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ABSTRACT

Microstructure of a material stores the genesis of the material and shows various properties of the material. To
efficiently analyse the microstructure of a material, the segmentation of different phases or constituents is an
important step. However, in general, due to the microstructure’s complexity, most of segmentation is manually
done by human experts. It is challenging to automatically segment the material phases and the microstructure.
In this work, we propose a method which combines the the dilation operator, GLCM (gray-level co-occurrence
matrix), Hough transform and DBSCAN (density-based spatial clustering of applications with noise) for
phases segmentation in the examples of certain material of eutectic HfB2-B4C ceramics. In the segmented
regions, the further analysis for the microstructural elements is done with DBSCAN. The experimental results
show that the proposed method achieves 95.75% segmentation accuracy for segmenting phases and 86.64%
correct classification rate for the microstructure in the segmented phases. These experimental results show that
our method is effective for the difficult task of the both segmentation and classification of the microstructural
characteristics.

Keywords: boundary detection, clustering algorithm, image segmentation, two-phase microstructure, virtual
boundary.

INTRODUCTION

In the research field of ceramic materials, the
imaging and analysis of ceramic microstructure are
important base for studies of the structure-property
relationship. By understanding the characteristics of
different microstructures, it is possible to establish
the quantitative correlation between the microstructure
behaviours and desired properties. Such correlations
could be beneficial for the development of ceramic
materials (Chermant, 1986; Vales et al., 1999).
However, traditional analysis of the ceramic
microstructures is mainly performed manually with
low efficiency and only for primitive characteristics.
Therefore, applying the computer image processing
technology to analyse the ceramic microstructure more
accurately and in more elaborate way has become a
research focus in recent years (Yang et al., 2009a;b;
Todd et al., 2016).

The eutectic HfB2-B4C ceramics (made from
electric charge melting technique) consist of two
phases inter-twinned with each other, hence to form
a special two-phase microstructure at the mesoscopic
scale. The eutectic relationship between HfB2 and

B4C phases is ideally fixed. However, the phase
ratio may change from one region to another within
the two-phase microstructure. In another word, the
eutective relation could vary at the mesoscopic level,
hence it is necessary to identify and recognize
such variations. Two images of such two-phase
microstructure from HfB2-B4C ceramics are shown
in Fig. 1. In these microstructures, the regions with
white elements are clearly separated by the black
straight gaps which are marked in red ellipses,
hence defining different microstructural regions. These
regions are relatively independent, especially the
white elements distributed regularly with distinctive
behaviour in each region. The relationship between the
microstructures and properties of eutectic HfB2-B4C
ceramics can be obtained by analysing quantitatively
the two-phase relationship among these regions, and
the distribution characteristics and transformation
patterns of microstructural elements in each region. To
analyse the two-phase microstructure with computer
technology, image segmentation is the primarily
step. Effective and accurate segmentation results can
help further measure the data of the microstructural
elements and components.
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Fig. 1. (a) and (b) are two images about HfB2-B4C
ceramics. In the two images, the white microstructural
elements are divided by the black straight gaps which
are marked in red ellipses, and form the discrete
regions. The microstructural elements in the yellow
circle are different from the other microstructural
elements in the same region, and form the independent
subregion.

There have been several methods related to the
segmentation of the ceramic microstructure. Cai et
al. (2013) proposed a segmentation method based
on mean shift. The method can give the satisfactory
results on alumina ceramic images and ceramic tile
images. Ananyev et al. (2014) and Lopez et al.
(2015) both applied the morphological filter in the
segmentation and quantification of microstructures in
the ceramic images. Haha et al. (2007) segmented
the SEM (scanning electron microscopy) images of
motar with a threshold segmentation method, extracted
the microstructures under different grayscale range.
Zhao et al. (2016) conducted the segmentation of
the ceramic BSE (backscattered electron) images by
spectral clustering algorithm. The experiment results
showed that their algorithm is appropriate for some
ceramic images which have complex texture. Chen
et al. (2014) improved the traditional watershed
method to solve the over-segmentation problem in the
segmentation of the images.

However, all the images processed in the above
mentioned researches have real boundaries or high
contrast among different regions. The real boundaries
refer to the real dividing curves or areas with
strong contrast, such as the boundaries between white
microstructural elements and black region in Fig. 1.
When dealing with ceramic images which only have
straight gaps among different regions as illustrated in
Fig. 1, it’s hard to directly detect the boundaries among
regions and accurately segment the regions with the
above mentioned methods. The straight gap is called
“virtual boundary” (VB) here. The VB is similar to the
reification of illusory contour in the gestalt psychology
(Lehar et al., 2003). The VB can be easily perceived
by human visual system, but it is difficultly detected
for computers.

