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ABSTRACT

Methods for testing the Boolean model assumption from binary images are briefly reviewed. Two hundred
binary images of mammary cancer tissue and 200 images of mastopathic tissue were tested individually on the
Boolean model assumption. In a previous paper, it had been found that a Monte Carlo method based on the
approximation of the envelopes by a multi-normal distribution with the normalized intrinsic volume densities
of parallel sets as a summary statistics had the highest power for this purpose. Hence, this method was used
here as its first application to real biomedical data. It was found that mastopathic tissue deviates from the
Boolean model significantly more strongly than mammary cancer tissue does.
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INTRODUCTION

Benign alterations and malignant tumours
originating from glandular tissues (e.g., mammary,
prostatic, pancreatic tissue) are important diseases in
human pathology. Structural characteristics of such
tissues may be characterized in a descriptive manner,
or it may be attempted to obtain objective quantitative
data from the microscopic images. Such data may
be used,e.g., for statistical group comparisons, for
correlation analyses, for parametric modelling and
pattern recognition. Here one should keep in mind
that the tissues are in fact three-dimensional; in
histopathology we are faced with planar sections
of them, an aspect which is often overlooked.
Stereologymeans that data obtained from sections are
extrapolated to the three-dimensional properties of a
structure using mathematical methods.

In previous investigations, it has been shown
that the texture of mammary tissue, as seen at low
magnification, may be characterized quantitatively in
terms of stereology (Mattfeldtet al., 1993, 1996, 2007;
Mattfeldt, 2003). Basically, glandular tissue may be
subdivided into three phases, namely the epithelial
cells (the tumour cells), the lumina, and the stroma,
which together account for 100% of the tumour tissue.
These three phases may be understood as random
closed sets (RACS) with positive volume fraction
(volume processes). Applying methods of spatial
statistics to digitized images, or by simple manual
counting methods, it is possible to characterize these
three phases quantitatively in terms of area fraction

AA, boundary length densityLA and Euler number per
unit tissue areaχA (see,e.g., Mattfeldt et al., 2007).
The three aforementioned specific intrinsic volumes
have a clear stereological interpretation, hence they
can be used for the estimation of stereological model
parameters:

V̂V = AA , (1a)

ŜV =
4
π

LA , (1b)

M̂V = 2πχA , (1c)

whereVV is the volume fraction,SV is the mean surface
area per unit reference volume, andMV is the curvature
density (integral of mean curvature per unit volume);
by V̂V , ŜV andM̂V we denote the estimators of these
quantities.

However, a RACS is not uniquely characterized by
the specific intrinsic volumes. They inform basically
about the amount of the phases per unit volume,
but not about the pattern in which the features
are arranged (’histological texture, architecture’). A
useful nonparametric way to describe the tissue
texture in this sense consists in the estimation of
second-order statistics of the RACS (Mattfeldtet al.,
1993). The blend of stereology with second-order
methods of stochastic geometry was calledsecond-
order stereology(Cruz-Orive, 1989; Jensenet al.,
1990; Mattfeldtet al., 1993, 1996, 2003). Estimates
of the covarianceC(r), of the radial distribution
function RDF(r), of the correlation functionk(r), of
the pair correlation functiong(r), and of the reduced
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second moment functionK(r) of the epithelial volume
may be obtained, as reported before (Mattfeldtet
al., 1993, 2003). These summary statistics provide
a quantitative characterization of the inner order of
the structure in terms of attraction (clustering) and
repulsion as a function of distance, without specifying
any particular stochastic model. The specific intrinsic
volumes computed from parallel sets of RACS (e.g.,
the Minkowski sum of the RACS and the disk with
radius r) with varying radius of the parallel setr
(Mrkvi čka, 2009) reflect also the inner order of the
structure and furthermore these statistics are based on
the specific intrinsic volumes.

In spatial statistics, much work has been done in
the field of the statistical analysis and modelling of
spatial point patterns (see,e.g., Illian et al., 2008).
When studying planar point patterns, the usual first
step is to check whether the pattern is compatible with
the null model of a stationary Poisson point process.
Analogously, when it comes to stochastic modelling of
a RACS with positive volume, one would proceed by
testing its compatibility with a suitable null model. The
Boolean model, which represents the classical, ”purely
random” germ-grain model of stochastic geometry,
may be used instrumentally as a null model for a
volume process (Molchanov, 1997). This means that
one has to develop a test whether a given image is
compatible with the Boolean model of random sets, or
whether this hypothesis should be rejected.

