1975) or Theorem 3.1 in Heveling & Last
(2005). This implies that

E0 f (h1, . . . ,hn) = E0 f (hk+1, . . . ,hk+n) (13)

for all measurable nonnegative functions f of n
increments and all n ∈ N, k ∈ Z. The increment
between the typical point x0 = 0 and its next neighbor
to the right has Palm expectation

E0h1 =
1
γ
. (14)

We can now state the first result, which does not
rely on the fact that α is obtained from a Newton-Cotes
quadrature.

Theorem 1. Let X be a stationary point process with
Palm distribution P0 and intensity 0 < γ < ∞. Assume
α : (x,X) 7→ αx(X) satisfies Eq. 12 and that α0 is
quasi-integrable with respect to P0. Then

V̂ = ∑
x∈X

αx(X) f (x) , (15)

is unbiased for γE0[α0(X)]
∫
R f (x)dx.

Proof. This follows from the refined Campbell theorem
(Theorem 3.3.3 in Schneider & Weil (2008)) by the
invariance properties of α and the stationarity of X .

The simplest instance of V̂ is the one where α is
a constant. If we put α ≡ 1/γ , Theorem 1 shows that
V̂ = 1

γ ∑x∈X f (x) is unbiased for
∫
R f (x)dx. This result

also follows from Theorem 1 in Baddeley et al. (2006),
and was the basis for their investigation. The classical
Cavalieri estimator is a special case of this setting and
is obtained when the points of X are equidistant.

Example 1. Applying the trapezoid rule we obtained
the estimator in Eq. 6, which coincides with Eq. 15
when αxi(X) = (hi + hi+1)/2. By Eq. 13 and Eq. 14
we have

E0
α0(X) = E0 h0 +h1

2
=

1
γ
.

Hence, V̂1 given by the trapezoid rule is unbiased for∫
R f (x)dx.

Corollary 2. The estimator V̂1 based on the trapezoid
rule (or, equivalently, on the midpoint rule) and given
by Eq. 6 is unbiased for

∫
R f (x)dx. Furthermore V̂1≥ 0

when f ≥ 0.

The last property is useful in a Cavalieri setting,
where the measurement function f (x) is the area of
the hyperplane section with offset x from the origin,
and thus nonnegative. Then, the volume estimate V̂1 is
nonnegative, as well. This monotonicity need not hold
for higher order quadrature rules.

Example 2. Simpson’s rule.
Simpson’s rule uses polynomial approximation of
order n = 2. An easy calculation (see Selmer (1958))
shows that Ii satisfies Eq. 8 with

β
(i)
i =

hi+1 +hi+2

6
2hi+1−hi+2

hi+1
,

β
(i)
i+1 =

(hi+1 +hi+2)
3

6hi+1hi+2
,

β
(i)
i+2 =

hi+1 +hi+2

6
2hi+2−hi+1

hi+2
.
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Thus,

V̂2 = ∑
x∈X

αx(X) f (x) (16)

with

αxi(X) =
1
2

(
β
(i−2)
i +β

(i−1)
i +β

(i)
i

)
=

1
12hihi+1

×
(
hi−1hihi+1 +hihi+1hi+2 +h3

i +h3
i+1+

5h2
i hi+1 +5hih2

i+1−h2
i−1hi+1−hih2

i+2
)
.

(17)

Hence, by Eq. 13 and Eq. 14,

E0
α0(X) =

1
γ
+

1
12

E0

(
h2

i
hi+1
−

h2
i−1

hi

)

+
1

12
E0

(
h2

i+1

hi
−

h2
i+2

hi+1

)
=

1
γ
,

if

E0 h2
1

h0
< ∞ and E0 h2

0
h1

< ∞. (18)

In the particular case where all the points of
the stationary point process X are a.s. equidistant,
αxi(X) = h1 is equal to the increment between two
consecutive points, and Simpson’s rule coincides with
the trapezoid rule.

We combine the findings in the last example with
Theorem 1 to obtain the following Corollary.

Corollary 3. Assume that the integrability conditions
in Eq. 18 hold. Then, the estimator V̂2 based on
Simpson’s rule, given by Eq. 16 and Eq. 17, is unbiased
for
∫
R f (x)dx.

In applications, the increments are usually
bounded and Eq. 18 can then be replaced by the
assumption E0h−1

1 < ∞.

