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ABSTRACT

Stereology is the science of geometric sampling, with applications to the statistical analysis of microstructures
in biology and materials science. Subsidiary disciplines are image analysis, quantitative microscopy, and
radiology. This survey is organized chronologically within a series of topics which cover most aspects of
stereology. Each topic is described informally to make it accessible to scientists of different disciplines.
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INTRODUCTION

Our purpose is to present a brief historical
survey of stereology, which is geometric sampling for
estimating quantitative properties of spatial objects.
In traditional sampling on discrete populations the
sampling units were supposed to be accessible to
observation, either directly, or from a database. In
geometric sampling, however, the target object is a
subset of (usually Euclidean) space, and the sample
is the intersection between the object and a geometric
test probe of known size and shape endowed with
a well defined mechanism of randomness relative to
the object. A test probe is usually a test system,
namely a regular arrangement of test points, lines,
planes, or slabs. In practice sampling is usually
performed with the aid of microscopy, or non invasive
radiology. The underlying theory is a blend of
integral geometry, probability and statistics (Cruz-
Orive, 2002), and the motivation is the application
to biomedical and material sciences. It is therefore a
multidisciplinary science represented in several books,
and in a wide variety of journals. Official journals of
the International Society for Stereology (ISS), recently
renamed International Society for Stereology & Image
Analysis (ISSIA), are Image Analysis & Stereology
(IAS, Ljubljana) and Journal of Microscopy (Oxford).

Biomedical applications are usually concerned
with bounded objects (e.g., human brain), whereas
material sciences usually deal with relatively small
portions of practically unbounded spatial structures
(e.g., a rock, or a carbide). The corresponding
approaches are called design- and model based,

respectively. In design based stereology (or ‘design
stereology’, for short) the object is assumed to be fixed
and bounded, and sampling is performed with properly
randomized test probes. In model based stereology
(or ‘model stereology’), however, the randomness is
incorporated into the structure by means of a (usually
stationary or ‘homogeneous’) random set model,
whereby probe sampling is simplified. This distinction
helps to understand the evolution of stereology. Model
based is not the same as assumption based stereology,
which relies on model shapes (e.g., the sphere), and
thereby leads to biased methods in general.

It also helps to distinguish between global and
particle stereology. In the design context, global
stereology deals with total quantities (such as the
total number of neurons in a specific cerebral
compartment). In the model context, global stereology
deals with a ratio (such as the relative volume occupied
by the tungsten grains in a carbide) which corresponds
to the intensity of the random set model. On the
other hand, particle stereology is concerned with mean
properties of individual particles (e.g., mean neuron,
or grain, volume). A ‘particle’ is a connected compact
domain separated from other particles.

Motivated by their common interests, a few
scientists, coordinated by Hans Elias (who had met
Ewald R. Weibel before) and Herbert Haug, coined
the term ‘stereology’ (from the Greek ‘στερε óς ’,
meaning ‘solid’) and founded the ISS on May 11–12,
1961 in Feldberger Hotel (Schwarzwald, Germany),
see Elias (1962, 1963). Interesting details are given by
Bach (1963) and in the history chapter of Miles (1987).

Geometrical probability and integral geometry
constitute the mathematical background of stereology
– hence a brief historical account is given in the
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next section. On the other hand, stereological methods
were largely motivated by the applied sciences, and
they often used ad hoc rediscoveries of known
mathematical results. This was happening well before
the foundation of the ISS, almost independently in
different countries, at different times, in different
disciplines, and published in various languages.

The survey is organized by topics, chosen to cover
most aspects of stereology. Informal explanations are
given to make the ideas accessible to readers not
familiar with stereology. For reasons of space many
qualifying references, and figures, have been omitted.
Papers bearing figures occasionally cited in the text
are easily available in the web, or from the author on
request.

GEOMETRICAL PROBABILITY
AND INTEGRAL GEOMETRY

THE BIRTH OF GEOMETRICAL
PROBABILITY
It is generally admitted that Buffon’s needle

problem, proposed and solved by the French naturalist
George Louis Leclerc, Comte de Buffon (1707–
1788), (Buffon, 1777, see Miles and Serra, 1978),
encapsulates the art and spirit of stereology. As
pointed out by Hykšová et al. (2012), however, toward
1664–1666 Isaac Newton (1643–1727) apparently
formulated the principle that a ‘random’ point hitting
a domain of area A > 0 will hit a subdomain of area
a ≤ A with a probability equal to a/A. This may not
be surprising inasmuch as probability was developing
at Newton’s time, notably with Blaise Pascal (1623–
1662), and with the early members of the Bernoulli
family. Nonetheless, Newton’s leap from a discrete
sample space (pertinent to dice and card games) to a
continuous one, cannot be underestimated.

One of the merits of Buffon’s problem is that it
incorporates both a uniform random location of the
centre of the needle and, independently, a uniform
random orientation (namely an isotropic orientation)
of the needle. An equivalent problem, suggested by
Robert Deltheil (1890–1972), (Deltheil, 1926, p. 61)
reads as follows

“A needle of length l is arbitrarily fixed inside
a disk of diameter h > l in the plane. A straight
line in the same plane hits the disk at random.
Calculate the probability that the straight line
hits the needle”.

If we knew “how many” random lines hit the
needle, and how many hit the disk, then the ratio

of both numbers would solve the problem. Morgan
W. Crofton (1826–1915) discusses the important
challenge of extending the traditional counting
measure to some sort of continuous geometric measure
(Crofton, 1868). Thus, to a straight line L2

1 of normal
coordinates (p,φ) in the plane, (where p ∈ (−∞,∞) is
the distance of the line from a fixed origin O, and φ ∈
[0,π) is the orientation angle), he associates a density
dL2

1 = dp dφ . With this tool he shows that the measure
(i.e., the “total number”) of all straight lines hitting a
convex set of boundary length B, is precisely B. For a
needle of length l the hitting measure is 2l, (because
the needle has to be regarded as a flattened convex
set of perimeter 2l), whereas for a disk of diameter h,
the corresponding measure is πh. Thus, the required
probability becomes 2l/(πh), which is Buffon’s result.

Far from settling the issue, Crofton’s results
aroused controversy among mathematicians in the
following years. For instance, one of the so called
‘Bertrand’s paradoxes’, (Bertrand, 1889), implies the
following. In the preceding example, Crofton’s density
dp dφ for a random chord of the disk means that, for
each orientation φ of the chord, its distance p from
O is uniform random along the diameter of the disk.
Instead of this, suppose that the midpoint of the chord
is uniform random in the interior of the disk. Then
the support line of this chord is also ‘random’, but its
density is p dp dφ instead of dp dφ . As a consequence,
the measure of all the lines hitting the convex set is
no longer B – it even depends on the location and
orientation of the set inside the disk. Thus, which is
the right answer?

THE BIRTH OF INTEGRAL GEOMETRY
Élie J. Cartan (1869–1951) realizes the importance

of establishing measure densities that are motion
invariant, namely invariant with respect to translations
and rotations (Cartan, 1896). In this way, the results
should not depend on the choice of the reference
frame. Fortuitously or not, Crofton’s choice dp dφ

is the (unique) motion invariant density for straight
lines in the plane – it is therefore not surprising that,
using this density, the measure of all the lines hitting a
convex set is the perimeter length B, which is clearly a
motion invariant property of the convex set.

Soon after, integral geometry emerges as a
solid mathematical discipline whose basic purpose
is to obtain motion invariant densities for geometric
objects, thereby establishing a solid foundation
of geometrical probability. The Hamburg School
of Wilhelm Blaschke (1885–1962) exerts a great
influence through its disciples, among which there
was Luis Antonio Santaló (1911–2001), who showed
an interest in stereology in later years. The Swiss
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mathematician Hugo Hadwiger (1908–1981) created
a relatively independent school (Debrunner et al.,
1982). Classic books are Blaschke (1936–37), who
introduced the term ‘integral geometry’, Hadwiger
(1957), Santaló (1976), and Schneider and Weil
(2008). See also Naveira and Reventós (2009).

CROFTON FORMULAE
Typical results of integral geometry are the so

called Crofton formulae. For instance, consider a
bounded planar curve Y of finite length B. The measure
of the number I(Y ∩ L2

1) of intersections determined
in the curve by all the motion invariant straight lines
hitting it is ∫

I(Y ∩L2
1) dL2

1 = 2B . (1)

If Y is the boundary of a convex set, then I(Y ∩
L2

1) = 2, whereby the preceding formula yields the
aforementioned hitting measure B. Convex sets were
the main interest of Crofton (1868), Czuber (1884),
etc., because explicit hitting measures yield attractive
results. Eq. 1 is useful to estimate curve length, but
sampling and estimation were established only in the
20th century. As detailed by Hykšová et al. (2012), it
is noteworthy that Joseph-Émile Barbier (1839–1889)
anticipated results like Eq. 1, its three dimensional
(3D) version for surface area, and other important
ideas (Barbier, 1860).

THE CAVALIERI PRINCIPLE
A very simple but important Crofton formula

arises as follows. Consider a bounded set Y ⊂ R3

of volume V , and let A(p) denote the area of the
intersection of Y with a plane at a distance p∈ (−∞,∞)
from a fixed origin O. Then, for any given orientation
of the plane, ∫

A(p) dp =V . (2)

The preceding formula is well known from elementary
calculus. It may be regarded as a Crofton formula,
however, inasmuch as dp is a translation invariant
density. The discretized version of Eq. 2, namely the
decomposition of a solid into thin slices to compute its
volume, was known to Greek mathematicians, notably
Archimedes of Syracuse (c. 287 – c. 212 BC), who
applied it to regular solids, see for instance Tobias
(1981).

Consider two solids of volumes V1, V2. If A1(p) =
A2(p) for all p ∈ (−∞,∞), then V1 = V2. This
is Cavalieri’s Principle, formulated by the Italian
mathematician Bonaventura Cavalieri (1598–1647),
a disciple of Galileo, in his book Cavalieri (1635).