In the present investigation, the images of the
mammary cases studied in a previous publication
(Mattfeldt et al., 1996) were reexamined (20 cases of
mastopathy and 20 cases of mammary cancer, each
with 10 images). In the previous paper, it had been
explored how strongly the images deviated from an
appropriately parametrized Boolean model in terms
of contact distribution functions. A direct test of the
images on compatibility with the Boolean model was
outlined in that paper, but was not yet performed. In
a further paper (Mattfeldt, 2003) these images were
tested on compatibility with the Boolean model using
Laslett’s theorem (see section Laslett’s theorem). Since
the results of Laslett’s test did not demonstrate a
significant deviation of most of these images from
the Boolean model hypothesis, we used now a more
powerful method to prove this difference (Mrkvička,
2009). Furthermore, we compared how strongly the
mastopathy images and mammary cancer images
deviated from the Boolean model. Finally, we compare
the results obtained in the paper (Mattfeldt, 2003) with
the results obtained in this study.

THEORETICAL PART

REVIEW OF BASIC CONCEPTS

Throughout this paper, we consider realizations
of stationary and isotropic ergodic RACSΞV with
positive volume fractionVV in an unbounded three-
dimensional reference space. Such RACS with the
property VV > 0 are denoted asvolume processes,
for convenience (Cruz-Orive, 1989; Mattfeldtet al.,
1993). A RACSΞV is called stationary and isotropic if
ΞV has the same distribution after arbitrary translations
and rotations,i.e., if the distribution ofΞV is invariant
under all rigid motions in space. The property of
ergodicity may be summarized as follows: statistical
averages can be expressed by limits of arithmetic or
spatial averages (Stoyanet al., 1987, p. 170–171).
Consider germs which are distributed according to a
stationary Poisson process with intensityλV in space,
and primary grains which are independent identically
distributed random compact sets of mean volumeV̄
and mean surface areāS, with their centers at the
origin. Then the Boolean model is the union of a
shifted version of the primary grains, namely of sets
x+K, wherex is a germ point andK is a primary grain
(Stoyanet al., 1987). The shifted primary grains may
overlap. In addition, here we assume that the primary
grains are convex and isotropic (i.e., the distribution
of the primary grains is invariant under rotations about
the origin). A planar section ofΞV is a Boolean model
ΞA with intensityλA in the two-dimensional Euclidean
plane, where the planar primary grains have mean
areaĀ and mean boundary length̄L (Stoyanet al.,
1987, p.85). Therefore, testing for a Boolean model
was throughout our work restricted to a study in the
plane, which provides an example for stereological
inference from sections to 3D space (i.e., rejection of
the Boolean model hypothesis in 2D implies rejection
of the Boolean model hypothesis in 3D). The three
parametersλA, ĀandL̄ of ΞA can be estimated from the
image, through the following three equations (Stoyan
et al., 1987):

AA = 1−exp(−λAĀ) (2a)

LA = λA(1−AA)L̄ (2b)

N+
A = λA(1−AA) (2c)

In these equations,AA denotes the mean area fraction,
LA denotes the mean boundary length per unit area,
andN+

A denotes the specific convexity number ofΞA,
which can be estimated unbiasedly from the images by
manual counting techniques or with image analyzers.

Important tools to test whether a stationary and
isotropic ergodic RACSΞ is a Boolean model are the
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contact distribution functionsHB(r) with

HB(r) =
P(Ξ∩ rB 6= /0)−P(o∈ Ξ)