There were several research works to segment
the materials images without obvious boundaries.

Vanderesse et al. (2008) presented an algorithm of
3D titanium alloy image segmentation based on
the orientation of the lamellae. Jeulin et al. (2008)
introduced a local orientation estimator to locate
fast changes of textures orientation, and to make a
segmentation based on different orientations. The Both
works made use of the microstructural orientation
feature, and obtained good segmentation results on
2D and 3D materials images. The premise of the two
works is that the microstructures in similar orientations
belong to the same region, and the microstructures
in different orientations belong to different regions.
However, this premise is not suitable for the images of
HfB2-B4C ceramics. As shown in Fig. 1 (a), although
the microstructures in region 1 and the microstructures
in region 2 have similar orientations, they are still two
regions because they are separated by a straight gap,
i.e., a VB.

In general, the detection of the VBs is the key
to segment discrete regions in the images of HfB2-
B4C ceramics. However, most of the existing boundary
detection methods (Osher et al., 2006; Li et al., 2011;
Muthukrishnan et al., 2011) are designed for the real
boundaries. In addition, there are also different types of
microstructural elements in each region, and form the
independent subregions as marked in yellow ellipses
in Fig. 1. To perform the quantitative analysis of the
ceramic microstructure, the different microstructural
elements in each region also need to be identified
and segmented. Therefore, in this paper, we focus
on the accurate detection for the VBs in the images
of HfB2-B4C ceramics and the classification for the
microstructural elements in each discrete region.

In order to detect the VBs, we propose a method
based on the dilation operator and the GLCM
(gray-level co-occurrence matrix) to eliminate the
gaps among microstructural elements and retain gaps
among discrete regions. Then, the Hough transform
method is used to detect straight lines based on the
retained gaps. After these detected straight lines are
further processed, the final VBs are obtained, and
the discrete regions are segmented with the VBs.
Finally, for each region, the microstructural elements
are classified through the DBSCAN (density-based
spatial clustering of applications with noise) method.
The experimental results show that our approach has
high segmentation precision, and is able to classify
different microstructural elements effectively.

This paper is structured as follows: our approach
to segment the ceramic images and to classify
the microstructural elements is described in Section
“The Proposed Approach”. In Section “Experimental
Results and Discussions”, two related experiments are
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reported and discussed. Finally, a conclusion is drawn
in Section “Conclusion”.

THE PROPOSED APPROACH

The proposed method consists of two parts: one is
the segmentation of the discrete regions; the other one
is the classification for the microstructural elements
in each discrete region. Since the discrete regions are
mainly separated through the VBs, the VBs need to
be firstly detected as the main task in the first part.
In the second part, microstructural elements in each
segmented region are classified into different classes
to analyse the transformation of the microstructural
elements.

THE SEGMENTATION OF THE
DISCRETE REGIONS

The key in the segmentation of the discrete regions
is to detect the VBs. In order to obtain the VBs,
four steps are utilized: pre-processing, filling the
gaps among microstructural elements, detecting the
candidate boundary lines, filtering and processing the
candidate boundary lines.

Pre-processing for the ceramic image

With the SEM(scanning electron microscopy), we
can obtain high-resolution images for microstructure
objects. Most of the ceramic microstructure images
have very large sizes, such as 4096× 3072 pixels.
Although the high resolution image can provide more
details for the observed objects, the large size reduces
the efficiency of the following image processing and
analysis steps. Since the VBs are obvious, they can
quickly detected after reducing the large images.
Therefore, to speed up the next processing steps, the
ceramic microstructure images are scaled firstly. Here,
the width of the images are scaled to 512 pixels and the
height of the images are also scaled to keep the aspect
ratio. Furthermore, resizing the original images can
facilitate the selection of parameters which are used
in the following steps.

As shown in Fig. 2(a), the microstructural elements
are gray, and the background is black. To enhance
the contrast between the microstructural elements and
background, the images need to be binarized with the
Otsu method (Otsu, 1979), as illustrated in Fig. 2(b).
After the binarization, all the microstructural elements
turn to pure white, and the background turns to pure
black. Thus, the extraction of the microstructural
elements becomes much easier, and this also increases
the efficiency of the following steps.

