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ABSTRACT

The isotropic Cavalieri design is based on a isotropically oriented set of parallel systematic sections a constant
distance apart. Its advantage over the ordinary Cavalieri design is twofold - first, besides volume it allows
the unbiased estimation of surface area, and second, the error variance predictor for the volume estimator is
much simpler, involving only the surface area of the object, and the distance between sections. In an earlier
paper, the two hemispheres of a rat brain were arranged perpendicular to each other before sectioning, aiming
at reducing the error variance with respect to other arrangements (such as the aligned one) by exploiting
an intuitively plausible antithetic effect. Because the total surface area of the objects is unchanged under
any arrangements, however, the error variance predictor for the volume estimator does not depend on object
shape, which looks intriguing. Using reconstructions of the mentioned hemispheres, we dilucidate the aparent
paradox by means of automatic Monte Carlo replications of the relevant volume estimates under the antithetic
and the aligned arrangements.

Keywords: brain, image analysis, isotropic Cavalieri, stereology, variance prediction, volume.

INTRODUCTION

Consider a fixed, compact set Y ⊂ R3, (e.g. the
rat brain reconstruction studied here), not necessarily
connected, of unknown volume V , with piecewise
smooth boundary ∂Y of area S. To estimate V , the
isotropic Cavalieri design (ICav) is based on parallel,
systematic sectioning planes a constant distance T
apart, along a normal sampling axis whose direction
u ∈ S2

+ is isotropic random on the unit hemisphere
(Cruz-Orive et al., 2010). Thus, the only difference
between the ICav and the ordinary Cavalieri design
is that, in the former, the direction of the sampling
axis is isotropic. The ICav is not necessary to estimate
V because the Cavalieri design is unbiased for any
sampling direction. The ICav was used in the latter
paper, however, because it allows the simultaneous
unbiased estimation of S.

Compared with the error variance predictors for
the volume estimator under the ordinary Cavalieri
design (Gundersen and Jensen, 1987; Kiêu et al.,
1999; Garcı́a-Fiñana and Cruz-Orive, 2004; Cruz-
Orive, 2006), the predictor for the ICav is simpler:
it depends on S and T only, see Eq. 10 below. In
Cruz-Orive et al. (2010) the subset Y was the union
of two separate rat brain hemispheres which, for
convenience, were embedded in an agar ball. In order
to obtain non invasive Cavalieri transects, the ball
was submitted – after random rotation – to magnetic
resonance scanning. With the idea of reducing the error
variance, the two hemispheres were arranged relatively

close and perpendicular to each other inside the agar
ball. This was considered plausible by virtue of the
result given in Section A model for the antithetic effect
below. But then an apparent paradox arises because
the variance predictor depends on S and T only, and
not on the shape, nor on the spatial arrangement of the
separate parts constituting the set Y . This point was
not discussed in the latter paper, and our purpose is to
explore it here.

It may be conjectured that, for each T , the
true variance of the ICav volume estimator will
vary less among isotropic directions when the brain
hemispheres are mutually perpendicular, than when
they are aligned. The mean variance over isotropic
directions, however, should be nearly the same for any
arrangement. Our Monte Carlo results confirm these
conjectures for the material studied.

THE ICAV DESIGN: THEORY AND
PRELIMINARY CONCLUSIONS

Fix an orthogonal reference frame Ox1x2x3. An
axis L1(0,u) of direction u is obtained by joining the
origin O with a point u ∈ S2

+ on the unit hemisphere.
The direction u is parametrized by its spherical polar
coordinates (φ ,θ), where φ ∈ [0,2π), θ ∈ [0,π/2]
represent the longitude and the colatitude angles
respectively, see Fig. 1a.
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Fig. 1. (a) Axial direction u through a point
of spherical polar coordinates (φ ,θ) on the unit
hemisphere. (b) An isotropic Cavalieri series of planes
normal to an isotropic axis u, hitting an object.

A plane normal to the axis L1(0,u) at a distance
p ∈ R from O is denoted by L2(p,u). An isotropic
Cavalieri series of planes a constant distance T > 0
apart, see Fig. 1b, may be generated in the following
two steps.

