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ABSTRACT 

Measuring the growth of spherulites in semi-crystalline thermoplastics helps to control and optimize 
industrial manufacturing processes of these materials. The growth can be observed in cross polarized 
images, taken at several time steps. The diameters of the spherulites are however measured manually in each 
step. Here, two approaches for replacing this tedious and time consuming method by automatic image 
analytic measurements are introduced. The first approach segments spherulites by finding salient 5x5 pixel 
patches in each time frame. Combining the information from all time frames into a 3D image yields the 
spherulites by a maximal flow graph cut in 3D. The growth is then measured by homography measurement. 
The second approach is closer to the manual method. Based on the Hough transform, spherulites are 
identified by their circular outline. The growth is then measured by comparing the radia of the least moving 
circles. The pros and cons of these methods are discussed based on synthetic image data as well as by 
comparison with manually measured growth rates.  
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INTRODUCTION 

The performance characteristics of semi-crystalline 
thermoplastic products are determined by their intrinsic 
properties such as molecular orientation, supramole-
cular morphology, and residual stresses. These para-
meters are determined by the materials themselves 
and the processing conditions. In principle, during the 
manufacturing of products from semi-crystalline ther-
moplastics during cooling from a quiescent melt, sphe-
rical supramolecular structures, in short spherulites 
are formed. The bottleneck for the cycle time in the 
processing of these materials using industrial manu-
facturing processes such as injection molding is the 
cooling phase from the melt, respectively the nucleation 
rate and the spherulite growth rate. Therefore, it is 
extremely important to identify this behavior for dif-
ferent plastics and their composites.  

As early as 1995, (Plummer and Kausch) used 
images of samples between cross polarizers to study 
the spherulite growth in polyoxymethylene image 
analytically. Their method works however for very 
low spherulite area fractions (1%) only, as it relies on 

object labelling. (Hernández-Sánchez and Carrillo-
Escalante, 2009) correlate average gray values of 
cross polarized images with the spherulite growth in 
polylactic acid. The measurement is however not a 
local one and moreover requires a high calibration 
effort. Even more recently, spherulite radia are still 
measured manually from image data (De Santis et al., 
2014; Nomai et al., 2015). However, this procedure is 
extremely time consuming. 

Here, we introduce two approaches for automatic 
measurement of spherulite growth based on image data. 
The algorithmic background of both is shortly summa-
rized. Their results are compared to those from manual 
measurements. 

MATERIALS AND METHODS 

MATERIALS AND SAMPLE 
PREPARATION 

Polypropylene and a composite of polypropylene (PP) 
and microfibrilated cellulose (MFC) were selected as 
test materials and used to prepare 25/±5 µm thick 
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films under the conditions described in (Thanomchat 
et al., 2014). As polymer matrix, a commercially 
available polypropylene (PP HD120MO, Borealis 
GmbH, Burghausen, Germany) was used. The micellar 
cellulose was prepared at Chulalongkorn University 
(Department of Materials Science, Faculty of Science, 
Chulalongkorn University, Bangkok, Thailand) as 
described in (Thanomchat et al., 2014).  

EXPERIMENTS AND MANUAL SIZE 
MEASUREMENT 

A stack (glass substrate, polymer/composite thin section 
(25/±5 µm), cover slip) was fixed at a hot stage (LTS 
420, Linkam Scientific Instruments, Surrey, England) 
under a light microscope (ECLIPSE LV100, Nikon 
GmbH, Düsseldorf, Germany). The samples were 
heated to 200 °C at a rate of 20 K/min and held for 3 
min at this temperature. Then, for isothermal crystal-
lization, the samples were cooled at the rate of 20 
K/min to various given crystallization temperatures 
(130 °C, 132 °C, and 134 °C) and held constant until 
completion of crystallization was observed. The 
development of the spherulitic structure was detected 
under polarized light and recorded using a CCD 
camera. The radial growth rate of the spherulites was 
calculated using the recorded movies based on the 
size of PP spherulites as a function of time. Five 
spherulites of each sample were characterized. A radius 
of each was measured from a manually chosen center 
to the outside edge. Each crystallization experiment 
was performed at least three times in order to verify 
the reproducibility of the experiment. 

IMAGE ANALYTIC GROWTH BY 
HOMOGRAPHY ESTIMATION 

The first step for this growth rate analysis method is 
to segment the spherulites in each frame. To this end, 
foreground candidates are detected as the set of salient 
5x5 pixel patches following (Margolin et al., 2013). 
Here “salient” defines patches differing significantly 
from the “average patch”. A model for the background 

patches form the overwhelming majority. First the 
average patch is determined, subsequently the principal 
components are analyzed. Finally being distinct is 
measured by the L1-distance to the average patch in 
the coordinate system given by the principal compo-
nents. The thus derived score for being foreground is 
multiplied with a measure for color deviation on 
superpixels. For details see (Margolin et al., 2013). 
The resulting stack of images with the foreground-
score as gray values is interpreted as a 3D image and 
segmented by a maximal flow graph cut in 3D as-
suming 26-connectivity. An exemplary segmentation 
result is shown in Fig. 1.  

