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ABSTRACT

We study nonparametric estimation of the length distribution for stationary line segment processes in
the d-dimensional Euclidean space. Several methods have been proposed in the literature. We review
different approaches (Horvitz-Thompson type estimator, reduced-sample estimator, Kaplan-Meier estimator,
nonparametric maximum likelihood estimator, stochastic restoration estimation) and compare the finite sample
behaviour by means of a simulation study for stationary line segment processes in 2D and 3D. Several data
generating processes (Poisson point process, Matérn cluster process and Matérn hard-core process II) are
considered with both independent and dependent segments. Our finite sample comparison reveals that the
nonparametric likelihood estimator provides the most preferable method which works reasonably also if its
assumptions are not satisfied.

Keywords: Horvitz-Thompson estimator, Kaplan-Meier estimator, line segment process, nonparametric
maximum likelihood estimator, reduced-sample estimator, SRE algorithm.

INTRODUCTION

Germ-grain processes are one of the most
important models in stochastic geometry. They are
defined as marked point processes with the mark
space formed by a family of nonempty compact
sets, for details see Schneider and Weil (2008).
We focus on the special case where the grains
are line segments in the d-dimensional Euclidean
space Rd . Such germ-grain processes will be referred
to as line segment processes. An important first
order numerical characteristics of every stationary
line segment process is its length intensity (mean
total length of segments per unit volume). Different
nonparametric unbiased length intensity estimators
were compared in Pawlas and Honzl (2010). The aim
of this paper is to study nonparametric estimators
of segment length distribution. This problem is of
interest for applications in several areas. Here, we
mention three examples. In geology it is relevant to
study geological faults, the data example analyzed
in Laslett (1982a) comes from a sedimentary rock
environment in Zambia. An application in forestry
is contained in Svensson et al. (2006) where the
authors find length distribution of standing trees
from a sample area in northern Sweden. Kuhlmann
and Redenbach (2015) estimate length distribution
in fibre-reinforced composite materials providing an
example of microstructure characteristics investigated
in material science.

We assume that a single realization of a stationary
line segment process is available within a bounded
observation window. We assume that the individual
segments can be identified. The difficulties arise
due to the edge effects. Their role in the analysis
of spatial processes is well clarified in Baddeley
(1999). There are different strategies how to deal
with edge effects. In the problem of estimating
the distribution of segment lengths, edge effects
were treated already in Laslett (1982a). An optimal
estimator in the sense of maximizing the likelihood
function was found in Wijers (1997) for a stationary
planar Poisson line segment process observed through
a convex window. This estimator is the nonparametric
maximum likelihood estimator (NPMLE).

Sometimes the segments are not fully observed
within the observation window. If the irregular part
of the window is covered, then only several pieces
of the segments are observed. In this case van Zwet
(2004) derives the NPMLE of the length distribution.
In some applications the determination of individual
segment lengths could be very demanding. Kuhlmann
and Redenbach (2015) consider a line segment process
in d = 3 and propose an estimator of the length
distribution based on segment endpoints only.

Another approach for estimating the parameters
of a line segment process is studied in Chadœuf
et al. (2000). The censored segments are treated
as incomplete data and an iterative Monte Carlo
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procedure is considered. It is based on the iteration
of two steps, restoration of the unobserved parts of
segments and updating of estimates. This procedure is
called stochastic restoration estimation (SRE).

In this paper we briefly introduce several
nonparametric estimators of line segment length
distribution function. We compare their finite
sample properties through a Monte Carlo simulation
study on different processes generating planar
and spatial segment patterns. The performance is
measured by the Kolmogorov–Smirnov and Cramér–
von Mises statistics (Stephens, 1992). Our aim is
to find out whether simple and natural methods
(Horvitz-Thompson type estimator, reduced-sample
estimator, Kaplan-Meier type estimator) can compete
with computationally more demanding procedures
(NPMLE, SRE). The former three estimators were
chosen as examples of usual way how the standard
empirical distribution is modified to handle the edge
effects. The latter two estimators (NPMLE, SRE)
were chosen as examples of more advanced estimators
proposed in the literature, they require computation of
many iterations of the algorithm.