1. Generate an isotropic sampling axis of direction
u = (φ ,θ) as follows:

φ = 2πU1 , θ = cos−1(U2) , (1)

where U1,U2 are two independent uniform random
(UR) numbers in the interval [0,1). The pertinent
probability elements are,

P(du) =
du
2π

, u ∈ S2
+ , (2)

or,

P(dφ ,dθ) =
sinθ dφ dθ

2π
. (3)

2. For each pair (φ ,θ), the UR offset z in the interval
[0,T ) for the Cavalieri series may be generated
by taking a third independent UR number U3 and
setting:

z =U3T . (4)

Thus,

P(dz) =
dz
T
, z ∈ [0,T ) . (5)

The isotropic Cavalieri series of planes may now be
represented as follows,

Λz,u = {L2(z+ kT,u), k ∈ Z} , (6)

with the joint probability element,

P(du,dz) = P(du) ·P(dz) . (7)

The area of a planar section Y ∩L2(p,u) is denoted by
A(p,u). If Y ∩ L2(p,u) = /0, then we set A(p,u) = 0.
Suppose that the set Y is intersected by a isotropic
Cavalieri series. Then the ICav estimator

V̂ ≡ V̂ (z,u) = T ∑
k∈Z

A(z+ kT,u) , (8)

is an unbiased estimator (UE) of V , that is,

E(V̂ ) = Eu{Ez(V̂ | u)}= Eu(V ) =V . (9)

The subscripts u,z indicate expectations with respect to
P(du) and P(dz), respectively. Recall that the identity
Ez(V̂ | u) = V expresses the unbiasedness of the
ordinary Cavalieri estimator for any cutting direction
u ∈ S2

+.

Remarks on notation. In the sequel, true variances
will be denoted by Var(·), whereas their predictors, or
estimators, will be denoted by var(·). For a positive
random variable the square coefficient of variation is
CV2(·) = Var(·)/{E(·)}2. If the random variable is an
estimator, then the equivalent notation CE2(·), called
the square coefficient of error, is used.

An approximation of the variance of the ICav
volume estimator – based on G. Matheron‘s transitive
theory – is,

varICav{V̂ (z,u)}= π

360
ST 4 , (10)

which represents the ‘extension term’ of the true
variance, namely a sort of mean trend which excludes
the typical oscillations of the true variance caused by
the so called ‘Zitterbewegung’ effect. For a complete
derivation of the preceding result, and early references,
see Cruz-Orive (2013).

On the other hand, the true variance of the ICav
estimator V̂ ≡ V̂ (z,u) may be expressed as follows,

Var(V̂ ) = Varu{Ez(V̂ |u)}+Eu{Varz(V̂ |u)}
= Varu(V )+Eu{Varz(V̂ |u)}
= Eu{Varz(V̂ |u)} , (11)
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namely the mean over isotropic directions of the
variance of V̂ conditional on a given direction; the
latter is the variance of the ordinary Cavalieri estimator
of V for a given direction.

In this study we have addressed and answered the
following questions for the material studied.

1. Is the right hand side (rhs) of Eq. 10 a reliable
predictor of the rhs of Eq. 11? We checked this
empirically by automatic Monte Carlo resampling
of V̂ (details in the corresponding section below)
on the two different object arrangements illustrated
in Fig. 2. The results displayed in Fig. 4a,b, (red
lines), show that Eq. 10 is a reasonable variance
predictor, at least when the mean number of
Cavalieri transects is no less than about 1.5. This is
consistent with the fact that the plots (black curves)
of Var(V̂ ) versus the period T vary relatively very
little among the two object arrangements.

2. If Eq. 10 is a reasonable variance predictor no
matter the arrangement of the parts constituting
the object, then what do we gain by choosing
an arrangement like the one in Fig. 2a, say,
which should in principle produce an antithetic
effect? The answer is twofold. First, the horizontal
axes in Fig. 4a,b reveal that, for a given
period T , the mean number of sections for
object Y2 is about 25% greater than for object
Y1. And second, Fig. 5 shows that, for a
given period T , it is Varu{Varz(V̂ |u)}, and not
Eu{Varz(V̂ |u)} = Var(V̂ ), that is reduced by
choosing the arrangement in Fig. 2a. In Fig. 4a,b
it can already be appreciated that the spread of
Varz(V̂ |u) for varying u is greater for the object
arrangement in Fig. 2b than for the one in Fig. 2a.
Thus, the arrangement of the objects studied here
affects the mean number of Cavalieri sections on
the one hand, and the stability of the conditional
variance Varz(V̂ |u) among isotropic directions on
the other, but its mean Var(V̂ ) is almost unaffected.