Based on this segmentation, local growth is esti-
mated for each pair of consecutive frames: Objects 
are labelled interpreting the pair as a 3D image. Then 
the contours of the corresponding objects in 2D are 
deduced from the local gradients in x and y directions. 
For each pixel in a contour, its counterpart in the 
consecutive frame is found as the one closest to it. 
Based on these pairs of points, the homography (pro-
jective transformation) mapping the previous into the 
current frame is estimated robustly using the algorithm 
from (Hartley and Zisserman, 2003). The correspon-
dences are corrected accordingly. This algorithm results 
in a table holding the local growth in the sense of the 
homography moving the object (edge) in the previous 
frame into the corresponding one in the current frame. 
In particular, the growth estimation is based only on 
one pair of frames at a time as objects are not tracked.  

For comparison with the manual measurements as 
well as the other method described below, the derived 
information on the growth from one time step to the 
next are post-processed: As in the manual method, 
five objects are picked. Here, those containing the 
most pixels are chosen. The growth for each object is 
the mean distance of the corresponding edge point 
pairs belonging to this object. Finally the growth for 
the current time step is calculated as the weighted mean 
over the growths of the five picked objects, where the 
weights are the edge lengths in number of pixels.

 

 
Fig. 1. Left: Original. Center: Detected foreground with red overlay. Right: Growth patterns. 
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We validated the method using synthetic data. A 
Boolean model (see e.g., Stoyan, Kendall, Mecke, 
1998) was simulated in the observation window and 
the circles grew randomly from time step to time 
step. Altogether, three times five sequences of 40 
time steps each were generated using three different 
sets of parameters pi, i = 1, 2, 3. The numbers of 
circles are discretely evenly distributed on the natural 
numbers in the interval [15, 25] for i = 1, 2 and [25, 
35] for i = 3. The radial growth is uniformly dis-
tributed in the intervals [0.575, 0.975] for i = 1 and 3 
and in [0.3, 1.2] for i = 2. Thus, the mean radial 
growth is 0.75 µm per time step, corresponding to 
4.41 pixels at nominal resolution 0.17 µm as in the 
real image data. Results are shown in Table 1. 

IMAGE ANALYTIC GROWTH BY 
HOUGH TRANSFORM 

Our second approach is based on the Hough trans-
form for finding circles in 2D. The original RGB 
color images are converted to gray value images by 
simply taking the mean of the three color channels. 
Then the most pronounced ten circles are detected 
using the Hough transform for finding circles. Here, 
we apply the algorithm by (Mosaliganti et al., 2009). 
Roughly speaking, this algorithm works in the fol-
lowing way: The edge pixels given by the gradient 
image “vote” for centers of circles they might be con-
tained in. This voting is repeated for all radia within a 
suitable interval. Finally, the most likely centers and 
corresponding radia are chosen.  

Geometrically described, the transformation consi- 
 

ders in each edge pixel a line through this pixel in 
gradient direction. Then for all pixels on this line 
with distance to the edge pixel within the given radius 
range, the corresponding gray value in the voting 
image is increased by 1. The image containing the 
votes as pixel gray values is called the Hough map. 
After all edge pixels are processed, the Hough map 
features the candidates for centers of circles as bright 
points. Thus, the first circle center is the pixel with 
the maximum gray value in the Hough map. We 
remove it and its neighborhood from the Hough map 
and search for the second global maximum. This pro-
cess is repeated for the predefined number of circles 
we are looking for. Here, 10 is chosen as a compro-
mise between finding this number of strongly pronoun-
ced circles at all and ensuring with high probability 
that five out of them can be observed from first to last 
frame. 

Fig. 2 shows examples with found circles over-
laid in green. The algorithm results in a list of centers 
and radia. Thus originally, the found circles are not 
tracked from time step to time step. To estimate the 
growth gi from time ti to ti+1, the five least moving 
centers out of the 10 found ones are considered. A 
pair of circle centers Ci, Ci+1 from consecutives time 
steps ti to ti+1 is accepted to match as long as distance 
(Ci, Ci+1) < Ri/2, where Ri is the spherulite radius as 
deduced from the growth till ti. That is, R0 = 0 and 
Ri = ∑gj, j ≤ i. The growth gi+1 is finally obtained as 
the mean over the five picked circles weighted by 
edge length. If less than five matching circles are 
found, then the remaining values are averaged. 

Table 1. Weighted mean growth rates estimated by the homography method for the simulated samples. The 
measured growths are averaged over all time steps. The homography method underestimates the growth 
systematically. The deviation is however smaller than one pixel.  