The finite sample performance is tested on
three basic types of point patterns (complete spatial
randomness, regularity and clustering), the segment
directions are attached independently and for the
segment lengths we assume either independence or
certain correlation structure. We consider only the
most common cases for the dimension, i.e., d = 2 and
d = 3.

The paper is organized as follows. First we
introduce line segment processes. Then we define
different nonparametric estimators of typical length
distribution of stationary line segment processes. Their
quality is compared by an extensive Monte Carlo
study.

Let S be the system of all nondegenerate line
segments in Rd . Each segment S ∈S can be uniquely
represented by its reference point c(S), positive length
L(S) and direction θ(S) ∈L1, where L1 is the space
of one-dimensional linear subspaces in Rd . We require
that the mapping c : S → Rd is measurable and
equivariant under translations, i.e., c(S+ z) = c(S)+ z
for all S ∈ S and z ∈ Rd . Note that c is called a
center function in Schneider and Weil (2008). We
always choose c(S) as either lexicographic minimum
or lexicographic maximum point and by e(S) we
denote the other endpoint of S, that is distinct from
c(S). Let S0 = {S ∈ S : c(S) = o} be the set of
segments with the reference point at the origin o ∈Rd .
This space is isomorphic to the space (0,∞)×L1.

We can view a line segment process as a special
case of germ-grain process, see Heinrich and Pawlas
(2008) or Schneider and Weil (2008),

Φ = {Xi +Ξi, i≥ 1} .

The points {Xi, i≥ 1} create a point process in Rd and
the grains Ξi are random line segments with values
in S0, i.e., the point Xi serves as a reference point
of the segment Xi +Ξi. Fig. 1 shows two realizations
of different models for Φ, observed through a square
window in R2.

Fig. 1. Two illustrations of realizations of planar line
segment processes.

If Φ is a stationary line segment process with
intensity λ , then there exists a probability distribution
Q (so called typical segment distribution) on S0 such
that

E∑
i≥1

f (Xi +Ξi) = λ

∫
Rd

∫
S0

f (x+S)Q(dS)dx , (1)
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where f is an arbitrary nonnegative measurable
function on S . With only a slight abuse of notation,
we write Q also for the image of Q under the
isomorphism between S0 and (0,∞)×L1. Let D(·) =
Q(·×L1) and ρ =Q((0,∞)×·) be the distributions of
typical length and typical direction, respectively. The
distributions D and ρ need not to be independent. In
what follows we call D the length distribution. It is
given by the cumulative distribution function

F(t) =Q({S : L(S)≤ t}) = D([0, t]) , t > 0.

This paper deals with the estimation of F . We consider
five existing nonparametric estimation methods.

If a line segment process Φ is defined by
an independently marked point process (Illian et
al., 2008, Section 5.1.3), i.e., {Ξi} is a sequence
of independent and identically distributed (= i.i.d.)
random segments, independent of {Xi}, then it is called
an independent line segment process. A Poisson line
segment process Φ= {Xi+Ξi, i≥ 1} is an independent
line segment process such that the germ process
{Xi, i ≥ 1} is the Poisson point process (Illian et al.,
2008, Chapter 2) in Rd . It follows from Theorem 3.5.7
in Schneider and Weil (2008) that the Poisson segment
process Φ is the Poisson process in S (this space is
isomorphic to Rd×S0).

A tractable class of models allowing dependencies
among segments is obtained by geostatistical (or
external) marking, see Illian et al. (2008, Section 5.1.3)
for the definition in context of marked point processes.
Let {Ξ(x) : x ∈ Rd} be a stationary random field with
values in S0, independent of {Xi}. We say that {Xi +
Ξ(Xi), i ≥ 1} is a geostatistically marked line segment
process. The typical segment distribution Q coincides
with the distribution of Ξ(o).