1−P(o∈ Ξ)
, (3)

for r ≥ 0, where B belongs to a certain class of
structuring elements;rB = {rx : x ∈ B}, ando is the
origin (Stoyanet al., 1987). This definition means
that, for a given valuer > 0, the valueHB(r) denotes
the conditional probability that ther-fold enlargement
rB of the structuring elementB — here: a quadrat
of sidelength 2 pixels — intersectsΞ, provided that
the reference point of the enlarged structuring element
(usually its centre) lies in the pore space, outsideΞ.
Theoretically, the direction of the quadratB may be
arbitrarily selected when the structure is isotropic; in
digitized images one will usually select the vertical or
the horizontal direction. As its name implies,HB(r) is
a cumulative distribution function. General equations
have been derived where the contact distribution
functions were given for the Boolean model in terms
of the intrinsic volumes (which are also known under
another normalization as Minkowski functionals or
Quermaßintegrale) of the primary grains and the
structuring elementB (Matheron, 1975; Schneider and
Weil, 1992); here we restrict ourselves to the familiar
specifications for the plane. Let us denote byHBM(r)
and HQM(r) the exact contact distribution function
for general and quadratic structuring elementsB,
respectively, under the condition thatΞA is a Boolean
model. For general structuring elementsB with area
A(B) and perimeterU(B), which are subsequently
enlargedr-fold, we have the following general contact
distribution function:

HBM(r) =

1−exp

{

1
AA−1

[

U(B)rLA

2π
+A(B)r2N+

A

]}

. (4a)

For the aforementioned structuring elementB,
i.e., a quadrat of sidelength 2 pixels, we obtain the
following contact distribution function:

HQM(r) = 1−exp

{

1
AA−1

(

4rLA

π
+4r2N+

A

)}

.

(4b)

Using image analysis, we have asymptotically
unbiased estimators of the contact distribution
functions at our disposal, which are suitable
irrespectively whether the assumption of a Boolean
model is fulfilled or not. Let us denote byHBI(r) and
HQI(r) the contact distribution functions for general
and quadratic structuring elementsB, respectively, as
measured by image analysis without the assumption

of a Boolean model. The general contact distribution
function can be estimated from the image by

HBI(r) = {AA(dil[r])−AA}/(1−AA) , (5)

(Stoyan et al., 1987; Bindrich and Stoyan, 1991),
whereAA is the area fraction before dilation, and where
AA(dil[r]) is the area fraction after dilation by ther-
fold enlargement of the structuring elementB.

TESTING FOR THE BOOLEAN MODEL

The detailed description of the tests can be found
in Mrkvi čka (2009). Here we review the basic idea of
the tests only.

The graphical method

A first check for presence of a Boolean model
usually proceeds as follows (e.g., Bindrich and Stoyan,
1991). A series of successive dilations of the grain
phase is performed, then− log{1 − HQI(r)}/r is
plotted as a function ofr. If the image stems from
a Boolean model, the data points should lie near a
straight line in the resulting plot, apart from random
error. This behaviour is a direct consequence of Eq.
4b.

Laslett’s theorem

Another test method may proceed from the
following theorem (Laslettet al., 1985). If ΞA is a
Boolean model with intensityλA and isotropic convex
primary grains in the plane, for which a unique marker
point is defined on their boundary, then the exposed
marker points ofΞA (called the induced point process)
form, after a certain transformation, a homogeneous
Poisson process of intensityλA (see also Cressie, 1991;
Čerńy, 2006). After the transformation we may leave
the domain of RACS and apply tests for homogeneous
Poissonpointprocesses to the new image.

A Monte Carlo test for the Boolean model
based on the quadratic contact distribution
function

The equations discussed above provide an
opportunity for aMonte Carlo teston the presence
of a Boolean model. The equations (2a–c) provide
estimateŝλA, ˆ̄A, and ˆ̄L of the parametersλA, Ā, and
L̄ from a quadratic window of areah2, say. Now the
Boolean model with estimated parameters is simulated
in a given window. For each simulated image a
series of linear and quadratic dilations is performed
at the same step sizes that were used for the original
images, and for each simulationHQI(r) are determined
according to Eq. 5. With respect to a certain notion
of distance (e.g., sum of squared differences), the
deviations between the theoretical contact distribution
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functionĤQM(r) and the simulated contact distribution
functionsHQI(r) are ordered by size. If the deviation of
the functionĤQI(r), that had been determined directly
from the original image, fromĤQM(r) is among 5%
largest deviations computed from simulations, the
hypothesis of a Boolean model is rejected.

A general Monte Carlo test with envelopes
approximated by the multinormal
distribution

The null model assumption here can be the
Boolean model or any other model.

1.A summary statisticS(ε) of RACS is chosen. The
summary statistic is a functionS(ε) of ε > 0 and
it is estimated from the data inn different points
ε1, . . . ,εn. Denote these estimatesŜD

ε1
, . . . , ŜD

εn
.