It is straightforward to construct examples
of stationary point processes X and non-negative
measurement functions f such that V̂2 < 0 with
positive probability. However, in our simulations
with realistic choices of a model for X and natural
measurement functions, we never encountered a
negative realization of this estimator. This indicates
that the problem of a negative V̂2 is not a severe one in
practical applications.

IMPROVED VARIANCE

For exactly equidistant sampling points, the
variance of the classical Cavalieri estimator V̂ in Eq. 1
is commonly decomposed as

var(V̂ ) = varE(V̂ )+Z(h)+ r(h) ,

where the extension term varE(V̂ ) describes the
dominating overall trend of the variance, Z(t) is an
oscillating term, the so-called Zitterbewegung, and
r(h) is a lower order remainder. Usually, the extension
term is of the form

varE(V̂ ) = c ·hα , (19)

with an exponent α > 0, which depends only on
smoothness properties of the measurement function f ,
and some positive constant c; see p. 307 in Baddeley
& Jensen (2005). For instance, if the volume of the
unit ball B3 in R3 is estimated from sections with two-
dimensional planes, the measurement function satisfies

fB3(x) = π(1− x2) , −1≤ x≤ 1 . (20)

The trivial extension of this function on R is (m,∞)-
piecewise smooth with m = 1, meaning that the
derivatives up to order m−1 exist and are continuous,
whereas all higher order derivatives have a finite
number of jumps of finite size. For the classical
Cavalieri estimator with equidistant sampling points
and measurement function given by Eq. 20, Eq. 19
holds with c = π2/90 and α = 2m+2 = 4.

The purpose of this section is to present Monte
Carlo simulations supporting the claim that the above
defined quadrature rules decrease the variance of
the estimator compared to the generalized Cavalieri
estimator when the spacing is perturbed. We adopt a
perturbation model similar to the one in Ziegel et al.
(2011) where we generated a stationary point process
{U + ih : i ∈ Z} of ideally equidistant points (and U
uniform in the interval [0,h]). The perturbed sampling
points xi =U + ih+Di where then obtained by adding
stochastically independent and identically distributed
random errors (Di), which were also independent of
U . The distribution of Di was uniform in the interval
[−sh/2,sh/2], where s was chosen in such a way that
the average relative deviation (i.e. the coefficient of
variation) of h + Di from the ideal increment h was
5%. Fig. 3 shows the empirical variances of three
estimators from 2000 Monte Carlo simulations as a
function of the average number of sections, that is, 2γ

with γ = 1/h. The measurement function in Eq. 20 for
the estimation of the volume of the three-dimensional
unit ball was used. The variances of the two new
estimators V̂1 and V̂2 are virtually identical, and their
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overall trend appears to coincide with the extension
term of the classical Cavalieri estimator given in Eq. 19
with α = 4, indicated in black in the figure. Fitting
a least squares line to the variances of the two new
estimators yields an approximate exponent α̂ = 3.97
for the extension term, strongly indicating, that the
asymptotic behavior is comparable to the classical
Cavalieri estimator. In contrast to this, the empirical
variance of the generalized Cavalieri estimator is
always larger, and has an theoretical exponent of α = 3
only.

It is amazing that piecewise linear approximation
in V̂1 and piecewise quadratic approximation in V̂2
lead to the same variance behavior. The reason for
this appears to be the fact that the measurement
function in Eq. 20 is not continuously differentiable
at the endpoints of its support. We therefore repeated
the investigations with a spindle shaped body S with
peaked ends as illustrated in Fig. 4. Its measurement
function is

fS(x) =
π

2
(1+ cosπx), −1≤ x≤ 1.

This function is (2,∞)-piecewise smooth. For the
classical Cavalieri estimator with equidistant sampling
points Eq. 19 thus holds with c = π6/60480 and α =
2m+2 = 6.
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mean number of intersecting planes
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trapezoidal rule
Simpson's rule
extension term classic

Fig. 3. The empirical variance for volume estimation
of the unit ball B3 in R3, shown in a double logarithmic
plot. The x-coordinate is 2γ and the black line is the
extension term in Eq. 19 for the classical Cavalieri
estimator with section spacing 1/γ .