MATERIAL AND METHODS

Usually we observe a single realization of the line
segment process Φ through a compact and convex
window W ⊆ Rd . Thus, the estimation is hampered by
edge effects which introduce spatial sampling bias. For
example, if we consider all segments which intersect
W (with their true lengths), the final estimator of
the length distribution will be biased because longer
segments have a greater chance to be included in the
sample. On the other hand, if we consider just those
segments which are completely inside the window,
segments longer than the diameter of W cannot be
sampled.

We can divide the line segments hitting W into
four groups: Y0 = {i : Xi +Ξi ⊆W}, Y1 = {i : Xi ∈

W,e(Xi+Ξi) 6∈W}, Y2 = {i : Xi 6∈W,e(Xi+Ξi) ∈W},
Y3 = {i : Xi 6∈W,e(Xi +Ξi) 6∈W,(Xi +Ξi)∩W 6= /0}.
Only Y0 provides complete information about segment
lengths, in other cases the segments are not totally
observed. Directions θ(Ξi) are observable for all line
segments hitting W . Segments corresponding to Y0 are
uncensored, segments from Y1 and Y2 may be called
single end censored and segments from Y3 are called
double censored, see also Wijers (1997), p. 6.

Horvitz-Thompson type estimator
The sampling bias which is the result of the edge

effects can be corrected by changing the sampling rule
or by an appropriate weighting of the observations.
This leads us to the Horvitz-Thompson type estimator,

F̂HT(t) =
1

λ̂HT
∑

i:Xi+Ξi∈sample

1
τ(Ξi)

1{L(Ξi)≤ t} ,

where
λ̂HT = ∑

i:Xi+Ξi∈sample

1
τ(Ξi)

,

and τ is a suitable weighting function, i.e., τ(Ξi) =∫
1{x + Ξi ∈ sample}dx, see Baddeley (1999). As

a consequence of Eq. 1, λ̂HTF̂HT(t) is an unbiased
estimator of λF(t). Thus, F̂HT(t) is a ratio of two
random variables so that the ratio of their expectations
is F(t). It means that F̂HT(t) is so-called ratio-unbiased
estimator of F(t). We will consider following three
basic sampling rules:

1) minus sampling – the sample consists of fully
observable segments (Xi + Ξi is sampled if and
only if Xi +Ξi ⊆W ),

2) unbiased sampling – the sample consists of
segments with reference point inside the window
(Xi +Ξi is sampled if and only if Xi ∈W ),

3) plus sampling – the sample consists of all segments
hitting the window (Xi +Ξi is sampled if and only
if (Xi +Ξi)∩W 6= /0).

It means that minus sampling uses Y0, unbiased
sampling Y0 ∪Y1, and plus sampling Y0 ∪Y1 ∪Y2 ∪
Y3. The weights τ(Ξi) become |W 	 Ξi| for minus
sampling, |W | for unbiased sampling, and |W ⊕ Ξi|
for plus sampling. Here, |B| is the d-dimensional
Lebesgue measure of the set B, B	 S0 = {x : x +
S0 ⊆ B} is the erosion of B by the line segment
S0 and B ⊕ S0 = {x : (x + S0) ∩ B 6= /0} is the
dilation of B by the line segment S0. When applying
unbiased sampling or plus sampling rule, we need
also some information outside the sampling window
W in order to determine F̂HT. For independent line
segment processes, asymptotic properties of F̂HT (as
the window W increases) follow from the results of
Heinrich and Pawlas (2008).