Fig. 2. (a) The original image; (b) the result of the
binarization; (c) the detected lines with the Hough
transform method.

Filling the gaps among microstructural
elements

In fact, the VBs are the curves of illusion,
which can be observed by humans. However, they
are difficultly perceived by the computer. The virtual
boundary’s areas are the gaps among the discrete
regions, as marked by red ellipses in Fig. 1. In general,
these gaps are some line segments which have a certain
width. Thus, the detection of the VBs can be converted
to detecting the straight lines. However, the gaps
among microstructural elements hinder the detection
of the VBs, e.g., creating many wrong lines with the
Hough transform method (Hough, 1962), as shown in
Fig. 2(c) which is the result of lines detection from the
Fig. 2(b). Therefore, the primary task is filling the gaps
among microstructural elements and retaining the gaps
among discrete regions. To achieve this purpose, two
methods are adopted here.

First, the dilation operation (Serra et al., 2012) is
applied. Since most of the gaps among microstructural
elements are more narrower than the ones among
discrete regions, the thin gaps are filled and the VBs
are left with the dilation operation. If the values of
a pixel (x0,y0) and its neighbour pixels (xi,y j) are
defined as I(x0,y0) and I(xi,y j), respectively, then the
relation of the dilated value I′(x0,y0) with a square of
size l1 as structuring element and I(xi,y j) is shown as
following:

I′(x0,y0) = max
{

I(xi,y j) | x0−
l1
2
6 xi 6 x0 +

l1
2
,

y0−
l1
2
6 y j 6 y0 +

l1
2

}
.

(1)

Through the dilation operation, the value of
pixel (x0,y0) is replaced by the maximum in its
neighbourhood. The larger the l1 is, the more the
reduction of the gaps is. The parameter l1 is set to 5
here, and the result of the dilation operation is shown
in Fig. 3(a). The dilation operation eliminates the thin
gaps, and the wide gaps are remained as marked by red
ellipses in Fig. 3(a). Since the remained gaps contain
the area of VBs, the detection of the VBs is conducted
based on the remained gaps.
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Fig. 3. (a) is the dilation result of Fig. 2(b), and the
remained gaps are marked in red ellipses. (b) is the
inverse binarization of (a) to highlight the remained
gaps.

The second method is based on the gray-level co-
occurrence matrix (GLCM; Haralick et al., 1973). If
the microstructural elements are regarded as textures,
then for the gaps among discrete regions, most of the
local area is black, i.e., the textures change little; for
the gaps among microstructural elements, the local
area is chequered with black and white, i.e., the
textures change a lot. With the theory of GLCM, the
variance of contrasts in different directions are able to
reflect the distributions of the textures. In other words,
the larger the variance in the GLCM is, the greater
the degree of textures change (Xian, 2010). With the
GLCM, all variance of contrast in local area can be
calculated. Then, the areas with small variance are
considered as the gaps which need to be preserved.
To be specific, an image is firstly divided into small
squares with a side length of l2. For each l2 ∗ l2
square f , the GLCM Gε α is calculated. ε and α are
the distance and orientation between the pixel pairs,
respectively. If g(m,n) is defined as the value of the m-
th row and the n-th column in a matrix Gε α , then g(m,n)
is calculated by the following equation:

g(m,n) = #
{
(x1,y1),(x2,y2) ∈ l2 ∗ l2 | f(x1,y1) = m,

f(x2,y2) = n,
√
(x2− x1)2 +(y2− y1)2 = ε,

arctan
(

y2− y1

x2− x1

)
= α

}
,

(2)
where #{∗} is the total number of elements in set {∗};
f(x,y) is the grayscale value of the pixel (x,y) in the
square f ; (x1,y1) is the reference pixel; (x2,y2) is the
pixel which at a distance of ε from the reference pixel
(x1,y1) in the direction α . In our method, the ε is set
to 2, and choose four direction (0◦,45◦,90◦,135◦) to
calculate four GLCMs {G2 0◦ , G2 45◦ , G2 90◦ , G2 135◦}
for a square. According to Eq. 2, matrix Gε α is Ng∗Ng
where Ng is the gray levels and it is set to 8 here. Matrix
Gε α records the times of various pixel pairs appears.
To reflect the textures characteristics, the probability of

various pixel pairs appears is needed. Hence, the Gε α

needs to be further calculated as following:

p(m,n) =
g(m,n)

∑
Ng
i, j=1 g(i, j)

, (3)

where p(m,n) is the value of the m-th row and the
n-th column in a matrix Pε α , which records the
probability of various pixel pairs appears; g(m,n) and
g(i, j) are elements in the matrix Gε α . Then, the
contrast CONε α can be computed through Pε α :

CONε α =
Ng

∑
m,n=1

p(m,n)(m−n)2, (4)

where p(m,n) is the element in the matrix Pε α .