The real merit of Cavalieri is that, unlike ancient
mathematicians, he obtains a theorem for arbitrarily
shaped objects. Unconsciously, one often fails to
realize that section area and object volume have
nothing to do with shape.

PROBE AND OBJECT INTERACTION:
DIMENSIONAL CONSIDERATIONS
For an object Y hit by a probe T in Rd , the

following dimensional relationship

dim(Y ∩T ) = dim(Y )+dim(T )−d , (3)

holds up to a set of positions of of zero measure.
Because dim(Y ∩T )≥ 0, it follows that the inequality

dim(Y )+dim(T )≥ d (4)

must always hold. Eq. 3 was presented as an axiom in
Sommerville (1958, p. 10), see also Weibel (1967) –
for a proof see Gual-Arnau et al. (2010, Appendix A).

If Eq. 4 holds and either dim(Y ) = d, or dim(T ) =
d, then in order to relate Y and T by a Crofton formula
it suffices that T has a fixed orientation relative to Y ,
see, e.g., Eq. 2. However, if Eq. 4 holds but dim(Y )< d
and dim(T ) < d, then the density of T has to be both
translation and rotation invariant, that is, orientation
matters, as in Eq. 1.

THE INCORPORATION
OF SAMPLING: DESIGN
BASED STEREOLOGY

SAMPLING IN A CONTINUOUS
DOMAIN. TEST SYSTEMS
Apparently, Buffon’s motivation behind his needle

problem was to establish rules for fair gambling. A
player throws a rod of length l at random over a
board bearing an array of parallel lines a distance
h ≥ l apart. If the rod hits a line, the player obtains
a money prize m, say. How much should he/she pay
for playing? Buffon argues that the mean gain will be
m times the probability of winning, namely 2lm/(πh)
and, therefore, for the game to be fair this should be
the price of the bet.

With the progressive development of sampling
and statistics from the beginning of the 20th
century, Buffon’s needle problem inspired estimation
problems. Scientists soon realized that theoretical
predictions obtained with motion invariant densities
could be confirmed by real experiment. For
convenience, recall the equivalent problem described
in the preceding subsection. Hit the disk with N
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random straight lines (called test lines in this context),
and count the number n ≤ N of times the needle
is hit. Then n/N is an unbiased estimator (UE) of
the hitting probability. Thus, knowing any three of
the four quantities 2, l,π,h, the fourth one can be
estimated without bias. In particular, the estimation
of π by 2lN/(nh) was popular in the 19th century, see
Gridgeman (1960) for a good review.

The idea of defining proper probability measures
for random probes was fundamental for the progress in
stereology. Key contributors here were Roger Edmund
Miles and his student Pamela Joy Davy, (Miles and
Davy, 1976, 1977; Davy and Miles, 1977). In turn,
R.E. Miles had been a student of Patrick A.P. Moran,
also an Anglo-Australian mathematician. The latter
was a coauthor of the book Kendall and Moran (1963);
this little book is an early authoritative combination of
integral geometry, probability and statistics, together
with applications that were the germ of stereology.

The probability element associated with a test line
hitting a disk is

P(dp, dφ) =
dp dφ

hπ
, p ∈ [−h/2,h/2], φ ∈ [0,π) ,

(5)
namely the motion invariant density normalized by
the measure of all the test lines hitting the disk. This
probability element implies that φ is uniform random
(UR) in the interval [0,π), namely isotropic random
(IR) in the unit semicircle, whereas p is independent
and UR in the interval [−h/2,h/2]. The test line is
thereby said to be isotropic uniform random (IUR)
hitting the disk – a term introduced by R.E. Miles.

More generally, consider a planar curve Y of finite
length B contained in a disk of diameter h. The
sampling experiment consists of hitting the disk with
a IUR test line L2

1. Then I(Y ∩L2
1) is an integer valued

random variable whose expectation or mean value with
respect to the probability element given by Eq. 5 is
easy to compute using Eq. 1, namely,

E
{

I(Y ∩L2
1)
}
=
∫

I(Y ∩L2
1) P(dp, dφ)

=
2
π
· 1

h
·B . (6)

It follows that

B̂ =
π

2
· h · I(Y ∩L2

1) (7)

is a UE of B. If the test line misses the curve,
however, then B̂ = 0, hence the method is more
academic than practical. In practice a test system of
lines is more convenient, and usually more efficient
than independent test lines. The array of parallel lines

used in the original Buffon experiment is in fact a test
system – thus, Buffon also anticipated this concept.

Test systems are extensively used in stereology
– hence a few details may be opportune. Fix a
rectangular frame Ox1x2 in the plane. Instead of a test
line, consider a bounded test probe such as a needle T 2

1
of length l > 0 with unit vector (x,ω), where x ∈ R2

is an endpoint of the needle and ω ∈ [0,2π) is the
orientation angle. The Crofton formula analogous to
Eq. 1 is called the Poincaré formula, namely,∫

I(Y ∩T 2
1 ) dT 2

1 = 4lB , (8)

(e.g., Santaló, 1976), where dT 2
1 = dx dω is the unique

motion invariant density for bounded probes in the
plane, called the kinematic density. Here dx = dx1 dx2
is the area element in the plane, and dω is the arc
element in the unit circle. Actually, the way Buffon
solved the needle problem implies that he used the
kinematic density for the needle.

Consider, as before, a planar curve Y of finite
length B contained in a disk of diameter h. We want
to estimate B by hitting the disk with a IUR test needle
T 2

1 , and observing I(Y ∩T 2
1 ). The probability element

associated with the needle is the kinematic density
dx dω normalized by the measure of all test needles
hitting the reference disk. Thus, apart from the inherent
inefficiency of the sampling design (because the needle
may often miss the curve), the computation of the
normalizing constant is an additional snag.

Instead, consider a partition of the plane into
congruent regions or tiles {Ji = J0 + ti, i ∈ Z}
generated by a family of translations {ti} of a bounded
fundamental tile J0 of area a > 0. Consider also a
bounded fundamental probe T (e.g., a test point, a
curve, or a quadrat) contained in J0. To focus on the
present example, suppose that J0 is the square [0,h)2

and T is the straight line segment [0, l), 0 < l ≤ h. The
set of probe translates ΛT = {Ti = T + ti} is a (fixed)
test system (of straight line segments in this case).

Eq. 8 is unchanged if the needle T 2
1 is fixed and

the curve Y (x,ω) is mobile with the kinematic density
dY = dx dω . It suffices to attach a unit vector (x,ω),
called the associated vector (AV), rigidly to Y , with
origin at a point x, called the associated point (AP) of
Y , see, e.g., Gómez et al. (2016, Fig. 2). Then,

4lB =
∫ 2π

0
dω

∫
R2

I(Y (x,ω)∩T ) dx

=
∫ 2π

0
dω

∫
J0

∑
i∈Z

I(Y (x,ω)∩Ti) dx

=
∫ 2π

0
dω

∫
J0

I(Y (x,ω)∩ΛT ) dx . (9)
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The preceding result means that, instead of integrating
the point x over the entire plane and scoring
intersections with a single test probe T , as in the first
Eq. 9, it suffices to integrate x over J0, provided that
the intersections are scored with the entire test system
ΛT . The pertinent probability element becomes,

P(dx, dω) =
dx
a
· dω

2π
, x ∈ J0, ω ∈ [0,2π) , (10)

much simpler than in the single bounded probe case:
now x is UR in J0 and ω is IR and independent. Thus,

4lB = 2πa ·E{I(Y ∩ΛT )} , (11)

from which a UE of B is,

B̂ =
π

2
· a

l
· I(Y ∩ΛT ) . (12)

If l = h, then ΛT becomes Buffon’s test system
of parallel lines a distance h apart, and Eq. 12 is
analogous to Eq. 7 because a/l = a/h = h. If the
fundamental probe T is the union of the base and the
left hand side edge of J0, then ΛT is a square grid, as
proposed by Steinhaus (1930), with a/l = h2/(2h) =
h/2.

Eq. 9 holds for an arbitrary polygon J0 of area a
that can tile the plane, and an arbitrary fundamental
curve T ⊂ J0 of length l > 0. In particular, if J0 =
[0,2h)× [0,h) and T is the union of two half circles of
diameter h, then ΛT is the Merz grid, see, e.g., Howard
and Reed (2005, Fig. 12.5). The advantage of this grid
is that the curve Y may be UR with a fixed orientation
relative to the grid.

In computer assisted stereology the curve may be
fixed and the grid IUR: the AP of T is shifted to a UR
point x∈ J0, dragging the entire test system with it, and
then the latter is rotated isotropically at random about
x.

The generalized version of Eq. 9 to test systems
of arbitrary dimension started with Santaló (1939),
who called them ‘unbounded figures’. After a series
of papers, a polished version appeared in Santaló
(1953) under the name ‘lattices of figures’, see also
Santaló (1956, 1976, Ch. 8). Apparently Barbier
(1860, p. 278) also anticipated the concept of test
system. The incorporation of associated probability
elements leading to precise sampling rules, however, is
relatively recent (Miles, 1978a; Jensen and Gundersen,
1982; Cruz-Orive, 1982).

As a natural extension of Buffon’s test system of
parallel lines, consider a test system of parallel planes
of a fixed orientation. Application of Eq. 9 to Eq. 2
yields a UE of the volume V of a bounded object

Y , called the Cavalieri estimator, (in honour of B.
Cavalieri, see Cruz-Orive, 1987a), namely

V̂ = h ·∑
k∈Z

A(z+ kh) , (13)

where z is a UR variable in the interval [0,h), and
h is the distance between planes. The first rigorous
version of the Cavalieri estimator appears in Moran
(1950) in the context of Monte Carlo integration. In
fact, many stereological methods may be regarded
as Monte Carlo integration methods. The essential
unbiasedness condition (emphasized in the preceding
paper) that z should be UR in [0,h) was also given by
Matheron (1971, p. 21), and in a stereology context
by Thioulouse et al. (1985) and by Gundersen and
Jensen (1987). Thus, Cavalieri sampling is equivalent
to systematic sampling along an axis with a random
start.