2.The parametersθ of the assumed null model are
estimated by an estimatorθ̂ .

3.N independent samples of the null model with
estimated parameters are simulated and the
summary statisticsŜi

ε1
, . . . , Ŝi

εn
, i = 1, . . . ,N are

computed.

4.To compute the p-level of this test, the summary
statistics Sε1, . . . ,Sεn are approximated by the
random vectorX with multinormal distribution
with mean vector µµµ = (µ1, . . . ,µn)

T and the
covariance matrixΣΣΣ = (Σi j )i, j=1,...,n computed
from N simulations. The upper envelope is
constructed asUE(s) = (µ1 + s

√
Σ11, . . . ,µn +

s
√

Σnn)
T and the lower envelope is constructed

as LE(s) = (µ1 − s
√

Σ11, . . . ,µn − s
√

Σnn)
T . The

width of the envelopes depends on the parameter
s> 0.

5.An integer numberK is chosen. This is the
maximum number of valueŝSD

ε1
, . . . , ŜD

εn
which fall

outside of the envelopes and for which the test
does not reject. The widest envelope when the test
rejects is then given by

ssup= sups(#{ŜD
εi

/∈ (LE(s)i ,UE(s)i),

i = 1, . . . ,n} > K) . (6)

6.The p-value is then the probability that more than
K components of the random vectorX fall outside
of the envelopes(LE(ssup),UE(ssup)). Since X
is usually high dimensional, the probability is
computed by Monte Carlo methods.

Normalized intrinsic volumes densities

The last method is described for the general
summary statisticS(ε). It is possible to use quadratic

contact distribution function in this test as it was used
in the Monte Carlo test described in previous section.
Or one can use as the summary statistic the following
normalized intrinsic volumes densities of theε-parallel
sets.

The intrinsic volumes densitiesV0(Ξ), V1(Ξ),
V2(Ξ) of RACS Ξ in the plane are the mean Euler
number density, one half of the circumference density
of border ∂Ξ and the area density (i.e., V2(Ξ) =
AA, V1(Ξ) = LA/2).

We considered the intrinsic volumes densities
Vk(Ξεi ), k = 0,1,2, i = 1, . . . ,n of theεi-parallel sets.
The parallel setΞεi is produced as dilation of the setΞ
by a disc with a radiusεi . We chosen = 24 different
discs with radii ε1, . . . ,ε24 evenly spanned between
1 and 25 pixels of the image. When the envelopes
are made from the simulations, the estimated intrinsic
volumes densitiesVk(Ξε1) vary a lot for different
simulations thus the envelopes are wide. Therefore we
fixed first pointε1 and chose as summary statistics for
the proposed test the normalized intrinsic volumes of
parallel sets:

Vk(Ξεi )/Vk(Ξε1), i = 2, . . . ,24, k = 0,1,2. (7)

This normalized intrinsic volumes reflect the
interactions among the grains and are unaffected by
the number and size of the grains. The estimation
of V2(Ξεi ) is performed by the standard unbiased
point counting estimator and the estimation of
V0(Ξεi ),V1(Ξεi ) is performed by the unbiased
estimator described in Mrkvička and Rataj (2008;
2009).

Choosing the testing method

All the previously described methods were
compared in Mrkvǐcka (2009) by extensive
simulations. The powers of the tests with respect to
two alternatives (regular and clustered structure) were
compared. The results of this study were as follows.
Using normalized intrinsic volume densities for the
summary statistics was more powerful than using
quadratic contact distribution functions. Furthermore,
the Monte Carlo test with envelopes approximated by
a multinormal distribution was more powerful than
all the other tests described there. Moreover, it was
shown in Mrkvǐcka (2009) that the aforementioned
test was sensitive to the grain interaction only. It
was not sensitive on an eventually wrong choice
of the random prototype of the Boolean model (the
primary grain of the Boolean model). Therefore, the
Monte Carlo test with envelopes approximated by
a multinormal distribution with normalized intrinsic
volumes densities as the summary statistics was
adopted for testing the Boolean assumption in the
present study.