3. Suppose that, instead of Eq. 10, we use for
each sectioning direction u the classical predictor
given by Eq. 12 below for the ordinary Cavalieri
estimator. What is the performance of the latter
predictor? Fig. 4c,d suggest that the classical
predictor is generally poorer than the ICav
predictor, at least in the mean over isotropic
directions (its dispersion is not shown). The
dependence of this predictor on the smoothness
constant q ∈ [0.1] is also an important snag, not
only because it generally depends on the cutting
direction, but also because it cannot be reliably
estimated. Among the three values considered,

the better performance corresponded to q = 0.42,
when α(0.42)≈ 1/36, see below.

Fig. 2. Computer reconstructions of the two test
objects studied. (a) Object Y1 with the two rat brain
hemispheres placed in antithetic position. (b) Object Y2
with longitudinally arranged hemispheres. See Section
Test objects.

The classical variance predictor for the ordinary
Cavalieri volume estimator conditional on a given
cutting direction u, reads as follows,

varCav(V̂ |u) = α(q) · (3C0−4C1 +C2)T 2,

Ci = ∑
k∈Z

fk · fk+i, i = 0,1,2 ,

fk = A(z+ kT,u | u) , (12)

which is also due to G. Matheron – pertinent
references are given in the Introduction. The numerical
coefficient α(q) depends on the smoothness constant
q ∈ [0,1] of the area function A(p,u), namely the
(possibly fractional) order of the first non-continuous
derivative of A(p,u) for a given u. The value of α(q)
ranges between α(0) = 1/12 and α(1) = 1/240. The
available estimator of q is not particularly robust,
see Garcı́a-Fiñana and Cruz-Orive (2004). For human
brain, empirical studies have shown that α(0.42) ≈
1/36 yields reasonable variance predictions, see the
latter paper and also Cruz-Orive (2006) and Cruz-
Orive et al. (2014).

The rest of the paper is devoted to the details and
results that support the foregoing conclusions.

MATERIAL

TEST OBJECTS

The basic material consisted of computer
reconstructions of the two hemispheres of a rat brain
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obtained with the aid of the 3D modelling software
Blender, (http://www.blender.org/). The input was an
exhaustive series of MRI, 1 mm thick virtual slices
obtained at 3 T resolution. Each subset boundary
was thereby approximated by a closed, smoothened
triangulated mesh. For a description of the image
processing steps followed see González-Villa et al.
(2017).

The study was carried out on two test objects Y1
and Y2 shown in Fig. 2a,b, respectively. The object Y1
was the union of both hemispheres arranged with their
long axes approximately perpendicular to each other,
and with their nearly flat faces facing each other. The
straight line segment joining the hemisphere centroids
was approximately normal to either longitudinal axis.
On the other hand, for the object Y2 the hemispheres
were arranged with their long axes approximately
collinear, and with their nearly flat faces approximately
coplanar.

A MODEL FOR THE ANTITHETIC
EFFECT

The true variance of the ICav estimator of volume
depends on the variability of the number of Cavalieri
transects (or, equivalently, on the variability of the
caliper length among directions) and on the variability
of the transect areas for each direction. We propose
a simple model for the former contribution - section
areas are not involved in the model. The goal is to see
whether or not arranging the brain hemispheres as in
the object Y1 above implies some statistical advantage.