As mentioned above, four GLCMs are calculated
in four direction for a square. Therefore, four
matrixs (P2 0◦ , P2 45◦ , P2 90◦ , P2 135◦) and four contrasts
(CON2 0◦ , CON2 45◦ , CON2 90◦ , CON2 135◦) can be
obtained for a square. The four contrasts describe the
degree of color difference in four directions. If the
four contrasts are very different, the textures in the
square are messy. To make use of this characteristic in
the four contrasts, the variance of the four contrasts is
calculated, denoted as VAR. The larger the VAR is, the
messier the textures are. The Fig. 4(a) visualizes the
variance of each square, the variance of each square is
scaled to [0,255]. Then, the squares with the smallest
variance 0 are remained. Specifically, if the VAR of
a square is less than 1, the square is remained in
white; otherwise, the square is discarded in black. This
process is equivalent to the inverse binarization of
Fig. 4(a) with threshold 1. The remained squares are
displayed in Fig. 4(b) and the VBs are on the remained
squares.

Fig. 4. The results with the GLCM method. (a) The
visualization for the variance of each square. (b) The
inverse binarization image from (a).

Detection of candidate boundary lines

The Hough transform method (Hough, 1962) is
adopted to detect lines. The Hough transform is a
method to find out a certain class of shapes in images,
such as straight lines and circles.
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For each pixel p which belongs to the remained
gaps and the coordinate of p is (x,y), the family of
straight lines which go through this pixel p is defined
as:

r = x cosθ + y sinθ (0≤ r, 0≤ θ ≤ 2π) , (5)

where r is the distance from the origin of coordinates
to the straight line; θ is the angle between the x axis
and the perpendicular of the straight line. The family
of straight lines can be represented by a group of pairs
(r,θ), and form a curve in the r-θ plane. Therefore, the
collinear pixels are corresponding to a family of curves
which intersects at the same point in the r-θ plane. The
more curves that intersects at a same point, the more
pixels are in the same straight line which corresponds
to the intersection point. Thus, the detection of the
straight lines in a image can be achieved by checking
the intersection points of curves in r-θ plane.

The Hough transform method is conducted
respectively on the two kinds of remained gaps which
are obtained by the above mentioned two methods
(the dilation method and the GLCM method), as
illustrated in Fig. 5(a) and Fig. 5(b). If lines detection
is performed only on the remained gaps obtained by
the dilation method or the GLCM method, then the
number of lines detected on some thin gaps tends
to be small. These lines are likely to be removed
as noise due to insufficient quantity in the following
filtering step. Simply copying the detected lines and
increasing the number of them by several times can
also increase the noise several times. Therefore, the
both methods are needed. The detected lines based
on the two methods are combined to ensure that the
lines on the thin gaps are sufficient without increasing
the noise. The combined result is shown in Fig. 5(c).
It still contains some redundant boundary lines and
erroneous boundary lines. These detected straight lines
can only be regarded as candidate boundary lines and
need further to be processed.

Fig. 5. The results of the Hough transform method.
(a) The lines are detected with the Hough transform
method based on the dilation method. (b) The lines are
detected with the Hough transform method based on
the GLCM method. (c) The red lines are obtained by
combining the detected lines in (a) and (b).

Filtering and processing of the candidate
boundary lines
There are mainly two issues need to be dealt with

in the candidate boundary lines. The first issue is
filtering the redundant line segments which are in the
same boundary region and eliminating the wrong line
segments; the second issue is extending the retained
line segments to form a whole boundary of the discrete
regions.