Multidimensional versions of Eq. 1 and Eq. 8
are derived in the aforementioned integral geometry
books. Miles (1972) gave generalized ratio estimators.
General versions of Eq. 6, of its counterpart for
bounded probes, and of Eq. 9, are given for instance by
Voss and Cruz-Orive (2009), Eqs. A9, A21 and A28,
respectively.

DISCRETE SAMPLING
Test systems are not the only sampling tools

available in design stereology. Consider the estimation
of the volume V of an object Y . Instead of using
the Cavalieri method, we may split Y exhaustively
into fragments (of arbitrary size and shape), generally
called ‘blocks’, of unknown volumes {V1, V2, ..., VM}
adding up to V . (In sampling theory the term ‘cluster’
is customary instead of ‘block’, see, e.g., Cochran,
1977). The idea is to replace a continuous sampling
domain (such as the interval [0,h) of the Cavalieri
design) with the discrete one {1, 2, ..., M}. A general
UE, useful in this context, is the Horvitz-Thompson
estimator,

V̂ = ∑
i∈S

Vi

πi
, (14)

(Horvitz and Thompson, 1952), where πi > 0 is the
probability (known a priori) that the ith block is
included in the sample, and S represents the subset of
indexes corresponding to the sampled blocks. In UR
sampling the {πi} are all identical, but UR sampling is
not unique.

Simple random sampling of blocks without
replacement. This is UR sampling (also known as
the ‘lottery method’) in which πi = n/M, where n ∈
{1, 2, ..., M} is the fixed sample size. Thus, V̂ = M ·V ,
where V is the mean volume of the sampled blocks.
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Systematic block sampling. This is UR sampling in
which every kth block, (where k > 2 is a fixed natural
number called the sampling period), is selected with
a UR start z among {1, 2, ..., k}. Thus πi = 1/k, and
therefore

V̂ = k ∑
i∈Z

Vz+ik , (15)

(namely the sampling period times the sample total),
is a UE of V ; for convenience we set Vi = 0, i /∈
{1, 2, ..., M}. Note that, unlike simple random
sampling, here it is not necessary to know the
population size M. The sample size is random unless
M is a multiple of k, with mean value M/k.

The fractionator is multistage systematic block
sampling. Thus, at the ith sampling stage (with period
ki), the sampled blocks are split again into smaller
blocks which are sampled with period ki+1, etc. If
s stages are used, then the unbiased fractionator
estimator of V reads,

V̂s = k1k2 · · ·ks ·Qs , (16)

where Qs represents the total volume of the blocks
sampled at the last stage. The fractionator can be
applied to whatever measurable quantity defined on an
object. The last stage quantity Qs will usually have to
be estimated from sections by stereological methods.
In its original version (Gundersen, 1986), and in most
further applications of the fractionator, the target was
particle number – for a detailed application see for
instance Ogbuihi and Cruz-Orive (1990). Artacho-
Pérula et al. (1999), however, applied it to estimate
total capillary length in skeletal muscle, whereas
Wulfsohn et al. (2010b) showed how to estimate total
leaf area in plants. To increase precision, Gundersen
(2002) proposed the smooth fractionator: prior to
sampling at each stage, the blocks are rearranged
according to their apparent size into an approximately
symmetric pattern, as smooth as possible and with
a single peak. A similar procedure was proposed by
Murthy (1967, p. 165) under the name ‘balanced
systematic sampling’ (’bss’). If the target quantity in
a block is proportional to its apparent size, then bss
can estimate the target very accurately – even exactly
under special conditions (Tinajero-Bravo et al., 2014).
Systematic sampling with probability proportional to
size – called the proportionator in stereology – is also
an interesting idea, see Andersen et al. (2015) and
early references therein.

MODEL BASED STEREOLOGY

Here the structure of interest is modelled by a
manifold process Y with realizations in Euclidean

space (e.g., a process of points, curves, surfaces, or
volumes). Loosely, for any bounded test probe T , the
intersection Y ∩ T is piecewise smooth with a finite
measure which is a random variable. For a formal
description see Mecke (1981). The relevant theory
is stochastic geometry – early developments can be
seen for instance in Harding and Kendall (1974), and
Matheron (1975). More recent references relevant to
stereology are Baddeley (1999), Stoyan et al. (1995)
and Schneider and Weil (2008).

To facilitate estimation the process is assumed
to be first order stationary or ‘homogeneous’. For
instance, if Y is a volume process and Tx is a translate
of a probe T of volume V (T ) by a vector x, then the
mean value of V (Y ∩Tx) does not depend on x. More
precisely,

VV =
E{V (Y ∩T )}

V (T )
(17)

is a constant called the intensity of the process – in this
case the volume fraction occupied by Y in the entire
space.

The intersection of a stationary volume process
Y with a plane is a stationary planar area process
of intensity AA, say. Thus, if T is a bounded planar
probe of area A(T ) in space, then by the first order
stationarity of Y we have,

VV =
E{A(Y ∩T )}

A(T )
= AA . (18)

As a consequence,

V̂V = A(Y ∩T )/A(T ) (19)

is a UE of VV irrespective of the location of T . This is
essentially the Delesse principle, which is regarded as
the first genuine result of stereology. By an argument
based on Eq. 2, the French geologist Achille E.O.J.
Delesse (1817–1881) established that the mean area
fraction of a mineral in a polished section of a rock
is equal to the volume fraction of the mineral in the
rock (Delesse, 1847).

Ratios are the main meaningful first order
properties in model stereology. To make estimation
possible the process should also be ergodic – roughly,
this means that for any fixed T the mean contents of
Y ∩T over realizations of Y , remains constant, i.e., the
target intensity does not change. Further, if Y is not
isotropic, and neither Y nor T are of full dimension,
then to preserve unbiasedness the probe T should be
isotropically rotated.

Model stereology does not necessarily apply to
material sciences only. The fine structure of lung
parenchyma (see for instance Weibel et al., 1981) may
be studied in a model based setting – Miles (1978b)
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called this the extended case, revisited by Cruz-
Orive (2009). To keep variation within useful bounds,
however, the size of T should be large enough to
encompass the ‘typical features’ of the target structure
(Lantuejoul, 1991, 2002). For instance, to estimate the
volume ratio of tissue septa in lung parenchyma, the
quadrat size should ideally be no less than the alveolar
size.

GLOBAL STEREOLOGY

THE GENERAL DESIGN
The Delesse principle just described had a

profound influence in the development of stereological
methods over decades. In early years the ‘classical
stereological equations’ were inspired by material
science problems, thereby involving ratios almost
exclusively. The relevant books of Saltykov (1958),
DeHoff and Rhines (1968), Underwood (1970), and
references therein, illustrate this. Even Miles (1972)
was mainly concerned with ratios. In the biological
context, stereological equations were still derived
with reference to a ‘cube of material’. Only a deep
understanding of the real biological problems, often
motivated by the need to correlate structure and
function, helped some biologists to regard ratios as
mere vehicles to estimate the relevant parameters,
namely global quantities pertaining to complete
organs. A good illustration of this is Chapter V
from Weibel (1963). Shortly afterwards, the classical
multistage design was made more explicit, (Weibel
1969, p. 271).

In organs such as lung, the target object is the last
of a nested sequence of subsets,

Y0 ⊃ Y1 ⊃ ·· · ⊃ Ys ⊃ Y (20)
lung⊃ parenchyma⊃ septa⊃ capillaries ,

which have to be observed at increasing
magnifications. The target is the absolute, global
quantity γ(Y ), where γ may stand for total volume,
surface area, length, or number. This target may be
expressed by a product of ratios as follows,

γ(Y ) =V0 ·R1 ·R2 · · ·Rs ·
γ(Y )
Vs

,

Ri =Vi/Vi−1, Vi =V (Yi) . (21)

The preceding scheme is the basis of a nested,
‘cascade’ sampling design (Cruz-Orive and Weibel,
1981, Weibel et al., 1981).

In early years many biological studies reported
ratios instead of absolute quantities, often leading to

contradictory conclusions. The term ‘reference trap’
coined by Braendgaard and Gundersen (1986) warned
against the failure to multiply a ratio with the pertinent
measure of the reference space (e.g., V0), see also
Gundersen (1992). Haug (1985) showed that old
brains shrink less than young brains after laboratory
processing, whereby the ratio ‘number of neurons per
unit volume’ appears to be larger in younger brains.
Shrinkage corrections dispelled the theory of neuron
loss with age.

Whereas in model stereology the denominator of
ratio estimators such as Eq. 19 is a controlled, non
random variable, in design stereology edge effects
usually arise, whereby the corresponding denominator
is a random variable. This caused confusion in early
years – Mayhew and Cruz-Orive (1974) pointed out
that ratio estimators are unbiased in the former, but
only ratio unbiased – a term coined by A.J. Baddeley
– in the latter case. In general, proper sampling
prescriptions, statistical properties of the estimators,
etc., had to wait until R.E. Miles and P.J. Davy
set the foundations in the late 1970s. Cruz-Orive
(1980a) proposed statistical models which Jensen and
Sundberg (1986) showed to be valid at the best
when the denominator of a ratio is a controlled
variable — see also Baddeley and Jensen (2005). Cruz-
Orive (2009) relates the multistage design with the
fractionator.

As pointed out by Baddeley and Cruz-Orive
(1995), minimum variance unbiased estimators will
usually not exist – at least in model stereology –
due to the incompleteness of the underlying sigma
algebra. In design stereology, the Cavalieri estimator,
for instance, may not converge in distribution, (Garcı́a-
Fiñana, 2006) – it is therefore likely that the central
limit theorem does in general not apply to estimators
based on systematic sampling. Thus, stereological
methods are mainly non-parametric.