Fig. 5 shows the empirical variances for the
volume estimation for S. Again, the variance of the
generalized Cavalieri estimator follows a line with

approximate slope −α = −3. This is in accord
with the theoretical result in Ziegel et al. (2010)
implying that this exponent holds for all (m,∞)-
piecewise smooth f if m ≥ 1. In contrast to this, the
estimates based on trapezoid or Simpson’s rule have
approximately the same slope as the extension term
in the equidistant case, that is, −6. The smoothness
of the measurement function can apparently be
better exploited by Simpson’s rule: the corresponding
variance is never larger than var(V̂1). The double
logarithmic scale makes it difficult to see the precise
gain, but to give an example: For γ = 5 the empirical
standard deviation of V̂1 is about twice as large as the
one of V̂2. Numerical simulations with even smoother
measurement functions result in variance behavior,
where the empirical exponent α is strictly larger for
var(V̂2) than for var(V̂1).

Fig. 4. Planar section of a three-dimensional body S
of revolution through its horizontal rotational axis. The
boundary of this spindle is determined by the functions
u±(x) = ±

√
(1+ cosπx)/2, −1 ≤ x ≤ 1. The section

planes (indicted as vertical lines) are all orthogonal to
the rotational axis.
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Fig. 5. The empirical variances for volume estimation
of the spindle S shown in a double logarithmic plot.
The x-coordinate is 2γ and the black line is the
extension term in Eq. 19 for the classical Cavalieri
estimator with section spacing 1/γ .
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CONCLUSIONS AND FUTURE
WORK

We have shown that estimators based on
classical quadrature rules are good alternatives for
the generalized Cavalieri estimator when distances
between consecutive sampling points vary and are
known. The estimator based on the trapezoid rule is
unbiased as long as the underlying point process of
sampling points is stationary, which means roughly
speaking that no part of R is sampled differently
from any other part of R. The estimator that uses
Simpson’s rule requires in addition a mild integrability
condition to guarantee unbiasedness. Simulations
showed that variances are reduced when the sampling
points are independently and identically perturbed.
Apparently, the variance reduction is largest when the
measurement functions are smooth, as the generalized
Cavalieri estimator cannot take advantage of the
additional smoothness. This effect is expectedly even
stronger, when a cumulative error model (”meat slicer
model”) for the sampling points is employed. When
the measurement function is (m,∞)-piecewise smooth
with m≥ 2, the trapezoid rule and Simpson’s rule yield
different variance behavior. In many stereological
applications such a smoothness cannot be guaranteed,
which means that the trapezoid rule should be used.
However, in other applications of systematic geometric
sampling smoothness of f may be more natural and a
higher order quadrature rule thus profitable.

Concerning practical applications, the following
recommendations may be helpful.

1. The classical Cavalieri estimator is typically easy
to implement in real-world applications and is
thus the natural starting point for a stereological
investigation. If one suspects that non-equidistant
sampling positions might be a severe issue, the
section protocol should be planned in advance in
such a way that approximative sampling distances
can be determined later.

2. If subsequently it is discovered that the application
is burdened by non-equidistant sampling, the
Cavalieri estimator is still unbiased but the
variance is more or less inflated, which can be
assessed using the previously published variance
approximations.

3. If it is also possible to obtain the exact positions
of the (non-equidistant) sampling sites, the above
defined alternative estimators can be used. They
are unbiased and appear to match the variance of
the classical Cavalieri estimator (the latter being
applied to exactly equidistant sample points).
We expect that the use of the trapezoid rule

is preferable, as it is easier to implement than
higher order quadratures and does not require any
integrability condition for unbiasedness.

In future work we intend to find explicit formulae
for the variance depending on the model of X ,
similar to Theorem 1 in Baddeley et al. (2006).
However, it will no longer be sufficient to know the
second order properties of X , calling for the use of
more advanced tools from point process theory. It
is an interesting question if reasonable upper bounds
for var(V̂n) can still be established under realistic
assumptions on X . If so, the next step would be a
covariogram model allowing for the prediction of the
variance solely from the observed data. In addition,
it is important to determine the robustness of the
new estimators in situations were the positions of the
non-equidistant sampling sites are only approximately
known, as the exact positions may be unobtainable in
practice. Finally, it might be profitable to compare the
above estimators V̂n with estimators that are based on
quadrature rules using other approximating functions,
such as splines.
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