To solve the first issue, the candidate boundary
lines are grouped by the distance and the slope firstly.
In our approach, the distance d between two line
segments is calculated as follows:

d = min

(∣∣∣∣∣∣A1xm2 +B1ym2 +C1√
A2

1 +B2
1

∣∣∣∣∣∣ ,∣∣∣∣∣∣A2xm1 +B2ym1 +C2√
A2

2 +B2
2

∣∣∣∣∣∣
)
, (6)

where (A1,B1,C1) and (A2,B2,C2) are the coefficients
of equations of two line segments, respectively;
(xm1,ym1) and (xm2,ym2) are the midpoints of the two
line segments, respectively. As shown in Fig. 6, if
the distance d between the two line segments is less
than a threshold 10 and the angle between the two
line segments is smaller than 10◦, then the two line
segments are divided into the same group. In the
process of grouping, for each line segment, the number
of microstructural elements which are gone through by
the line segment is also computed, and denoted as η .
To eliminate the influence of the different lengths of
line segments, the η is need to be divided by the length
of line segment len, and the result is denoted as γ , i.e.,
γ = η/len. If the γ of a line segment exceeds threshold
σ , the line segment is discarded and not be grouped.

Fig. 6. The distance between arbitrary two line
segments. For two line segments, there are two
distances d1 and d2. The minimum one is chosen as
distance d, such as the d1 in (a) and the d1 in (b). For
two line segments with similar orientation, (a) shows
two lines are put into the same group for their short
distance; (b) shows two lines are put into the different
groups for their long distance.
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Fig. 7. The results of boundaries processing. (a) The result of boundaries filtering: the red line segments marked
by green circles are the redundant threads. (b) The result of threads removing: the redundant threads in image
(a) are removed. (c) The result of lines extension: the line segments in (b) are extended to form the final VBs.

Then, for each group, selecting one line segment
whose γ is the minimum as the final line segment in
this group. The filtering result of candidate boundary
lines is shown in Fig. 7(a).

Furthermore, the remained line segments still
need to be extended to form the intact boundaries.
As demonstrated in Fig. 7(a), some remained line
segments intersect and generate the redundant threads
marked in green circles. These threads need to
be removed before extending the line segments.
Specifically, the line segments are measured from the
intersection to the end points. Then, the removing of
the threads can be achieved by remaining the longest
section and removing other sections, the result is
shown in Fig. 7(b). At this point, the line segments
are extended if they are not closed. The line segments
are extended from its two ends until reaching the
boundaries of whole image or intersecting the other
lines. The final VBs are shown in Fig. 7(c).

THE FURTHER ANALYSIS AND
CLASSIFICATION FOR THE
MICROSTRUCTURAL ELEMENTS

Feature extraction for microstructural
elements

Although the discrete regions can be segmented by
the VBs, there are some microstructural elements with
different characteristics in the same discrete region,
such as the microstructural elements in red ellipses in
Fig. 8(a) and (b). To analyse the transformation of the
microstructural elements in the same discrete region,
it’s necessary to distinguish microstructural elements
with different characteristics and further partition the

Fig. 8. The different microstructural elements. (a) The
microstructural elements have different widths in a
discrete region. (b) The microstructural elements have
different orientations in a discrete region.

discrete regions. In this paper, the classification of the
microstructural elements involves feature extraction
and machine learning. For the images of HfB2-B4C
the major differences between these microstructural
elements are the direction and size. Thus, two features
are extracted for each microstructural element.

The first feature is major slope (Fm). Fm

describes the orientation of the major axis of each
microstructural element. An example is shown in
Fig. 9. the minimum oriented bounding box of a
microstructural element is calculated. The long side of
the rectangle is regarded as the major axis. The slope
of the major axis is computed as the major slope Fm:

Fm =
ye− ys

xe− xs
, (7)

where (xs,ys) and (xe,ye) are coordinates of the
two ends of the major axis, as illustrated in
Fig. 9. If the difference among microstructural
elements is only in the orientation, Fm is enough to
distinguish the microstructural elements, such as the
different elements in Fig. 8(b). However, for some
microstructural elements whose orientations are the
same but have great difference in shape, the extra
features are needed.

100



Image Anal Stereol 2019;38:95-105

Fig. 9. The minimum oriented bounding box of a
microstructural element.

The second feature is width (Fw) which is the
length of the minor axis of each microstructural
element. The minor axis refers to the short side
of the oriented bounding box, as demonstrated in
Fig. 9. Since the main difference in the shape of
microstructural elements is the length of the minor
axis, such as the different elements in Fig. 8(a), Fw

is competent for the distinguishing of different shapes.

Through feature extraction, a two dimensional
feature vector Fi can be obtained for i-th
microstructural element, composed as the two essential
cues:

Fi = [Fm
i ,Fw

i ] . (8)

In addition, since the scales of the two features are
different, the two features need to be normalized to
[0,1] respectively before they are used to classify the
microstructural elements.