 Mean #cones Mean growth 
(µm) 

Growth max 
deviation (µm) 

Estimated growth 
(µm) 

Relative error 
(%) 

20_0p3_0p75_seq1 20 0.75 0.3 0.69 8.6 
20_0p3_0p75_seq2 20 0.75 0.3 0.71 5.8 
20_0p3_0p75_seq3 20 0.75 0.3 0.68 9.6 
20_0p3_0p75_seq4 20 0.75 0.3 0.73 3.0 
20_0p3_0p75_seq5 20 0.75 0.3 0.69 7.5 
20_0p6_0p75_seq1 20 0.75 0.6 0.62 17.7 
20_0p6_0p75_seq2 20 0.75 0.6 0.69 8.2 
20_0p6_0p75_seq3 20 0.75 0.6 0.65 13.3 
20_0p6_0p75_seq4 20 0.75 0.6 0.70 6.2 
20_0p6_0p75_seq5 20 0.75 0.6 0.67 10.9 
30_0p3_0p75_seq1 20 0.75 0.3 0.70 6.5 
30_0p3_0p75_seq2 20 0.75 0.3 0.72 4.4 
30_0p3_0p75_seq3 20 0.75 0.3 0.70 7.3 
30_0p3_0p75_seq4 20 0.75 0.3 0.68 9.2 
30_0p3_0p75_seq5 20 0.75 0.3 0.71 5.0 
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Fig. 2. Examples for the Hough circle method. Detected circles are overlaid in green over the original color 
images. The bottom row shows the corresponding Hough maps. Bright spots indicate very likely circle centers. 

RESULTS  
Comparing the two image analytic and the manual 
measurements is not at all straightforward as they 
yield different results (diameters versus growth rates) 
that are differently weighted (number of selected circles 
versus number of corresponding edge pixels in conse-
cutive frames). In order to compare as just as pos-
sible, we decided to weight all measured growth rates 
with the corresponding edge lengths. Exemplary results 
are shown in Fig. 3. Mean growth rates and relative 
measurement errors are summarized in Table 2. 

The homography estimation approach works well 
for low object numbers and low spherulite area fraction. 
That is, in early growth stages. With growing area 
fraction, the estimation results deteriorate, due to the 
declining number of corresponding pixel pairs. The 

Hough transform approach is very close to the ma-
nual measurement as it picks nicely defined circles as 
does the manual operator. Moreover, results are rather 
stable as neither pre-processing nor segmentation are 
needed. It is able to deal with clusters of spherulites. 
However, as soon as the shape of the spherulites 
deviates, the size is underestimated as the algorithm 
finds the inscribed circle, e.g., of elliptical objects. 
Moreover, the circles in one frame are neither con-
nected to the preceding nor the succeeding one.  

The PP 4% MFC samples are particularly hard 
for both algorithms as the images contain agglome-
rates as visible, e.g., the marked areas in Fig. 4. 
Moreover, they contain many spherulites, resulting in 
a high spherulite area fraction in later time steps, a 
disadvantage for the homography estimation. 

Table 2. Weighted mean growth for all methods and nine samples. The measured growths are averaged over all 
time steps. Deviation of the results obtained by homography estimation is significantly higher. However, this is 
due to the fact that in the absence of better criteria, the manual measurement is taken as the “ground truth” here. 

pp 
(%) 

Temperature 
(°C) 

Manually measured 
(µm) 

Hough Circle 
(µm) 

Rel diff 
(%) 

Homography estimation 
(µm) 

Rel diff 
(%) 

0 130 1.334 1.258 5.7 1.052 21.2 
0 132 0.880 0.859 2.3 0.849 3.5 
0 134 0.626 0.608 2.8 0.520 16.9 
1 130 1.410 1.286 8.8 1.222 13.3 
1 132 0.940 0.806 14.3 0.774 17.7 
1 134 0.634 0.616 2.9 0.528 16.8 
4 130 1.529 1.559 2.0 1.036 32.2 
4 132 0.938 0.893 4.9 0.698 25.6 
4 134 0.636 0.584 8.0 0.383 39.8 
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Fig. 3. Results for PP 1% MFC and PP 4% MFC, at the crystallization temperatures of 130°, 132°, and 134°C, 
respectively.  

 
Fig. 4. Frame from a PP 4% MFC sample at crystal-
lization temperature 132°. The indicated agglomera-
tes cannot be identified as spherulites by the Hough 
transform method. 

DISCUSSION 

The reported results show clearly, that quantitative 
image analysis has the potential to yield reliable 
growth rate estimates. However, a solution applicable 
to a wide variety of materials and working properly 
for high coverage, too, has to be developed. A pro-
mising strategy for this seems to be combining the 
two approaches – object based analysis and time 
dependent analysis of consecutive frames. 
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