123
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Reduced-sample estimator

For S ∈ S0 and t > 0, let S̃(t) = t
L(S)S be the

line segment in the same direction as S with length t.
When estimating F(t), a simple approach is to reduce
the sample and consider only those pairs (Xi,θ(Ξi))

for which the line segment Xi + Ξ̃
(t)
i with reference

point Xi, direction θ(Ξi) and length t would lie
completely inside the window W . Then the reduced-
sample estimator of F(t) can be defined by

F̂rs(t) =
∑i:Xi∈W 1{L(Ξi)≤ t,Xi + Ξ̃

(t)
i ⊆W}

∑i:Xi∈W 1{Xi + Ξ̃
(t)
i ⊆W}

, t > 0.

(2)
This estimator takes into account only segments from
Y0 and Y1. Moreover, only the length of the visible
part is required for segments from Y1.

Since from Eq. 1,

E ∑
i:Xi∈W

1{L(Ξi)≤ t,Xi + Ξ̃
(t)
i ⊆W}

= λ

∫
S0

|W 	 S̃(t)|1{L(S)≤ t}Q(dS),

the reduced-sample estimator is ratio-unbiased
provided that Q = D ×ρ . For larger t, it may discard
a lot of information given by data. Note that it is not
necessarily nondecreasing. The estimators of this type
are often used in spatial statistics in order to deal
with edge effects caused by the bounded observation
window, see, e.g. Baddeley (1999). This approach is
sometimes also called the border method for edge
correction.

Kaplan-Meier estimator

Random censoring and survival theory provide
us another look at the edge effects. Let {Ti} be
i.i.d. positive random variables (survival data) with
distribution function H. Instead of them we observe
only censored data T ′i = min(Ti,Ci) and indicators of
non-censoring Di = 1{Ti <Ci}. If we assume that {Ci}
are i.i.d. random variables, independent of {Ti}, then
the product-limit estimator defined as

Ĥ(t) = 1−∏
s≤t

(
1− ∑i≥1 1{T ′i = s,Di = 1}

∑i≥1 1{T ′i ≥ s}

)

is the nonparametric maximum likelihood estimate
of H(t). It is known as the Kaplan-Meier estimator
(Kaplan and Meier, 1958). In our context, Ti = L(Ξi) is
the true segment length and Ci is the distance from the
reference point Xi to the boundary of W in direction
θ(Ξi) of the line segment Xi + Ξi. It means that the

line segment Xi +Ξi is not censored (i.e., Di = 1) if
Xi +Ξi ⊆W (i ∈ Y0). To avoid the sampling bias, let
us consider only those segments with reference point
inside the window W (i.e., i ∈ Y0 ∪ Y1). Then the
Kaplan-Meier estimator of F is given by

F̂KM(t) = 1−

∏
s≤t

(
1−∑i≥1 1{Xi ∈W,L(Ξi) = s,Xi +Ξi ⊆W}

∑i≥1 1{Xi ∈W,L((Xi +Ξi)∩W )≥ s}

)
.

This estimator for general germ-grain processes was
introduced in Pawlas (2006). A related estimator is
used in Laslett (1982a) for line segment processes.
Since the independence assumptions are no longer
satisfied, the optimality (in the sense of nonparametric
maximum likelihood) of the Kaplan-Meier estimator
is destroyed in our setting. An analogous situation
happens in Baddeley and Gill (1997) where the
empty space function and the nearest neighbour
distance distribution function of spatial point processes
are estimated. Baddeley and Gill (1997) show
that the Kaplan-Meier technique provides reasonable
estimators. Similarly, F̂KM(t) should yield an estimator
of F(t) that is more efficient than the reduced-sample
estimator F̂rs(t).

Nonparametric maximum likelihood
estimator

A natural question is how the NPMLE of F(t)
looks like. Laslett (1982b) noted that it is not
the Kaplan-Meier estimator and proposed a method
of estimating the length distribution for stationary
Poisson segment processes in R2. The NPMLE of the
length distribution in a stationary planar Poisson line
segment process was found by Wijers (1997) as the
solution of the self-consistency equations that can be
solved numerically by the expectation-maximization
(EM) algorithm. We shortly describe the procedure
for the case W = [0,a]2, for details see Wijers (1997).
Define

V (t) =
∫ t

0

a2 +auh(ρ)
a2 +aµh(ρ)

dF(u), t > 0,

where µ =
∫

∞

0 t D(dt) is the mean length of a typical
segment and h(ρ) =

∫ π/2
−π/2(cosθ + |sinθ |)ρ(dθ).