PARTICLE NUMBER

As far as counting, a set Y of N particles may be
treated as a set of N points of dimension dim(Y ) = 0.
Thus, by virtue of Eq. 4 it follows that dim(T ) ≥ d−
dim(Y ) = d, which means that particles (e.g., grains,
or cells) in space cannot be counted unless a three
dimensional probe is used.

Thompson (1932) anticipated the Horvitz-
Thompson estimator and applied it to count
Langerhans islets in pancreas, noting that the
probability that an islet is sampled (i.e., hit) by a
section plane is proportional to the caliper height of
the island normal to the plane. He proposed to measure
the caliper with a negligible error using serial sections.
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Cruz-Orive (1980b) rediscovered the same procedure.
This method was used by De Groot (1988) to count
synapses by electron microscopy, but it was too time
consuming, hence short-lived.

Thompson (1932, p. 26) also anticipated the
associated point (AP) rule (Miles, 1974), stating that
an unbiased definition of the number of islets sampled
by a slab could be the number of islet centroids in the
slab. As remarked by Gundersen (1986), Thompson
et al. (1932, p. 37) removed the need to identify islet
centroids and proposed to count “islets having a part in
the master section but not in a given adjoining section”,
which is the disector principle (Sterio, 1984) – see
also Miles (1972, Section 7). Bendtsen and Nyengaard
(1989), however, revealed that the latter principle had
been used by different authors from the late 19th
century to count islets and kidney glomeruli.

A problem with the earlier methods was the lack
of a simple and unbiased rule to cope with edge effects
in the plane – thus, these methods had to be based
on entire sections with natural boundaries only. The
unbiased frame rule (Gundersen, 1977) facilitated the
polished tool described by D.C. Sterio (an anagram of
‘disector’). A three-dimensional generalization of the
unbiased frame is the unbiased brick (Howard et al.,
1985). A practical simplification is the optical disector
(Gundersen, 1986; Gundersen et al., 1988) – for details
and references see, e.g., Howard and Reed (2005), and
West (2012).

An efficient combination, originally designed
to estimate neuron number using the nucleus, or
the nucleolus, as the counting unit, is the optical
fractionator (West et al., 1991). The last step requires
the ratio of optical to physical section thickness,
where bias artifacts have to be taken into account
(Dorph-Petersen et al., 2001). The selector method
(Cruz-Orive, 1987b) circumvents the need to measure
section thickness, but it requires serial sections and it
is time consuming, hence it was soon replaced with
the nucleator (Gundersen, 1988) – both methods are
briefly revisited in Section Size estimators of local
stereology.

At the macroscopic, non stereological level,
Wulfsohn et al. (2012) used the fractionator to estimate
the total number of fruits in an orchard.

Motivated by the problem of counting and
measuring biological organelles, S.D. Wicksell treated
the more general problem of estimating or ‘unfolding’
the size distribution of a population of particles solely
from plane sections. The problem is indeterminate
unless the particles are assumed to have specific,
simple geometric shapes. Wicksell (1925) first
considered spherical particles; the model leads to an

Abel integral equation, which he solved analytical
and numerically. Because the kernel of the integral
equation has a singularity, the subsequent numerical
problem is ill-conditioned, and the estimation unstable
near the origin. The problem presented challenges
very attractive to mathematicians, and in the following
decades hundreds, even thousands of papers were
devoted to it. The problem was often known as the
‘Swiss cheese’ (here the ‘particles’ were voids), or
the ‘tomato salad’ problem, and it became so popular
that many scientists even identified the problem with
stereology itself. For a selection of the literature
see Cruz-Orive (1983). Wicksell (1926) considered
ellipsoids, see also Cruz-Orive (1976), whereas Ohser
and Mücklich (2000) treat various model shapes.

As far as counting only, if a stationary and isotropic
particle process of number intensity NV is hit by
a plane, then the intersection is a stationary and
isotropic particle transect process of number intensity
NA, and NV = NA/E(H), where E(H) is the mean
caliper height of the particles normal to the sectioning
plane. The preceding equation (implicit in Wicksell,
1925, p. 89) was massively used also in biology, in
a design based setting. The problem, of course, is
that E(H) is not accessible from independent sections.
Apart from the spheres assumption, additional ones
relative to truncation (i.e., unobservability or loss of
small transects), over and underprojection under slab
sectioning, etc., proliferated in the literature from the
early 1940’s – for a survey in the area of neuroscience
see Haug (1986).

Thus, William R. Thompson’s papers were
unfortunately overlooked for over fifty years – the too
strict interpretation of stereology as inference ‘solely
from sections’ probably contributed to this (Cruz-
Orive, 1987a, p. 47).

CONNECTIVITY
The Euler-Poincaré characteristic χ(Y ) of a

particle Y ⊂ R2, with smooth boundary ∂Y , is
a topological invariant, that is, its value remains
unchanged under continuous shape deformations of Y .
If Y encloses no cavities, then χ(Y ) is related with
the connectivity number p (namely the number of
‘tunnels’, ‘handles’, or ‘extra connections’ of Y ) via
χ(Y )= 1− p. If Y is a finite union of separate particles,
possibly enclosing cavities, then

χ(Y ) = N(separate particles)
− N(extra connections)
+ N(enclosed cavities) , (22)

where N(·) denotes number. If all the particles
are simply connected (p = 0), then χ(Y ) = N(Y ).
In the notation of Gundersen et al. (1993), if a
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disector of a suitably small thickness sweeps Y
with a fixed orientation, then it will encounter I
‘islands’ (corresponding to convex tangent points),
B ‘bridges’ (corresponding to saddle points), and H
‘holes’ (corresponding to concave tangent points of
cavities). The characterization theorem of Hadwiger
(1957) states that

χ(Y ) =
1
2
(I−B+H) . (23)

Nyengaard and Marcussen (1993) applied the
preceding formula to glomerular capillaries, and
Youngs et al. (1994) to trabecular bone. For further
refinements see Ohser and Nagel (1996). Hadwiger’s
representation is equivalent to the classical one
(DeHoff, 1968), based on a sweeping plane, in which
the counts of convex, saddle and concave tangent
events corresponded to I, B, and H, respectively.
However, the latter representation was based on the
integral of Gaussian curvature via the Gauss-Bonnet
theorem, whereby it was believed that the sweeping
plane had to be isotropic – see also Weibel (1980),
Serra (1982), or DeHoff (1987). Note that Eq. 23
holds for any sweeping orientation, even though each
of the individual terms I,B,H may vary for different
orientations.

By analogy with Gundersen’s unbiased frame to
count particles in the plane, Bhanu Prasad’s shell
method allows the estimation of χ(Y ) by subsampling
quadrats in the plane (Bhanu Prasad et al., 1989),
or boxes in space (Bhanu Prasad and Jernot, 1991).
Thus, the shell method may be used to count simply
connected particles in the plane with systematic
quadrats whenever the only information available lies
within the quadrats (that is, when the unbiased frame
cannot be used). The implementation of the shell
method in space, however, presents similar difficulties
as that of the unbiased brick. Wulfsohn et al. (2010a)
coped with edge effects using resources analogous to
the optical disector to progress on the difficult problem
of counting ventilatory units in lung.

PLANAR AREA AND VOLUME

To estimate the section area of a mineral
component in a rock (e.g., the numerator of Eq. 19),
Delesse (1847) proposes the cut-and-weight method
apparently prevailing at the time.

Rosiwal (1898, Fig. 1, Fig. 2) shows synthetic
planar domains with a square grid superimposed on
them but, instead of counting test points, he proposes
to use a two dimensional version of Eq. 13 to estimate
planar area via total line intercept length. In a footnote
of p. 146 he uses integral calculus to show that, besides

the Delesse identity VV = AA leading to areal analysis,
one may also use VV =E{L(Y ∩T )}/L(T )=LL, where
T is a test line segment, or a bounded grid of lines,
of total length L(T ). This led to the graphical lineal
analysis in a picture – a big step in efficiency with
respect to the weighing technique.

Thomson (1930) proposes the ‘areal method’
using grids “so arranged that one square or one
segment represented 1 per cent of the total area, thus
giving results directly in percentage values”, (p. 200).
The term “one segment” corresponds to an annulus
fragment from a circular grid (p. 200, Fig. 8) which
is not a proper test system. Careful reading supplies
no evidence that Thomson’s areal method involved
point (or grid corner) counting. Perhaps the idea was
to count grid squares or ‘segments’ inside the mineral
components of interest in a section (“the magnification
used being adapted to the size of the particles”, p. 200).
To support this, in pp. 202–203 one reads: “All of
the 16 showing differences greater than 3 per cent
were of the small scattered, irregular type mentioned
above, where the estimation of the number of squares
occupied by any one mineral was of necessity but
approximate in character. For such cases the lineal
method is recommended, and for ease of calculation
the square instead of the circular grid should be used.”.
The “differences” (namely the raw deviations, with no
reference to coefficients of error), referred to checking
the method on a synthetic mixture of minerals with
known proportions.

Glagolev (1933) uses integral calculus – similarly
as Rosiwal (1898) – to show that VV = E{P(Y ∩
T )}/P(T ) = PP, where T is a bounded grid of P(T )
test points. In Fig. 9 and Fig. 10 he reproduces the
aforementioned Fig. 1 and Fig. 2 from Rosiwal (1898),
respectively, but now Glagolev explicitly proposes
(apparently for the first time) to count corner points
instead of measuring intercept lengths. Based on Henri
Lebesgue’s definition, the area of a planar set is
commonly conceived as the limit of the sum of the
areas of squares covering the set, as the size of
each square tends to zero. This might have inspired
E. Thomson’s ‘areal method’. On the contrary, A.A.
Glagolev’s definition of area is essentially statistical,
namely the mean number of points of a UR test
system hitting the set, times the tile area. Incidentally,
Glagolev socialized with Andrei Kolmogorov, founder
of modern probability.