As a simple model for the longest axes of the two
brain hemispheres constituting the object Y1, consider
an X-shaped object Xα ∈ R3 consisting of two straight
line segments or ‘rods’ of length 2, intersecting at
their midpoint O, making an angle 2α ∈ [0,π/2], and
lying on the Ox2x3 plane of an orthogonal reference
frame Ox1x2x3, see Fig. 1a and Fig. 3. The problem
is to find a value of α such that Varu{2Hα(u)} is
minimal, where 2Hα(u) denotes the length of the
orthogonal linear projection of Xα onto a isotropic
axis of direction u ∈ S2

+, that is the caliper length of
the object along u. The function Hα(u), is in fact the
support function of Xα with origin O, namely the dot
product of the vector (0,sinα,cosα) times the vector
u = (sinθ cosφ ,sinθ sinφ ,cosθ). Thus,

Hα(u) = sinθ sinφ sinα + cosθ cosα . (13)

Now, using the probability element given by Eq. 3, the
mean half caliper length is,

Eu{Hα(u)}=
1
2

√
1+ sin(2α) , (14)

which depends on the shape factor α . Its minimum
value is 1/2 for α = 0, when the object degenerates into
a single rod, and its maximum is

√
2/2 for α = π/4,

when the object is a ‘Greek cross’ ‘+’.

Fig. 3. X-shaped model object (heavy diagonal lines).

On the other hand, the variance of the half caliper
length is,

Varu{Hα(u)}=
1

12
− 3π−8

12π
sin(2α) , (15)

whose minimum value is equal to (4−π)/(6π) when
α = π/4, namely when the object is a Greek cross.
Thus, for a given period T the brain arrangement Y1
is likely to exhibit a smaller variaton in the number
of Cavalieri sections among orientations, than other
patterns.

For object Y2 a corresponding model consists of
two aligned rods, namely of a single rod of length
4 with origin at its midpoint. Here H(u) = 2cos(θ),
so that Eu{H(u)} = 1, which is about 41% greater
than the value

√
2/2 corresponding to the Greek cross

model for Y1. On the other hand, Varu{H(u)} = 1/3,
which is about 6.32 times the Greek cross value of
(4−π)/(6π)≈ 0.0455.

MONTE CARLO EXPERIMENT

PROBE GENERATION
An orthogonal reference frame Ox1x2x3 was

adopted for either test object with the origin O at
the midpoint of the straight line segment joining the
two hemisphere centroids. The polar axis Ox3 was
parallel to the long axis of a hemisphere. For a proper
sampling, a reference ball D was adopted. This ball
was centred at O, and it was the smallest ball enclosing
the union of both test objects. The actual diameter of
D was 2R = 6.13 cm for either arrangement Y1 or Y2.
(The longest axis of each rat brain hemisphere did not
exceed 2.5 cm in length.)

The protocol described next was applied to each
test object.
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Axial isotropic directions. The first step was to
generate a total of M = N1N2 axial directions

{ui j, i = 0,1, ...,N1−1, j = 0,1, ...,N2−1} (16)

following a systematic protocol, namely,

φi = (U1 + i) · (2π/N1) , (17)

θ j = cos−1[(U2 + j)/N2] , (18)

where (U1,U2) are as defined for Eq. 1 and Eq. 2,
respectively. Here we chose N1 = 50 and N2 = 25,
hence M = 1250 directions. For ease of notation,
henceforth we rearrange the matrix {ui j} row-wise into
a vector of length M, namely,

(ui, i = 1,2, ...,M) . (19)

Cavalieri sections for each direction. Within the
interval [−R,R] corresponding to the diameter of the
reference ball, a total of N basic abscissas were
generated a small gap ∆ = 2R/N apart, namely,

{pr =−R+(U + r)∆, r = 0,1, ...,N−1} , (20)

where U is a third, independent UR number in the
interval [0,1). Then, a ‘databank’ of N section areas,
namely,

{A(pr,ui), r = 0,1, ...,N−1} , (21)

were computed automatically for each direction ui
with the aid of the bisect method from the bpy
library of the Blender software. Thus, we computed
a total of M databanks. For each direction ui, the
corresponding databank facilitated the generation of
Cavalieri samples for N different periods, namely for

{Tk = k∆, k = 1, ...,N} . (22)

In this study we adopted N = 2000, so that the
subsequent graphs of the empirical curves would look
continuous to the eye. With period T ≡ Tk, a total of
k Cavalieri samples are available for each direction.
The abscissas corresponding to the sth sample, s =
1,2, ...,k, were