Here, we identify L1 with (−π/2,π/2]. In an isotropic
case (ρ is the uniform distribution), h(ρ) = 4

π
. Let n =

∑i 1{(Xi+Ξi)∩W 6= /0} be the number of observations
(number of line segments hitting W ). We introduce the
empirical subdistribution functions
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F(0)
n (t) =

1
n ∑

i:i∈Y0

1{L(Ξi)≤ t},

F(1,2)
n (t) =

1
n ∑

i:i∈Y1∪Y2

1{L((Xi +Ξi)∩W )≤ t},

F(3)
n (t) =

1
n ∑

i:i∈Y3

1{L((Xi +Ξi)∩W )≤ t},

corresponding to uncensored, single end censored
and double censored observations, respectively. The
NPMLE V̂n of reparametrization V satisfies the self-
consistency equation

dV̂n(t) = dF(0)
n (t)

+
∫ t

0

1
ĝn(u)

dF(1,2)
n (u)

1
a2 +ath(ρ)

dV̂n(t)

+
∫ t

0

t−u
d̂n(u,u)

dF(3)
n (u)

1
a2 +ath(ρ)

dV̂n(t),

(3)

where

ĝn(u) =
∫

∞

u

1
a2 +awh(ρ)

dV̂n(w),

d̂n(u,u) =
∫

∞

u

w−u
a2 +awh(ρ)

dV̂n(w).

If ρ is assumed to be known, then a solution of Eq. 3
can be found using the EM algorithm. We start with
an initial estimator V̂ 0

n which sets positive mass to all
observation points. The iterative scheme of the EM
algorithm is obtained by replacing V̂n with V̂ k+1

n on the
left hand side of Eq. 3 and by replacing V̂n with V̂ k

n
on the right hand side of Eq. 3. Now suppose that the
distribution ρ of segment directions is unknown. The
NPMLE ρ̂n of ρ for given F can be expressed as

ρ̂n(η) =

∑
n
i=1(a

2 +aµ(cosθ(Ξi)+ |sinθ(Ξi)|))−11{θ(Ξi)≤ η}
∑

n
i=1(a2 +aµ(cosθ(Ξi)+ |sinθ(Ξi)|))−1 .

(4)

This leads us to a natural iterative scheme. For given ρ̂k
n

we determine F̂k+1
n using the step of the EM algorithm

described above and for given F̂k+1
n we determine

ρ̂k+1
n from Eq. 4. The EM algorithm for estimation

of the length distribution is also used in Svensson et
al. (2006). We stress that Eq. 3 and Eq. 4 are derived
specifically for d = 2.

Stochastic restoration estimation
Besides nonparametric estimators, one can also

consider a parametric approach, where the length
distribution is known up to a vector of unknown

parameters. Parametric estimation procedures were
studied, for example, by Chadœuf et al. (2000) who
propose so called stochastic restoration estimation
(SRE) algorithm. As it is mentioned in Chadœuf et
al. (2000), this Monte Carlo algorithm can be applied
also in the nonparametric setting. In order to avoid the
sampling bias, we again take into account only the line
segments with reference point within W . Denote their
number by m = |Y0|+ |Y1| and consider the empirical
distribution function of observable lengths given by

F̂0(t) = F(0,1)
m (t) =

1
m ∑

i:Xi∈W
1{L((Xi +Ξi)∩W )≤ t} .