In design stereology, the reference volume V0
entering in Eq. 21 was measured in early times by
the water displacement method (Weibel, 1963, p. 45).
Thompson (1932, p. 21) suggests that V may be
approximated by a discretized version of the relevant
integral in Eq. 2. Elias et al. (1971, p. 164) also indicate
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that V may be approximated by exhaustive slicing. The
proper implementation of the Cavalieri design had to
wait until the 1980’s, see the references cited after
Eq. 13.

SURFACE AREA AND LENGTH UNDER
ISOTROPY

The aforementioned dimensional conditions imply
that surface area S can be estimated with planar,
or linear, probes, and curve length L with planar
probes, which are IUR relative to the object. The
pertinent stereological equations were derived ad-hoc
(without reference to equivalent, already known results
of integral geometry), by material scientists, notably
Saltykov (1946) and, independently, by Smith and
Guttman (1953). Thus, the initial setup pertained to
model stereology. Tomkeieff (1945) has often been
cited in this context, but he only mentions two
elementary results on mean linear intercept length.

Let Y ⊂ R3 represent indistinctly a stationary and
isotropic surface process of intensity SV , or a curve
or fibre process of intensity LV . The corresponding
intersection Y ∩T with a test plane T is a stationary and
isotropic process of trace curves of intensity BA, or one
of transect points of intensity QA, (from the German
‘Querschnitt’), respectively. In the case of a surface
process, if T is a test line then Y ∩ T is a stationary
process of intersection points of intensity IL on the line.
The pertinent classical stereological equations read as
follows,

SV = (4/π)BA, SV = 2IL, LV = 2QA . (24)

The second Eq. 24 follows from the first because, by
an argument analogous to that leading to Eq. 6, one has
BA = (π/2)IL. On the other hand, the second and the
third equations are dual of each other by interchanging
the roles of process and probe.

The model based ratio estimators ŜV , L̂V are
unbiased because their denominators are non random,
controlled measures. In the general design based case,
however, (e.g., Eq. 21), the target structure Y is
contained in a bounded reference set X , and the target
ratio is γ V = γ(Y )/V (X), where γ ∈ {V, S, L, N}.
As mentioned in Section The general design, now
γ̂ V will generally not be strictly unbiased but ratio
unbiased, although the bias is usually unimportant in
practice. For a stationary and isotropic volume process
Y with piecewise smooth boundary ∂Y , Saltykov
(1967) considered the ‘specific surface area’ SV =
S(∂Y )/V (Y ). On a planar section superimpose a
multipurpose test system of test lines (Λ1) and test

points (Λ0) with a ratio l/p of test line length per test
point. Then, the estimator

ŜV = 2 · p
l
· I(∂Y ∩Λ1)

P(Y ∩Λ0)
, (25)

is also ratio unbiased because the denominator is
a random variable – the preceding formula is in
fact typical of design stereology. Recall that, for
γ ∈ {S, L}, unbiasedness, or ratio unbiasedness,
requires that object and probe be IUR relative to
each other. Mattfeldt et al. (1990) and Nyengaard
and Gundersen (1992) described the ‘orientator’ and
the ‘isector’ methods, respectively, to generate IUR
sections. Gundersen (1979) considers the estimation of
VV , SV , LV for non self-intersecting tubules, or solid
cylinders, from IUR slab sections.

In the design based case γ(Y ) can often be
estimated directly (i.e., without resorting to ratios) by
means of a three dimensional test system. We have
seen that V (Y ) may be estimated with Cavalieri planes
of a fixed orientation. In turn, S(Y ) and L(Y ) may
be estimated with isotropic Cavalieri planes, and S(Y )
also with a ‘fakir probe’ of IUR parallel test lines
(Cruz-Orive, 1993, proposed the fakir probe of a fixed
orientation to estimate volume). Earlier, a IUR test
system of test lines in three mutually perpendicular
directions, called the ‘spatial grid’, had been proposed
by Sandau (1987) – see also Cruz-Orive (1997).
The latter probes may be implemented on a IUR
stack of physical serial sections (Pache et al., 1993).
More efficient, however, is to use non invasive data
acquisition supported by a proper software (Kubı́nová
and Janáček, 2001; Kubı́nová et al., 2003).

By analogy with the UR Merz grid to estimate
curve length in the plane (Section Sampling in a
continuous domain), curve length in space may be
estimated with UR sphere probes (the ‘spaceball’
probe) aided by confocal microscopy, see Mouton et
al., 2002, and West, 2012).

VERTICAL DESIGNS
A vertical plane (VP) is normal to an arbitrarily

fixed plane (called the horizontal plane, HP) in such a
way that the corresponding trace is a motion invariant
line in the HP. At the 1st International Workshop
in Stereology (DK-Aarhus, November 1981), E.
Hasselager read a paper entitled “Stereological studies
of the porcine placenta”. The target was the exchange
surface area and, apart from efficiency questions, it
was suggested that sections normal to the relevant
barrier would allow tissue recognition better than IUR
sections. Weibel (1979, Section 3.6) also claimed this
for most ordered tissues. The identity SV = (4/π)BA
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requires IUR sections, however, and it was believed
that using SV = 2IL should require IUR test lines
generated either directly in space, or on IUR planar
sections. Motivated by this problem, A.J. Baddeley
(personal letter of 21st March, 1982) noted that a
motion invariant test line in space can always be
embedded in a VP, and therefore surface area can
always be estimated with test lines embedded in VPs.
There are various approaches, see Baddeley (1984,
1985) and Baddeley et al. (1986).

1. A posteriori weighted intersection counts. Let I(θ)
denote the number of intersections between the
target surface and an invariant test line within a VP
making a colatitude angle θ with the vertical axis
(VA). Because the probability element of θ for a IR
direction in space is P(dθ) = sinθ dθ , to preserve
unbiasedness the count I(θ) has to be weighted by
a factor proportional to sinθ .

2. A priori weighted test lines. In a VP, sample a test
line whose colatitude θ ∈ [0,π) has a probability
density equal to sinθ , i.e., take θ = arccos(1−
2U), where U ∼UR[0,1). Then the equation SV =
2IL holds directly.

3. A priori weighting with cycloids. In a VP, use a
test curve with length element ds(θ) ∝ sinθ dθ ,
namely a cycloid with the minor axis parallel to
the VA. Again SV = 2IL.

4. Weighted rose of directions. The intersection
between the target surface Y and a vertical plane is
a vertical trace curve C, say. Let dy denote the arc
element of C at a point y ∈C, and let ψ := ψ(y) ∈
[0,π) denote the colatitude of the tangent to C at y.
Then, the integral of the functional

λ (C) =
1
π

∫
C
{sinψ +(π/2−ψ)cosψ} dy (26)

over all vertical planes hitting Y , is equal to the
surface area S of Y , (Baddeley, 1985). For an
application to digitized vertical sections see Cruz-
Orive et al. (2014). For a connection with the rose
of directions of C see Section Anisotropy below.

Hilliard (1967, p. 225) showed a graph, and gave
the coordinates of a few points, of a test curve which
would estimate SV via 2IL on a “longitudinal section”
of a “specimen containing an axis of symmetry”, with
“the minor axis parallel to the axis of symmetry”.
See also Weibel (1979, Fig. 6.14). That curve was
in fact a cycloid. Hilliard’s unnecessary restriction
was probably due to the fact that his main purpose
was to characterize anisotropy by means of harmonic
analysis. Earlier, Spektor (1960) derived and identified
the test curve, but he also assumed that it would

apply only to anisotropic structures, unfortunately.
The principle is completely assumption free, and the
vertical axis may be chosen as convenient depending
on the structure.

Vertical sections are extensively used. Early
applications involving physical sectioning include
Cruz-Orive and Hunziker (1986) and Vesterby et al.
(1987). Tissue recognition may not be easy on vertical
sections in special cases. Dorph-Petersen (1999)
handles this problem with reference to the human
brainstem. Michel and Cruz-Orive (1988) consider
total surface area estimation without intermediate
ratios using vertical Cavalieri sections and cycloids.
A vertical spatial grid, consisting of mutually
perpendicular cycloid chains, was proposed by Cruz-
Orive and Howard (1995). Virtual cycloids, suitable
for optical sectioning on thick slices, were described
by Gokhale et al. (2004), see also West (2012).
Automatic vertical sectioning of computer renderings
of human brain, automatic intersection counting with
cycloids, automatic implementation of Eq. 26, and
mathematical derivations, are given by Cruz-Orive et
al. (2014).

A dual vertical design is that of vertical projections
to estimate curve length in space. Here the probe
is a cylindrical surface whose generator is a cycloid
with the major axis parallel to the VA. The principle
was discovered by Gokhale (1990) for vertical slices
of a known thickness t > 0. Probe and target curve
are projected together onto a vertical observation
plane parallel to the slice and, in the absence of
overlapping, the identities LV = 2QA = (2/t)IL hold.
For an application to capillary length see Batra et
al. (1995). Cruz-Orive and Howard (1991) extended
the method to estimate the finite length of a bounded
curve using total vertical projections. Roberts et al.
(1991) applied the method to estimate the length of
blood vessels, Howard et al. (1992) to neuron dendrite
length, and Wulfsohn et al. (1999) to plant root length
in a transparent medium.