{ps j =−R+ s∆+ jT, j = 1,2, ...,J} , (23)

where J = b2R/(T +1)c. The corresponding Cavalieri
section areas,

{A(ps j,ui), j = 1,2, ...,J} , (24)

were extracted directly from the ith databank. It should
be borne in mind that Cavalieri samples with all
section areas equal to zero should be retained for the

subsequent calculations. In other words, for large T
it is possible that the ICav volume estimator is equal
to zero, and this affects the mean and variance of the
estimator. The mean of the number n(u) of Cavalieri
sections hitting an object along a direction u is

E{n(u)}= H(u)/T , (25)

where H(u) is as defined above, namely the caliper
length of the object along the direction u. Note that
E{n(u)} may be less than 1.

EMPIRICAL MEANS AND VARIANCES
For a given period T ≡ Tk, k ∈ {1,2, ...,N}, the

following computations were carried out.

For a given direction ui, the empirical version of
V̂ (z,u) from the sth Cavalieri sample is,

V̂si = T
J

∑
j=1

A(ps j,ui) , s = 1,2, ...,k , (26)

and its mean over the k samples,

Ee(V̂i) =
1
k

k

∑
s=1

V̂si , i = 1,2, ...,M , (27)

is the empirical version of Ez(V̂ |u). Henceforth the
subscript ‘e’ refers to ‘empirical’, namely to a Monte
Carlo estimator with (usually) negligible error. The
mean over directions,

V̂ = Ee{Ee(V̂i)}=
1
M

M

∑
i=1

Ee(V̂i) (28)

corresponds to Eu{Ez(V̂ |u)}= Eu(V ) =V . Further,

Vare(V̂i) =
1
k

k

∑
s=1

[V̂si−Ee(V̂i)]
2 , (29)

is the emprical version of Varz(V̂ |u). Its mean over
directions,

Vare(V̂ ) = Ee{Vare(V̂i)}=
1
M

M

∑
i=1

Vare(V̂i) , (30)

is the empirical version of Eu{Varz(V̂ |u)} = Var(V̂ ).
Finally,

Vare{Vare(V̂i)}=
1
M

M

∑
i=1

[Vare(V̂i)−Vare(V̂ )]2 , (31)

is the empirical version of Varu{Varz(V̂ |u)}, whose
behaviour we wanted to compare among both test
objects.
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T, cm, (above axis) and average number of sections among directions

1 2 3 4 5 60.2 0.3 0.6

16.45 10.96 5.48 3.29 1.64 1.09 0.55

1 2 3 4 5 60.2 0.3 0.6

16.45 10.96 5.48 3.29 1.64 1.09 0.55

1 2 3 4 5 60.2 0.3 0.6

13.36 8.90 4.45 2.67 1.33 0.89 0.44

1 2 3 4 5 60.2 0.3 0.6

13.36 8.90 4.45 2.67 1.33 0.89 0.44

a b

c d

Fig. 4. (a, b) Empirical CE2
e(V̂ ) and predicted ce2

ICav(V̂ ) square coefficients of error of the ICav volume estimator
for each of the two objects studied, as functions of the sampling period T . The grey bands enclose the Monte
Carlo realizations of the conditional square coefficient of error CE2

z (V̂ |u) for 1250 directions u, as a function of
T . (c, d) Behaviour of the classical Cavalieri predictors (broken lines) for each object, (Eq. 33 divided by V 2), as
functions of T . In the horizontal axes, for each T the mean number of sections is the mean of the rhs of Eq. 25
over orientations. In each panel, the two dotted, horizontal lines, correspond to coefficients of error of 0.01 and
0.05 respectively.
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Fig. 5. Behaviour of the square coefficient of variation CV2
u{Varz(V̂ |u)} of the conditional Cavalieri variance for

a given orientation, among isotropic orientations. Here the antithetic arrangement, (object Y1, in red), shows an
advantage over Y2, (in blue).
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VARIANCE PREDICTORS
For each period T ≡ Tk, k = 1,2, ...,N, the

ICav variance predictor was computed directly from
Eq. 10 because the surface area of the right and
left hemisphere reconstructions was known, namely
7.682 cm2 and 8.340 cm2, respectively. Thus S =
16.022 cm2, see González-Villa et al. (2017), p. 127.