At iteration p two main steps are performed. The first
step (R-step) is the restoration of lengths of censored
segments (i ∈ Y1). It is made by simulation from
the conditional distribution with current estimate F̂p,
we obtain lengths L̃i. In the second step (E-step) the
estimate F̂ is updated by taking F̂p+1 as the empirical
distribution function of uncensored segment lengths
L(Ξi), i ∈ Y0, and restored lengths L̃i, i ∈ Y1. The
result of this algorithm is a homogeneous Markov
chain {F̂p}. In practice, we define the SRE estimator
as F̂p for some prescribed large p.

Simulations
A simulation study is conducted to compare the

behaviour of individual estimators. Simulations and
computations are performed using R (R Core Team,
2018) and its contributed package spatstat (Baddeley
and Turner, 2005). We generate six types of stationary
line segment processes in Rd (with d = 2 or d = 3). The
point process of reference points {Xi} has intensity
λ > 0 and is chosen as one of the following three
processes:

1) Poisson point process,

2) Matérn cluster process with mean number of points
per cluster µ = 5 and radius of clusters R = 0.1,

3) Matérn hard-core process II with hard-core
distance h = 0.05(d−1).

These three processes provide models for random,
clustered and regular patterns, respectively. For the
definition of Matérn cluster process we refer to
Illian et al. (2008, Section 6.3.2) or Schneider and
Weil (2008, p. 93). The definition of Matérn hard-
core process II can be found in Illian et al. (2008,
Section 6.5.2) or (Schneider and Weil, 2008, p. 94).
Once we have a pattern of reference points, the
segments are attached according to either independent
or geostatistical marking. The length and direction
of typical segment are assumed to be independent,
i.e., Q= D ×ρ . First we consider the isotropic case –
directions are uniformly distributed. Then we keep the
locations of reference points and lengths of segments
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unchanged and only change the directions to get an
anisotropic segment process. In particular, the uniform
distribution on d perpendicular directions parallel to
the axes is used, i.e., each canonical direction with
probability 1/d. This procedure gives us realizations
of six segment processes, which are denoted by 1i, 1a,
2i, 2a, 3i, 3a, where the numbers stand for Poisson
(1), clustered (2), and regular (3) pattern while the
letters stand for isotropic case (i) and anisotropic case
(a). Furthermore, in order to have dependent lengths
we use geostatistical marking as follows: we consider
a Gaussian random field {Z(x)} with zero mean
and exponential covariance function cov(Z(x),Z(y)) =
e−4‖x−y‖. We set L(Ξi) = 0.25Φ(Z(Xi)), where Φ is
the cumulative distribution function of the standard
normal distribution. It means that to the point Xi we
assign a segment of length L(Ξi) and direction that is
independent of {Z(x)} and {Xi}, i.e., the geostatistical
marking is only applied to the length while the
independent marking is applied to the direction. The
length distribution is then uniform on (0,0.25).

The procedure is repeated 10000 times for each
simulation experiment. We study the influence of
intensity λ (values 25, 50, 75, 100 and 125 are used),
length distribution (either uniform on (0,0.25) or
exponential with mean 0.125) and dimension (d = 2
or d = 3).

We observe a realization of each process in the
unit square or unit cube window W = [0,1]d . However,
also the information about all segments hitting W is
recorded so that we can evaluate estimators based on
plus sampling as well. Fig. 1 shows two examples
of segment processes, a realization of the process 2i
with geostatistically marked uniform lengths (left) and
a realization of the process 3a with independently
marked exponential lengths (right).

For every simulated segment pattern we determine
all mentioned estimators:

(a) Horvitz-Thompson type estimator F̂HT using
minus sampling,

(b) Horvitz-Thompson type estimator F̂HT using
unbiased sampling,

(c) Horvitz-Thompson type estimator F̂HT using plus
sampling,

(d) reduced-sample estimator F̂rs,

(e) Kaplan-Meier estimator F̂KM,

(f) nonparametric maximum likelihood estimator
assuming that the directions are uniformly
distributed (only for d = 2),

(g) nonparametric maximum likelihood estimator for
unknown distribution of directions (only for d =
2),

(h) estimator obtained after p = 100000 steps of
stochastic restoration estimation algorithm.