INDIVIDUAL PARTICLE SIZING

WEIGHTING BY NUMBER,
AND BY SIZE

In a design based setting, the problem is to estimate
the mean of an individual particle size parameter
X (which may stand for V, S, and occasionally for
mean caliper length H) over a population of particles.
The arithmetic mean E(X) is number weighted. In
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stereology the W -weighted mean,

EW (X) =
N

∑
i=1

WiXi

/ N

∑
i=1

Wi , (27)

plays an important role (Karlsson and Cruz-Orive,
1997). Here W = 1,H,S,V according to whether the
sampling probe is a UR disector, a IUR test plane,
a IUR test line, or a UR test point, respectively.
In practice IUR test systems are used. A particle is
sampled with a random multiplicity M, namely the
number of times the particle is hit by the test system,
and the fundamental equations of stereology imply that
E(M) = c ·W , where c is a known constant. As before,
let S represent the subset of indexes corresponding to
the sampled particles. Then,

XW = ∑
i∈S

MiXi

/
∑

i∈S
Mi , (28)

is a ratio unbiased estimator of EW (X). Further, each
Xi may be estimated by the mean of Mi unbiased
estimators {X̂i j, j = 1,2, . . . ,Mi} which should be
independent from the sampling probe, hence from Mi.
For instance, if we sample with a IUR test system
of points and the ith particle is hit by Pi test points,
then from each hitting point we generate a IR chord
to estimate its volume, see next section. Thus, a UE
of Xi is X̂i = ∑

Mi
j=1 X̂i j/Mi, and therefore the final, ratio

unbiased estimator of EW (X) is,

xW = ∑
i∈S

Mi

∑
j=1

X̂i j

/
∑

i∈S
Mi , (29)

namely a ratio of sums over all the primary hits
generated by the sampling probe in the sampled
particles.

Particle sampling developed along the years
following the publication of the disector (Sterio, 1984),
e.g., Gundersen and Jensen (1983, 1985), Jensen
and Gundersen (1985), Gundersen (1986, Section 3),
Cruz-Orive (1987b), Jensen (1987, 1991, 1998), and
Baddeley (1999).

SIZE ESTIMATORS OF
LOCAL STEREOLOGY

In practice the usual target in particle stereology
is the population mean volume E(V ). If the probes
are disectors, then Mi = 1 for every sampled particle,
and Eq. 29 yields the ratio unbiased estimator v =

∑i∈S V̂i/n, where n is the (random) number of sampled
particles and V̂i is a UE of the volume of the
ith sampled particle. For arbitrarily shaped particles,

an option is to estimate Vi with Cavalieri sections
(independent from the disector itself, see Gundersen,
1986, Fig. 3.3), which is time consuming. The situation
is simplified if each particle contains a single nucleus,
or better a nucleolus, which can be used as the
sampling unit in combination with the optical disector.
This possibility motivated the development of local
stereology (term coined by Jensen, 1998) which deals
with IR test probes containing a fixed point, or a fixed
axis, in space.

Except the invariator, the following methods
may be implemented on vertical sections using sine
weighted rays, or intercepts.

The nucleator. The volume of a convex particle
Y may be expressed by the nucleator formula V =
(4π/3)E(l3

+), where l+ is the length of a IR radius
vector emanating from an arbitrary point O inside Y ,
(Santaló, 1976, Eq. 12.63). For a non convex particle
the formula is easily adjusted, see Cruz-Orive (1987b,
Eq. B.3). For simplicity, convexity is assumed in the
following paragraphs without loss of generality. The
corresponding volume estimator V̂i of the ith disector
sampled particle yields an efficient estimator of E(V )
via the aforementioned formula for v. The practical
implementation is due to Gundersen (1988), see also
Tandrup (1993).

Point sampled intercepts. If O is UR inside Y ,
then the point sampled intercept formula reads V =
(π/3)E(l3

0), (Miles, 1979, Gundersen and Jensen,
1983, 1985), where l0 is the length of a IR
intercept through O. Combination with Eq. 29 yields
a ratio unbiased estimator of the volume weighted
mean particle volume EV (V ), see the preceding
references. For early applications see Howard (1986)
and Brüngger and Cruz-Orive (1987).

The selector. Cruz-Orive (1987b) proposed the
selector method to estimate particle number per unit
volume via N̂V = V̂V/v. Particles are sampled with
disectors of unknown thickness (called ‘selectors’ in
the paper). The volume of each sampled particle
is estimated as V̂ = (π/3) · l3

0 with point sampled
intercepts on an independent series of Cavalieri
sections an unknown distance apart, and then v is
computed as in the disector case. The method is
time consuming, but it may be applied to arbitrary
particles without a nucleus, or nucleolus, and it avoids
section thickness measurement. For an application see
McMillan and Sørensen (1992).

The surfactor is intended to estimate mean
particle surface area (Jensen and Gundersen, 1987,
1989). For disector sampled particles bearing a
nucleolus, the surfactor estimates E(S). The required
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measurements on a IR section through the nucleolus
(henceforth called a pivotal section) are (i) IR ray
length l+, and (ii) angle between the ray and
the tangent to the particle boundary trace at the
intersection point. For point sampled intercepts the
surfactor estimates EV (S) via l0 and the corresponding
angles – see also Karlsson and Cruz-Orive (1997,
Section 5).

The optical rotator uses optical sectioning within
a slab probe, which may be either IR through a fixed
point in space, or IR around a fixed vertical axis. It
may be used to estimate particle volume and surface
area (Tandrup et al., 1997).

The invariator design (Cruz-Orive, 2005,
although the name ‘invariator’ was coined in Cruz-
Orive, 2009) is based on a IR pivotal plane through a
fixed pivotal point O in space. The idea was inspired by
a result of Varga (1935). According to Schneider and
Weil (2008, p. 285) the underlying theory is implicit in
a general formula of Petkantschin (1936). For general
proofs see Gual-Arnau and Cruz-Orive (2009) and
Auneau and Jensen (2010). The UEs of individual
particle surface area and volume given below may
be applied to estimate E(S), E(V ) if the particles
are sampled with disectors, or EV (S), EV (V ) if point
sampling is used, respectively.

1. A priori weighted test lines. On a pivotal plane
superimpose a IUR test system of points of
fundamental tile area a. Through each test point P
draw a test line normal to the axis OP: the result is
a pivotal grid Λ. Let Y 3 O be a particle of volume
V and surface area S. Then, the estimators

Ŝ = 2a · I(∂Y ∩Λ) ,

V̂ = a ·L(Y ∩Λ) , (30)

are unbiased for S, V respectively. For an
application see Cruz-Orive et al. (2010).

2. A posteriori weighting. On the pivotal plane
superimpose a IUR test system of parallel lines a
distance T apart. Then,

Ŝ = 2πT ∑
k∈Z
|rk|Ik ,

V̂ = πT ∑
k∈Z
|rk|Lk , (31)

are also unbiased for S, V respectively, where rk
denotes the distance of the kth test line from O, and
Ik,Lk the number of intersections determined by
the same test line with the pivotal trace of ∂Y , and
the corresponding intercept length determined in
the pivotal transect of Y , respectively, (Cruz-Orive
and Gual-Arnau, 2015).

3. The flower and the peak-and-valley formulae to
estimate S. The surface area of a convex particle
Y is 4 times the mean area (over isotropic
orientations of the pivotal plane) of the flower of
a pivotal section (Cruz-Orive, 2005). The flower
(term coined by P. Calka in another context) of
a planar convex set is the set enclosed by the
graph of the support function. Thórisdóttir and
Kiderlen (2014) and Thórisdóttir et al. (2014) have
extended the result to arbitrary particles. Cruz-
Orive and Gual-Arnau (2015) give a simplified
formula called the peak-and-valley formula – for a
general treatment see Gual-Arnau and Cruz-Orive
(2016).

4. The pivotal conjecture. Conjecture 4.1 of Gual-
Arnau et al. (2010) states that, conditional on a
given pivotal section, the mean of all possible
estimators of V have a unique expression, and
similarly for S. For an arbitrary particle, Cruz-
Orive (2012) proved that the integral of any
invariator volume estimator over a given pivotal
section coincides with that of the nucleator. Also,
for a convex particle the integral of the surfactor
estimator over a given pivotal section coincides
with the flower area of the section. The general
conjecture remains open, however, because the
examined estimators need not be the only possible
ones.

Pappus-Guldin volume estimators. The volume
V of a bounded set Y ⊂ R3 can be represented from
IR planar sections containing a fixed, arbitrary axis.
Cruz-Orive and Roberts (1993) applied the estimation
method (called the coaxial sections method) to human
bladder. Independently, Jensen and Gundersen (1993)
considered a vertical axis through a fixed pivotal point
O ∈ Y , coined the term rotator, and applied it to
neurons with a nucleolus, see also West (2012).

SIZE AND ORIENTATION
DISTRIBUTIONS

PARTICLE SIZE

As discussed in Section Particle number, size
distributions are inaccessible from information solely
on independent planar or linear sections unless the
particles are assumed to have a simple geometric shape
such as the sphere.

For arbitrary particles, size distributions of interest
are with respect to number, or to volume (Gundersen
and Jensen, 1983, Gundersen, 1986, see also Howard
and Reid, 2005, Section 9.3). The former requires UR
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disector sampling, the latter UR point sampling. In a
second step, the relevant size (usually the volume) of
each sampled particle has to be measured as accurately
as possible – otherwise the error arising from the
individual volume estimation will be confounded with
the natural variation among particles. A method of
choice is Cavalieri’s, see for instance Sørensen (1991).
Nowadays non invasive scanning methods should
simplify the task. Local stereology methods require
isotropy and may not be accurate enough for that
purpose. If only the mean and the coefficient of
variation of particle size are needed, then it is not
necessary to estimate the size distribution because
CV2(V ) = EV (V )/E(V )− 1, (Gundersen and Jensen,
1985).