For each orientation u ≡ ui, and each Cavalieri
sample, the classical predictor varCav(V̂si) was
computed with Eq. 12. Let nsi denote the number of
Cavalieri sections hitting the object. Then, for each
α = 1/12,1/36,1/240 we computed,

varCav(V̂si) = αT 2(3C0−4C1 +C2) , nsi ≥ 3,

varCav(V̂si) = αT 2(C0−C1) , nsi = 1,2,

Ch =
nsi−h

∑
j=1

f j · f j+h, h = 0,1,2,

f j = A(ps j,ui). (32)

Finally, for each T the overall mean,

varCav(V̂ ) =
1

MN

M

∑
i=1

k

∑
s=1

varCav(V̂si) , (33)

is the classical predictor of Var(V̂ ), alternative to
Eq. 10.

RESULTS

Prior to plotting them in Fig. 4, empirical
and predicted variances were divided by V 2 to
obtain the corresponding square coefficients of error.
The volumes of the right and left hemisphere
reconstructions, and hence of their union, were known,
namely 1.419, 1.437 and V = 2.856 cm3, respectively,
see González-Villa et al. (2017), p. 127.

In Fig. 4a,b, the empirical square coefficient of
error CE2

e(V̂ ), computed via Eq. 30 for each period
T , is plotted as a black continuous curve, whereas the
corresponding ICav predictor ce2

ICav(V̂ ), computed via
Eq. 10, is plotted as a red line.

In the same two panels, for each value of T the grey
band contains all the 1250 realizations of the empirical
square coefficient of error CE2

e(V̂i), conditional on
each of the 1250 directions considered, and computed
via Eq. 29.

In Fig. 4c,d, the classical ce2
Cav(V̂ ), computed via

Eq. 33, is plotted against the period T by means
of broken lines, with the meaning of each colour
explained in the inset of Fig. 4d.

Finally, for each of the two objects the curves in
Fig. 5 represent the rhs of Eq. 31 divided by the square
of the rhs of Eq. 30 to obtain the square coefficient of
variation of Vare(V̂i) among directions.

DISCUSSION AND CONCLUSIONS

The preceding results confirm the preliminary
conclusions given in the second section for the
concrete geometrical objects studied. For the
present purpose, the closeness of the smoothened
triangulations used in the reconstructions, to the actual
biological objects, was of no concern. It seems unlikely
that the use of other objects and arrangements would
affect the main conclusions.

Apart from its good performance, the error
variance predictor given by Eq. 10 is much easier to
compute than the classical Cavalieri predictor given by
Eq. 12. In practice, a UE of S is available from the data,
namely,

Ŝ≡ Ŝ(z,u) =
4
π

T ∑
k∈Z

B(z+ kT,u) , (34)

where B(·) denotes transect boundary length, see Cruz-
Orive et al. (2010) for further details.

With reference to Fig. 4a,b, the fact that the
true error variance Var(V̂ ), (black curves), is almost
insensitive to object shape as a function of T sounds
paradoxical at the first sight, but it should be borne
in mind that this variance is an average over isotropic
directions, which is a strong condition. This is
consistent with the fact that the variance predictor
given by Eq. 10, (red lines), is fairly accurate, and it
only depends on S and T , not on object shape.

The reduction in the mean number of Cavalieri
sections, and in the variability of Varz(V̂ |u), however,
should justify the arrangement of the subsets
constituting the target object into a favourable
position. The simple models studied confirm that
the arrangement of two elongated subsets into a
rectangular cross induces a reduction in the mean and
the variance of the number of Cavalieri sections for a
given period.

We have not carried out a similar study for the
ICav estimator Ŝ(z,u), first to avoid distraction from
our main goal, and second because no error variance
predictor analogous to varICav{V̂ (z,u)} exists which
is both general and easy to compute. The conclusions
relative to Varz(Ŝ|u) are unlikely to differ much,
however, because, for a given object, transect area and
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perimeter length tend to be fairly strongly correlated.
This statement is based on the fact that the ratio B/

√
A

(involved in the predictor of the error variance of the
point counting estimator of planar area) tends to be
rather stable for a given type of transects, (Gundersen
and Jensen, 1987).
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