The estimators (b), (d), (e) and (h) depend on the
choice of a reference point. Two natural choices are
lexicographic minimum point c(S) and lexicographic
maximum point e(S). Thus, for each type of estimator
we can obtain the estimators F̂c and F̂e corresponding
to these choices as a reference point. We do not
consider both estimators separately but we improve
them by taking the average 1

2(F̂c + F̂e). Since the
estimators (b) and (c) require information from outside
W , we include in the comparison with other estimators
only the minus sampling estimator (a). The estimators
(f) and (g) were almost identical in all our experiments.
So in what follows we only deal with (g). We run
106 iterations of the EM algorithm to evaluate this
estimator.

To measure the quality of the estimator F̂ we use
two criterion functions that are used for goodness of
fit tests (Stephens, 1992), the Kolmogorov–Smirnov
statistic

dKS(F̂ ,F) = sup
t∈R+
|F̂(t)−F(t)| ,

and the Cramér–von Mises statistic

dCvM(F̂ ,F) =
∫

∞

0
(F̂(t)−F(t))2 dF(t) .

These deviation measures are computed for each
simulated realization of line segment process for all
estimators. In the forthcoming figures we present their
sample means obtained from 10000 repetitions for
each process and each experiment.

RESULTS

First we consider the case of independent line
segment process in R2. The best performance in most
scenarios was found for NPMLE. Only for the smallest
intensity (λ = 25) and uniform length distribution it
was outperformed by the reduced-sample estimator.
For λ = 50 and uniform lengths, F̂rs has slightly
smaller values of mean dCvM for some of the models.
The results of the comparison are shown in Fig. 2
(left for λ = 50 and uniform length distribution and
right for λ = 100 and exponential length distribution).
The estimation error is lower for random and regular
patterns if the lengths were uniformly distributed
while for exponential length distribution clustered
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Fig. 2. The values of 1000 · dCvM for six considered
models in case of independent marking, d = 2,
uniformly distributed lengths and λ = 50 (top)
and exponentially distributed lengths and λ =
100 (bottom). Horvitz-Thompson (black, bullets),
reduced-sample (red, triangles), Kaplan-Meier (green,
crosses), NPMLE (blue, squares), and SRE (cyan,
circles) estimators are compared.

patterns lead to lower values of dKS and dCvM . Since
the NPMLE was derived under the assumption of
Poisson segment process, it is not surprising that it
has the smallest deviation from the true distribution
function in that case. Under independent marking, we
observed that the influence of underlying configuration
of reference points is quite negligible. The NPMLE
works very well also for clustered and regular patterns.

Comparing the remaining estimators, the reduced-
sample estimator performed well for uniform length
and smaller intensities while in other cases (uniform
length and larger intensity, exponential length and
arbitrary intensity) SRE and Kaplan-Meier estimator
were better. Both these estimators gave very similar
values, in particular for exponential lengths. The
Horvitz-Thompson type estimator has the poorest
behaviour among all studied estimators.

Similar conclusions could be made also for
geostatistically marked line segment process. In this
case the segments are dependent. However, the
NPMLE still resulted in the lowest mean deviation
measures. SRE and Kaplan-Meier estimator behave
very similarly. The reduced-sample estimator was to
some degree worse than in independent case. In some
situations (especially with larger intensity) it was even
beaten by the Horvitz-Thompson type estimator. The
comparison for two different intensities is depicted in
Fig. 3.

Finally, we have investigated the estimation for
independent line segment processes in R3. Since
the calculation of NPMLE is designed only for the
planar case, it was not taken into account. The
reduced-sample estimator shows the best behaviour
for smaller intensities. For larger intensities reduced-
sample estimator, Kaplan-Meier estimator, and SRE
provide comparable results. The Horvitz-Thompson
type estimator has again the largest mean deviation
from true distribution function. Fig. 4 shows the
comparison of results for two different intensities and
uniformly distributed lengths.