MEMBRANE THICKNESS
For estimation purposes a membrane or ‘sheet’ is

the portion of space comprised between two smooth,
not interpenetrating surfaces called faces. The local
sheet thickness τ(y) at a point y of a face is the distance
of the other face from y. A conventional definition of
mean sheet thickness is E(τ) = 2V/S, where V, S are
the total sheet volume and the total surface area of
the faces, respectively. For a IUR test line hitting the
sheet, SV = 2IL, and because E(I)= 2E(N), where N is
the number of intercepts, we have E(τ) = (1/2) ·E(l),
where l is the intercept length (Weibel and Knight,
1964, Gundersen et al., 1978). Relevant to membrane
diffusion is the harmonic mean thickness E(1/τ) =
(3/2) ·E(1/l). In the latter two papers the preceding
identity was derived using a sheet model in which the
face elements in the neighbourhood of a point y of a
face are essentially planar and parallel a distance τ(y)
apart. This model also allows to unfold the distribution
of τ from that of l, (Gundersen et al., 1978, Cruz-
Orive, 1979). Further, the trace of a sheet with a IUR
plane is a curved stripe of local thickness r(y). The
latter author, and independently Jensen et al. (1979)
also solved the unfolding problem in this case. From
the moment relations derived in the last two papers,
Var(τ) can be estimated directly from planar sections
– but not from linear sections – without unfolding,
whereas Var(1/τ) can be estimated directly in either
case. See also Weibel (1980, Ch.9).

ANISOTROPY
For a planar smooth curve Y ⊂ R2 of length B, let

ψ = ψ(y) ∈ [0,π) be the angle of the tangent to Y at
the point y ∈ Y with a fixed axis, as in Eq. 26, and let
δ (ψ) = (ψ,ψ + dψ] denote the arc element at ψ(y).
The rose of directions of Y is given by the probability
element P(dψ) of ψ , namely

P(dψ) = L{y ∈ Y : ψ(y) ∈ δ (ψ)}/B . (32)

For a smooth curve Y ⊂ R3 of length L, the direction
of the tangent at a point y ∈Y is represented by a point
u = u(y) ∈ S2

+ of the unit hemisphere S2
+. Let δ (u)

denote the area element of S2
+ at the point u(y). Then,

the rose of directions of Y is given by

P(du) = L{y ∈ Y : u(y) ∈ δ (u)}/L . (33)

Finally, the rose of directions for a smooth surface Y ⊂
R2 of area S is defined similarly with u(y) representing
the orientation of the normal to Y at a point y ∈ Y .

Details on the foregoing definitions can be found
in Weibel (1980, Ch. 10), see also Serra (1982), or
Stoyan et al. (1995) for the model based approach. For
the non-parametric inference of the rose of directions
we may consider the first three possibilities below –
the fourth one is semiparametric.

1. Direct methods. The rose of directions of a
bounded and smooth planar curve can be estimated
directly with arbitrary accuracy by scoring tangent
counts with a sweeping line at systematic angles
with an arbitrarily small period. Systematic
sampling with thin Cavalieri disectors is an
alternative to exhaustive sweeping and counting.
The extension to 3D with sweeping planes, or
systematic disectors, is possible at least in theory.
Ohser (1981) proposed to measure ψ(y) at typical
points sampled in the curve with test circles (the
Merz grid may be used). Mattfeldt et al. (1994)
used confocal laser microscopy to sample glass
fibres with parallel virtual planes a known distance
apart. Following Stoyan (1985) the empirical fibre
orientation distribution was reconstructed using
the pertinent corrections, because a fibre element
is sampled with a probability proportional to the
length of its orthogonal projection onto the normal
to the sampling plane.

2. Rose of intersections methods. The rose of
intersections of a planar curve, or of a surface in
3D, at a given orientation, is the mean number
of intersections determined by a test line with
that orientation, per unit length of test line. For
a curve in 3D a test plane is used. The roses
of directions and intersections are related by
an integral equation (usually refereed to as the
‘cosine’, or ‘Buffon’, transform), and the problem
is to recover the rose of directions from the
observable rose of intersections. Hilliard (1962,
1967) used Fourier and harmonic analysis in 2D
and 3D respectively. Kanatani (1984) used tensor
analysis. For detailed surveys see Stoyan et al.
(1995) and Benes̆ and Rataj (2004).
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3. Unfolding methods. For 3D curves, or surfaces,
exhibiting axial, or lamellar, anisotropy, the rose
of directions may be assumed to be symmetric
about a fixed vertical axis. In this case the only
target is the probability element P(dθ) of the
colatitude angle θ of a relevant direction u =
(φ ,θ) ∈ S2

+. The natural probe is a vertical plane
of section for a surface, or a vertical projection
plane for a curve. In either case the result is a
planar curve whose rose of directions P(dψ) is
observable. The latter may be expressed in terms
of P(dθ) by an integral equation which can be
inverted analytically, and the empirical P(dθ) can
be unfolded numerically. Scriven and Williams
(1965) used this approach and applied it to copper
specimens. Gokhale (1996) and Benes̆ et al. (1996)
revised the method and applied it also in materials
science.

4. Semiparametric methods. For structures exhibiting
a single axis of anisotropy, an alternative option is
to model P(dθ) by a parametric class of directional
distributions. The model is ‘semiparametric’,
however, inasmuch as the structure itself is not
parametrized (Jensen et al., 1985). Motivated
by the problem of estimating onion root length,
Baldwin et al. (1971) proposed to model P(dθ)
by the Dimroth-Watson model (e.g., Mardia, 1972,
Weibel, 1980, Ch. 10). Mathieu et al. (1983)
applied the model to estimate length density of
skeletal muscle capillaries, and Mattfeldt and
Mall (1984) to myocardial capillaries. The model
depends on a single ‘concentration parameter’
κ which can be estimated from vertical and
horizontal sections only, and provides a measure of
anisotropy and (generally not unbiased) estimators
of surface area and length densities. Cruz-Orive
et al. (1985) completed technical details and
checked the model for capillary length and surface
densities, and Cruz-Orive and Hunziker (1986)
did it for chondrocyte surface area. This approach
avoided the use of IUR sections, but it was
gradually superseded by the vertical designs.

SECOND ORDER
STEREOLOGY

The mean of a random variable is a first order
property, whereas the variance is a second order
property. Likewise, the intensity VV of a stationary
volume process Y is a first order property of Y ,
see Section Model based stereology. Actually, the
probability that the origin O is covered by Y is
VV . However, the probability C(r) that two points

a distance r apart are covered by a second order
stationary and isotropic volume process Y , is a second
order property, called the scalar non centred covariance
function of Y , which constitutes a partial descriptor of
the shape of Y . Matérn (1960) and Matheron (1967)
pioneered these concepts, see also Serra (1982). From
VV and C(r), other second order descriptors can be
derived, e.g., the K-function K(r), which is V−1

V times
the mean volume of Y in a ball of radius r centred
a typical point of Y , and also the radial distribution
function R(r), the pair correlation function g(r), etc.
Initially the latter descriptors were developed mainly
for point processes (Ripley, 1977). Similar functions
can be defined for surface, or curve, processes (Ripley,
1981, Cruz-Orive, 1989a, Stoyan et al., 1995).

For a volume process, K(r) can be estimated
from planar sections with the nucleator, see Cruz-
Orive (1989a), or via C(r), see Mattfeldt et al.
(1993). Point processes in 3D, however, require
3D probes. Braendgaard and Gundersen (1986)
analysed neuron centroid patterns by mapping their
3D coordinates via physical serial sections. Baddeley
et al. (1987) analyzed osteocyte lacunae using non
invasive scanning with laser microscopy. Proper edge
corrections for block sampling were developed by
Baddeley et al. (1993). To estimate the K-function of a
point process, coordinate recording can be avoided by
using a IR disector through a fixed point (Gundersen
et al., 1988, Evans and Gundersen, 1989). The latter
method is part of a scheme of local stereology
developed by Kiêu and Jensen (1993) to estimate
V, S, L, or N, and the corresponding second order
properties, with virtual probes hitting a IR slice
through a fixed point. Stark et al. (2011) proposed the
saucor method to gain efficiency in the estimation of
the K-function of a point process, and applied it to
estimate the radial number density of glial cells around
neurons.

EFFICIENCY

PLANNING A STEREOLOGICAL
DESIGN

A standard problem in design stereology is to look
for a statistically significant difference between control
and treated population means. The subsidiary question
is how to optimize the group sample sizes, and the
amount of stereological work invested within each
primary sampling unit (animal, or whatever laboratory
specimen), to achieve that goal. By the late 1970’s the
within-primary-unit, ‘single organ’ designs (Eqs. 20,
21) were increasingly well understood from the work
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of R.E. Miles and P.J. Davy, but the ordinary statistics
necessary to deal with groups of animals was not
yet commonplace in stereological practice – this was
felt at the early ISS Courses. Group size can be
estimated for instance from Snedecor and Cochran
(1980, Section 6.14). Shay (1975) considered a nested
design (see Section 21.10 of the preceding book), and
Gundersen and Østerby (1981) adapted these ideas to
stereology. For a multivariate update see Cruz-Orive et
al. (2004).

The target quantity γ , (e.g., the total number of
neurons in a brain compartment) will have a biological
variance Varb(γ) among brains. For each brain, a UE
γ̂ of γ , with within brain error variance Varw(γ̂), is
available by stereology. Let Eb{Varw(γ̂)} denote the
corresponding mean error variance between brains.
Then,

Varb(γ̂) = Varb(γ)+Eb{Varw(γ̂)} . (34)

The group size required to detect a difference of at
least δ between group means may be estimated by
2c2 ·Varb(γ̂)/δ 2, where c2 is a constant depending on
the significance level and on the test power adopted
– usually c2 ≈ 10. Thus, Varb(γ̂) should ideally be
less than δ 2. If the biological variance is large, then
by virtue of Eq. 34 little can be done except working
with less variable brains. If the biological variance
is small, but the within brain error variance is too
large, then in order to decrease it the stereological
sampling should be intensified within each brain – the
question is where and how much (how many Cavalieri
slices, disectors, or cells?). To answer these questions,
theoretical predictors of Varw(γ̂) under systematic
sampling can be helpful, see the next subsection; in
the aforementioned papers sampling was assumed to
be independent.