14



Image Anal Stereol 2011;30:11-18

(a)

(b)

Fig. 1. (a) Mastopathic tissue: the mammary
parenchyma shows an increase of stroma (fibrous
tissue) and sometimes dilatation of ductules. The
general ductulo-lobular architecture is however
preserved. (b) Mammary cancer (invasive ductal
mammary carcinoma). The normal orderly glandular
architecture has been replaced by irregular epithelial
blocks with few stroma in between. Haematoylin-Eosin
stain.

MATERIALS AND METHODS

CASES AND SAMPLING

Forty cases of human mammary tumours
submitted for histopathological diagnosis were
investigated. Twenty cases were fibrous mastopathies,
i.e., benign lesions where the glandular architecture
of the mammary tissue within the lobules was
fully preserved and the main changes consisted
in an increase of fibrous tissue and a microcystic
dilatation of the glandular lumina (Fig. 1a). These were
compared to 20 cases of invasive ductal mammary

cancer, the most frequent type of breast cancer in
humans (Fig. 1b). One paraffin section per case with
a nominal thickness of 4µm from the centre of the
lesion was stained with hematoxylin and eosin. Ten
visual fields per case from the lobular parenchyma
were evaluated in the group of mastopathies at 10×
primary magnification at the level of the objective
of the light microscope by systematic random
sampling. Ten visual fields per case from non-necrotic
invasive tumour tissue were evaluated in the group
of carcinomas at the same magnification by the
same sampling strategy,i.e., systematic sampling
with a random start. The selected visual fields were
transmitted to the image analysis system Kontron
IBAS 2000 with a black-and-white CCD camera.
The result was a gray level image with a resolution
of 512× 512 pixels at a final magnification of 430×
on the screen. By segmentation a binary image was
produced, which consisted of two phases only (Figs.
2a,b). All images were interactively segmented by
the same person by tracing the epithelial formations.
The epithelial component – the union of the primary
grains – was shown as white, whereas the whole non-
epithelial remainder of the tissue – the pore space,
consisting of fibrous stroma, blood vessels, nerves,
gland lumina,etc.– was shown as black.

MONTE CARLO TESTS

Each black-white image with the resolution of
512 × 512 pixels was tested by the chosen test (the
Monte Carlo test with envelopes approximated by
multinormal distribution with a normalized intrinsic
volumes densities as the summary statistic). The
chosen test was performed with the following
settings: n = 69 (23 points for 3 normalized
intrinsic volumes densities),N = 99 simulations,
K = 3. The parameters of the Boolean model were
estimated using empirical intrinsic volume densities
V0(Ξ),V1(Ξ),V2(Ξ) (Molchanov, 1997, p. 81–83).

RESULTS

The results of the chosen test of Boolean
assumption are displayed on (Figs. 3a,b,c) for one
image of the mastopathic tissue (the image is shown
in Fig. 2a). The resultedp-value of this test isp =
0.00067. Figs. 4a,b,c shows the same for one image
of the mammary cancer tissue (the image is shown
in Fig. 2b). The resultingp-value of this test isp =
0.11687. The results for other images vary a lot, but
usually the significance is proven byV0(Ξ) or V1(Ξ).
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(a)

(b)

Fig. 2. (a) Binary image from a visual field from
a histological section from a mastopathy. A gray-
level image has been reduced to a binary image by
manual segmentation. White: epithelial cells (grain
phase), black: gland openings, stroma, vessels etc.
(pore phase). (b) Binary image from a visual field from
a histological section of a case of mammary cancer.

All the p-values are summarized in the histograms
in the (Figs. 5a,b). We can see that the mammary
cancer tissues have generally higherp-values than the
mastopathic tissues. This means that mammary cancer
tissues reveal less deviation from the Boolean model
than the mastopathic tissues. Furthermore, the Boolean
model assumption was not rejected for 6% mammary
cancer images and for 1% mastopathic images with
significance level 0.05. To test the hypothesis that the
mammary cancer tissues reveal the same deviation
from the Boolean model as the mastopathic tissues,
we performed a nonparametric Mann-Whitney U Test,
where we compared the samples of computedp-
values. This hypothesis was rejected with thep-value
0.000159.
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Fig. 3. The results of the proposed test on the
Boolean model assumption for one image of the
mastopathic tissue. The points represent the estimates
of normalized intrinsic volumes densities of parallel
sets (a)V2(Ξε)/V2(Ξε1) , (b) V1(Ξε)/V1(Ξε1), (c)
V0(Ξε)/V0(Ξε1) for 23 different radii from the data.
The envelopes are constructed from 99 simulations;
they correspond to 95% envelopes.