Minus sampling version of the Horvitz-Thompson
estimator disregards information given by partially
observed segments. More information is used in
unbiased sampling or plus sampling. Obviously,
the corresponding estimators are more precise.
We compare them in Fig. 5 where we consider
independent line segment processes of intensity
75 and with uniformly distributed lengths. For
unbiased sampling two different estimators could be
distinguished depending on the choice of reference
point (lexicographic minimum or maximum point). We
also present their average which improves the quality
of individual estimators. As we already noticed,
averaging of the estimators based on two different
endpoints is used also for estimators (d), (e) and (h)
from the list above.
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Fig. 3. The comparison of results for models
with geostatistical marking and uniformly distributed
lengths. The values of dKS (top) and 1000 · dCvM
(bottom) are shown for six considered models
with λ = 50 (left) and λ = 100 (right). Horvitz-
Thompson (black, bullets), reduced-sample (red,
triangles), Kaplan-Meier (green, crosses), NPMLE
(blue, squares) and SRE (cyan, circles) estimators are
considered.

With increasing intensity we have more data and
the estimators are more accurate. It is demonstrated in
Fig. 6 where independent marking and exponentially
distributed lengths are considered. The underlying
point process is Matérn hard-core process II.
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Fig. 4. The values of 1000 · dCvM for six considered
models in case of independent marking, d = 3,
uniformly distributed lengths and λ = 50 (top) and
λ = 100 (bottom). Horvitz-Thompson (black, bullets),
reduced-sample (red, triangles), Kaplan-Meier (green,
crosses), and SRE (cyan, circles) estimators are
compared.

DISCUSSION

We have reviewed several nonparametric
estimators of the length distribution and compared
their performance based on Monte Carlo experiments.
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Fig. 5. The values of 1000 · dCvM for six considered
models in case of independent marking, d = 2,
uniformly distributed lengths and λ = 75. Different
Horvitz-Thompson estimators are compared: minus
sampling (full line, circles), unbiased sampling
(dashed line, crosses for individual estimators and
rhombi for average), and plus sampling (dotted line,
bullets).

In the planar case, the nonparametric maximum
likelihood estimator (NPMLE) is based on the
assumption of Poisson process. Our simulation study
revealed that this estimator is quite robust and
preserves its superior behaviour also if the underlying
point process is not Poisson and if the independence
of segments is not satisfied. This estimator is
computed using the EM algorithm that requires many
iterations. However, its calculation is still quite fast
(few seconds). Stochastic restoration estimation (SRE)
requires an iterative numerical procedure as well. The
computation time depends on the number of steps. In
our experiments, the rate of convergence was quite
good. The results for p = 1000 steps were almost
the same as for p = 100000 steps. The computation
time for p = 1000 was comparable with NPMLE (few
seconds). For larger number of steps the calculation
of SRE becomes more time demanding (few minutes).
Our aim was to find out whether simpler estimators
can compete with NPMLE and SRE. These simpler
estimators are very easy to implement and they
are computed almost immediately. The Kaplan-Meier
estimator gave results which are comparable with
SRE in most scenarios. The reduced-sample estimator
also provides a simple and reasonable alternative. It
worked particularly well for lower values of intensity.

This estimator is less precise for larger t where
more information from data is discarded. Therefore,
it behaves worse for exponential length in comparison
with uniform length. Furthermore, the reduced-sample
estimator, Eq. 2, is not necessarily monotonic. In that
case, we suggest to use a natural modification

F̂rs,m = sup
s≤t

F̂rs(s), t > 0.

Horvitz-Thompson type estimator was the least
efficient estimator in our simulation study. It was
expected because it uses only uncensored segments,
single end censored segments are ignored.

In conclusion, we can recommend both Kaplan-
Meier and reduced-sample estimators when a
computationally simple method is required. They
are also convenient in higher dimensions since the
equations for the NPMLE are derived for the planar
case.
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