Up to the late 1970’s, a controversial issue
was the choice between manual and automatic, or
semiautomatic, methods to measure sections. Mathieu
et al. (1981) and Gundersen et al. (1981) used
resampling experiments to show the higher efficiency
of manual point and intersection counting in the cases
studied. Incidentally, in Fig. 3 of the former paper the
fundamental tile was not properly defined, hence Fig. 4
reveals bias for small test point and line densities. This
does however not affect the main conclusions.

Contrary to intuition, point counting can be
more precise than intercept length, or section area
measurements, to estimate area, or volume. Jensen
and Gundersen (1982) showed by resampling that the
number of corners of a UR square hitting a disk may
be more precise than the intersection area between
the square and the disk for estimating the area of

the disk. The point is that the square, and its four
corners, are two unrelated test systems: the number
of test points hitting the disk does not estimate the
intersection area between square and disk, hence the
Rao-Blackwell theorem does not apply (Baddeley and
Cruz-Orive, 1995). Likewise, the number of end points
of a test segment of length l hitting a disk may be
more precise than the corresponding intercept length
to estimate the area of the disk. However, using a
pair of test points a fixed distance l apart is always
less efficient than using a test segment of length 2l.
This is because now the pair of test points can slide
freely inside the test segment, scanning it entirely, and
therefore the number of test points in the disk can
estimate the intercept length – thus the Rao-Blackwell
theorem does apply in this case. This, and various other
examples, are studied by Voss and Cruz-Orive (2009),
who give exact expressions for the relevant variances.
A general theory is still lacking for this topic, however.

ERROR VARIANCE PREDICTION
UNDER SYSTEMATIC SAMPLING

For a discrete, finite population, the variance
of the UE of the population total under simple
random sampling is well known, e.g., Cochran (1977,
Eq. 2.13). Under systematic sampling, however, the
problem is non trivial because, unless the population
is itself a random permutation, the sampled items
are correlated to unknown degrees depending on the
population pattern.

The most studied kind of systematic sampling
is Cavalieri sampling along a fixed axis – the
corresponding estimator has the form of Eq. 13. An
exact representation of Var(V̂ ) is easily available
(Moran, 1950, Eq. 2), but not suitable for estimation.
Because V̂ is a periodic function of period h, a more
convenient formula can be written in terms of the
Fourier transform of the measurement function A,
(Moran, 1950, Eq. 4). As such, this formula is not
useful either unless the function A is known explicitly.
Matheron (1965, 1971) wrote the preceding formula
in terms of the Fourier transform of the covariogram
g of A, and made a significant progress by noting
that the trend of Var(V̂ ) as a function of h was
explained by the behaviour of g near the origin. He
therefore modelled g near the origin by a polynomial
of arbitrary degree. Gundersen and Jensen (1987)
adopted a polynomial or degree 2, and derived an
explicit variance approximation which was extensively
used. For a survey of G. Matheron’s transitive theory
see Cruz-Orive (1989b).

Souchet (1995), Kiêu (1997) and Kiêu et al. (1999)
related the degree of Matheron’s polynomial model
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with the shape (more precisely with the smoothness
constant q ∈ [0,1]) of the function A, and improved
Gundersen and Jensen’s estimator (which implied the
value q = 0) with a numerical coefficient depending
on q. On empirical grounds supplied by Neil Roberts,
Cruz-Orive (1993) had considered the alternative
q = 1 for fairly smooth measurement functions,
but Kiên Kiêu’s theory significantly contributed to
better understand the problem. Cruz-Orive (1993)
and Gundersen et al. (1999) considered also local
measurement errors. Gual-Arnau and Cruz-Orive
(1998) extended the variance predictors to Cavalieri
slabs for q = 0, 1, and Cruz-Orive (1999) incorporated
local errors. Later, Cruz-Orive (2006) considered
slabs, local errors, and an arbitrary q∈ [0,1]. The main
snag is that the estimation of q from sample data is very
unstable (Garcı́a-Fiñana and Cruz-Orive, 2004), hence
the practical problem remains basically open.

A related predictor, useful to estimate particle
number with Cavalieri slabs, or with the fractionator,
is the splitting design (Cruz-Orive, 2004, Cruz-Orive
and Geiser, 2004, Maletti and Wulfsohn, 2006).

If the target is planar area, or volume, of a bounded
object, useful variance approximations are available
for test systems which have to be not only UR but
also IR relative to the object (e.g., isotropic Cavalieri
lines, stripes, planes, or slabs; test points, quadrats, or
boxes; fakir test lines, etc.). In this case the treatment
is simplified because the relevant covariogram is the
geometric covariogram of the object, which is linear
in h near the origin. The idea is also in Matheron
(1971), and it was exploited by Gundersen and Jensen
(1987) to predict the variance of the point counting
estimator of area. The theory was extended by Kiêu
and Mora (2006, 2009), who developed the package
pgs of the statistical software R (http://www.r-project.
org/) to compute the relevant coefficients – for a survey
see Cruz-Orive (2013). The development of analogous,
readily applicable variance predictors for surface area
estimators remains an open problem.

If the distance h between sections is not constant,
then a sufficient condition that the Cavalieri estimator
(Eq. 13) remains unbiased is that the distribution of
h is stationary, in which case h may be replaced with
its sample mean (Pache et al., 1993, Appendix). The
subject has attracted further attention over the last ten
years, see Kiderlen and Dorph-Petersen (2017) and
references therein.

The variance under systematic sampling on the
circle was studied by Gual-Arnau and Cruz-Orive
(2000) using a positive definite polynomial to model
the entire covariogram. The predictors were applied
and compared in Cruz-Orive and Gual-Arnau (2002)

with the classical Matheron’s predictors, with no
significant improvement, see also Hobolth and Jensen
(2002). Gual-Arnau and Cruz-Orive (2002) proposed
a sampling design on the sphere, and derived error
variance predictors, which have recently been shown
to perform poorly (González-Villa et al., 2017).

RECENT TRENDS

In recent years advanced computing and image
processing are playing an increasing role in stereology
(Ohser and Schladitz, 2009). A trend is to model
microstructures by random set models such as
tessellations (Redenbach et al., 2011), to estimate
the empirical distribution of fibre orientation (Wirjadi
et al., 2016), etc. The idea is to obtain some
information about shape and anisotropy in addition to
the parameters supplied by classical stereology. One
often misses, however, a cross check of the models
with stereological estimators, which are known to be
unbiased and model free.

The preceding techniques are not that common in
biology. Point processes in 3D have been around for a
long time (see Section Second order stereology) and
the R package spatstat, first implemented in 2005,
is a powerful tool (Baddeley et al., 2015). The main
snag may be that 3D data acquisition is expensive in
ordinary experiments.

Volume tensor analysis, a concept related to
principal component analysis of multivariate statistics,
is also getting fashionable, and it can be implemented
on sections – Rafati et al. (2016) describe a
neuroscience application, see also Jensen and Kiderlen
(2017). An early, related idea was suggested by Cruz-
Orive et al. (1992).

Another computer oriented trend is to vectorize
the boundary of real objects by fine triangulations,
and to implement automatic Monte Carlo resampling
on volume renderings of them, in order to check the
performance of error variance predictors developed for
systematic sampling over the years (Cruz-Orive et al.,
2014, Gómez et al., 2016). The conclusions will lack
generality because they are specimen dependent, but
the technique may help to discard options (González-
Villa et al., 2017).

The unbiased counting frame (Gundersen, 1977,
see Subsection Particle number) has been applied in
a non stereological context to estimate the size of a
population of particles (e.g., human, or animal crowds,
trees, etc.) on an essentially flat surface – ideally on
an aerial photograph (Cruz et al., 2015). Automatic
methods to detect human faces have been tried, but
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they have proved to be strongly biased in general.
The ratio method based on the identity N = NA ·
(Reference area) has also been tried by modelling the
crowd by a realization of a stationary planar point
process with number intensity NA. The estimation of
NA with arbitrary quadrats usually fails because crowd
pictures exhibit perspective artifacts and cannot be
assumed to correspond to a stationary process. Also,
empty quadrats have to be taken into account and, last
but not least, no objective way exists to define the
reference area. In the latter paper the direct identity
N = (a/a′) ·E(Q) is used, where a/a′ is the sampling
period corresponding to a UR test system of quadrats,
and Q is the number of units directly sampled with the
test system. An error variance predictor is proposed
whose performance is checked by automatic Monte
Carlo resampling.
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Kubı́nová L, Mao XW, Janáček J, Archembeau JO (2003).
Stereology techniques in radiation biology. Radiat Res
160:110–19.

Lantuejoul C (1991). Ergodicity and integral range. J
Microsc 161:387–403.

Lantuejoul C (2002). Geostatistical simulation. Models and
algorithms. Berlin: Springer.

Maletti GM, Wulfshon D (2006). Evaluation of variance
models for fractionator sampling of trees. J Microsc
222:228–41.

Mardia KV (1972). Statistics of directional data. London:
Academic Press.

Matérn B (1960). Spatial variation. Meddelanden från
Statens Skogsforskningsinstitut, 49(5):1–114.

Matérn B (1980). Spatial variation, 2nd Ed. Berlin:
Springer-Verlag,

Matheron G (1965). Les variables régionalisées et leur
estimation. Paris: Masson et Cie.
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Poincaré characteristic from observations on parallel
sections. J Microsc 184:117–26.

Ohser J, Schladitz K (2009) 3D images of materials
structures. Processing and Analysis. Weinheim: Wiley-
VCH.

Pache JC, Roberts N, Zimmerman A, Vock P, Cruz-Orive
LM (1993). Vertical LM sectioning and parallel CT
scanning designs for stereology: application to human
lung. J Microsc 170:9–24.

Petkantschin P (1936). Zusammenhänge zwischen den
Dichten der linearen Unterräume im n-dimensionalen
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Thórisdóttir O, Kiderlen M (2014). The invariator principle
in convex geometry. Adv Appl Math 58:63–87.
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