Table 1 shows the averagep-values computed from
the images for each case (20 mastopathic cases and
20 mammary cancer cases). If we take the average
p-value for a case as the characteristic determining
the decision, whether the whole case can be described
by Boolean model or not, then 10% of the mammary
cancer cases and no mastopathic case at all can be
accepted as consonant with the Boolean model.
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Table 1.The average p-values computed from the images for each case.

Mammary cancer 0.02844 0 0.00050 0.00681 0.11612 0.02688 0.10948
0.25630 0.00492 0 0.02463 0 0 0

0 0.00494 0.00526 0.00011 0 0.03093
Mastopathic 0.00013 0.06126 0.00005 0.00001 0.00440 0.03554 0.00222

0.00122 0.00055 0 0 0 0 0
0 0.00172 0 0 0 0
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Fig. 4.The results of the proposed test on the Boolean
model assumption for one image of the mammary
cancer tissue. The points represent the estimates of
normalized intrinsic volumes densities of parallel
sets (a)V2(Ξε)/V2(Ξε1) , (b) V1(Ξε)/V1(Ξε1), (c)
V0(Ξε)/V0(Ξε1) for 23 different radii from the data.
The envelopes are constructed from 99 simulations;
they correspond to 95% envelopes.
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Fig. 5. (a) The histogram of resulting p-values of
all mastopathic tissue images. (b) The histogram
of resulting p-values of all mammary cancer tissue
images. (The scale of the histogram is different.)

CONCLUSION

In this paper, the Monte Carlo method based on
the approximation of the envelopes by a multi-normal
distribution with the normalized intrinsic volume
densities of parallel sets as a summary statistics was
applied to biological tissue for the first time. In
simulation studies, it had been shown to have higher
statistical power than alternative methods (Mrkvička,
2009). One of these alternative approaches was the
test based on Laslett’s theorem (see section Laslett’s
theorem). This finding could now be corroborated for
real specimens. In a previous paper, the same 40 cases
had been studied using this test (Mattfeldt, 2003).
Using this method, it was found that 25% of the
mastopathic cases were compatible with the Boolean
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model, whereas 75% of the mammary cancer cases
were compatible with the Boolean model (Mattfeldt,
2003, p. 291). However, no mastopathic case at all and
only 10% of the mammary cancer cases were accepted
as consonant with the Boolean model in the present
study. Clearly, this result has to be ascribed to the
higher power of the test described here.

Moreover, the present study suggests that the
structure of the epithelial component of mammary
cancer is less orderly arranged than that of the
mastopathic tissue. Although some images of the
mammary cancer revealed very smallp-values, thus
revealing a strong dissimilarity to the Boolean model,
in global view we found that the mastopathic tissue
differed more strongly from the Boolean model
than the mammary cancer tissue. This conclusion is
biologically plausible as mastopathic tissue is still
subject to normal growth regulation mechanisms.
However, cancer means that tumour cells have
escaped growth control of the organism and are now
proliferating autonomously. This means a loss of order
in terms of geometry of random sets. Besides, the
conclusion that the mastopathic cases differ more
strongly from the Boolean model than the mammary
cases emerges also from the evaluation using the
Laslett test (Mattfeldt, 2003).

The aim of the present study was primarily to
find an improved method to test an empirically given
volume process on compatibility with the Boolean
model, in analogy to a test on complete spatial
randomness of point patterns. If it were considered as a
pattern recognition tool for tumour diagnosis, it might
be asked whether the distance between the studied case
and the Boolean model (i.e., the computed average
p-value) is a suitable criterium for distinguishing
whether a case is malignant or not. Table 1 shows,
that the averagep-value per case is generally smaller
for mastopathic cases, but there are also cases of
mammary cancer, which have an averagep-value
indistinguishable fromp-values of malignant cases.
Thus, the larger its averagep-value is, the more is it
probable that the case is mammary cancer. On the other
hand, we have no diagnostic conclusion if the average
p-value is small. Therefore the averagep-value per
case cannot be used alone for distinguishing whether
a case is malignant or not.
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