Classification for the microstructural
elements
For the normalized feature vectors, due to the

lack of the labels, an unsupervised machine learning
method which is density-based spatial clustering of
applications with noise (DBSCAN; Ester et al., 1996)
is adopted here.

DBSCAN is a density-based clustering algorithm
without specifying the number of clusters. Given a set
of data in feature space, high-density regions can be
discriminated from low-density regions. In addition,
DBSCAN can be used for arbitrarily shaped clusters
and it is robust to noises. The DBSCAN needs two
parameters: the minimum number of points minPts
required in the neighbourhood of a core point and the
neighbourhood size Eps. The two parameters minPts
and Eps can affect the result of clustering. If the Eps is
too small or the minPts is too large, the number of core
points is small, and the data is easy to be over-classified
or mistaken for the noises. If the Eps is too large or

the minPts is too small, the number of core points is
large, and the data is easy to be under-classified or
some noises can not be detected.

With the DBSCAN, the microstructural elements
can be classified. To illustrate the classification result,
the microstructural elements which are in different
classes are painted with different colors, as shown in
Fig. 11. The classification result can illustrate well the
characteristics of the distribution and transformation of
the microstructural elements.

PARAMETER SELECTION

In the proposed approach, three parameters
[l1, l2,σ ] in Section “Filling the gaps among
microstructural elements” are keys for the
segmentation of the discrete regions. In general, for
the images with wide gaps among discrete regions, it
tends to choose large values of [l1, l2] and a small value
of σ ; and for the images with thin gaps among discrete
regions, it tends to choose small values of [l1, l2] and
a large value of σ . Through the experiments, good
detection results can be achieved when the value of l2
is set to bl1/2c. Hence, only the l1 needs to be set. And
the range of l1 is {3,5,7,9}, the range of σ is [0.1,0.5].

In the second part of our approach, the parameters
Eps and minPts in DBSCAN are also need to be
considered. Generally, for each discrete region, if
there are significant differences among microstructural
elements in the region, then small Eps and large minPts
are used; otherwise, large Eps and small minPts are
applied. The range of Eps is [0.01,0.05], and the range
of minPts is [5,30].

EXPERIMENTAL RESULTS AND
DISCUSSIONS

In order to evaluate the performance of our
method, the proposed method is tested on ten images
of the HfB2-B4C ceramics which are shown in
Fig. 10. As introduced above, the proposed method
mainly includes two parts: segmentation of the
discrete regions; further analysis and classification
for microstructural elements. For the tested images,
the results of segmentation is shown in Fig. 10.
Twelve segmented regions are chosen to validate the
further analysis and classification method, the results
is illustrated in Fig. 11. The segmentation of the
discrete regions is composed of pre-processing, filling
of the gaps, lines detection and lines filtering, and
there are two parameters [l1,σ ] need to be set. The
setting of parameters [l1,σ ] for the ten images are
[5, 0.2], [5, 0.2], [7, 0.1], [5, 0.1], [7, 0.1], [3, 0.1],
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[3, 0.2], [5, 0.2], [7, 0.1] and [5, 0.2], respectively.
For the DBSCAN in the second part, the parameters
[Eps,minPts] for the twelve regions are set as follow:
[0.05,20], [0.02,20], [0.05,15], [0.02,15], [0.03,20],
[0.05,25], [0.03,20], [0.05,20], [0.05,20], [0.05,20],
[0.02,20] and [0.03,10].

In Fig. 10, the VBs of the ten ceramic’s
microstructural elements are detected, and the discrete
regions are segmented through the boundaries. To
verify the effect of the segmentation, an evaluation
criterion which is called segmentation accuracy
is utilized. The segmentation accuracy SegAcc is
computed by the following equations:

SegAcc =
AC

AS
, (9)

AC = ∑
i

AMi∩ADi , (10)

where AMi is the area of ith region marked manually;
ADi is the area of ith region segmented by our method;
AC is the area of regions segmented correctly; AS
is the total area of the image. AC can be obtained
by computing the number of pixels which have the
same color between segmentation results and ground
truth as shown in Fig. 10. The segmentation accuracy
SegAcc reflects the proportion of the correct part in
segmentation result. Table 1 shows the segmentation
accuracy of the ten images in Fig. 10:

In Table 1, “(a)” to “(j)” in the column “image”
represent the original images of column (a) to (j) in
Fig. 10. From table 1, the segmentation accuracy of the
ten images in Fig. 10 are all more than 90%, and the
average segmentation accuracy is 95.75%. Through
the column (a), (h) and (i) in Fig. 10, which have

Table 1. The segmentation accuracy of our method

image AC AS accuracy

(a) 165697 176640 93.80%
(b) 168947 176640 95.64%
(c) 168379 176128 95.60%
(d) 171089 176128 97.14%
(e) 169341 175104 96.71%
(f) 173205 176640 98.06%
(g) 168742 176640 95.53%
(h) 164070 176640 92.88%
(i) 166269 176640 94.13%
(j) 173133 176640 98.01%

the lower segmentation accuracy, there are two main
sources of error: first, the gaps among regions are too
wide to pinpoint the position of the boundary lines,
such as the gap between pink region and blue region
in image of column (a), row 4 in Fig. 10; second,
the gap is not similar to a straight line, such as the
gap between pink region and blue region in image of
column (h), row 4 in Fig. 10, and the gap between
purple region and blue region in image of column (i),
row 4 in Fig. 10. Another important factor that causes
errors is the gaps are too thin to detect the boundary
lines, such as the gaps around the small purple region
in image of column (f), row 4 in Fig. 10, and the gap
between purple region and blue region in image of
column (g), row 4 in Fig. 10. The detection of the
boundary lines in the wide and linear gaps is able to
achieve high accuracy, such as the column (c), (d), (e)
and (j).

The Fig. 11 shows the classification results of the
microstructural elements in twelve discrete regions,
which are corresponding to the regions 1 to 12 of row
3 in Fig. 10. To evaluate the accuracy of our method in
the classification of the microstructural elements, the
correct classification rate (CCR) (Diplaros et al., 2007)
is calculated as the evaluation criterion. The CCR is
defined as:

CCR =
N

∑
k=1

|hk
⋂

ck|
H

, (11)

H =
N

∑
k=1

hk , (12)

where k is the k-th class; N is the number of the classes;
hk is the number of the microstructural elements in
k-th class with our method; ck is the actual number
of the microstructural elements in k-th class which
are counted by human. By the definition of CCR,
the higher the CCR, the higher the accuracy of the
classification. The CCR of the classification of the
microstructural elements in the twelve regions are
shown in Table 2:

Table 2. CCR of the classification for the micro-
structural elements

region CCR region CCR region CCR

(a) 0.8234 (e) 0.8389 (i) 0.8922
(b) 0.8526 (f) 0.9070 (j) 0.8625
(c) 0.9032 (g) 0.8615 (k) 0.8701
(d) 0.8511 (h) 0.8939 (l) 0.8404
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Fig. 10. The segmentation of the discrete regions. Row one is ten original ceramics images. Row two is the results
of boundaries detection. Row three is the segmentation results based on the detected boundaries. Row four is
the ground truth marked by human. The regions 1-12 of row 3 are chosen to validate the further analysis and
classification method.

In Table 2, “(a)” to “(l)” in the column “region”
represent the images (a) to (l) in Fig. 11, respectively.
The CCR of the twelve regions are all more than 0.8,
and the average CCR is 0.8664. For each region, if the
microstructural elements have significant differences
in shape, the CCR of the region is high, such as
the values of regions “(c)”, “(f)”, “(h)”, “(i)” and
“(k)” in Table 2. On the other hand, if most of the
microstructural elements in the region are similar, the
CCR of the region is low, such as the regions “(a)” and
“(e)”.

CONCLUSION

In this work, a method using the dilation operator,
GLCM, Hough transform and DBSCAN is proposed
to accurately segment the images of HfB2-B4C
ceramics with many VBs and further classify the
different microstructural elements in each segmented
region. The experiments demonstrate that the proposed
method can effectively detect the VBs and further
obtain the accurate segmentation. In addition, the
two features “Major Slope” and “Width” which are
extracted for the microstructural elements are proved
to be effective in the classification. The classification
based on the DBSCAN is also able to be achieved

precisely. Thus, the proposed method provide a
reliable technical support to effectively analyse the
HfB2-B4C ceramics microstructure.

We conclude that our method is an effective and
robust way to segment the material regions with VBs.
However, there are two limitations which need to be
improved. On the one hand, the method is difficult to
detect non-linear VBs since it is based on the Hough
transform method; on the other hand, the detection
of the VBs in some thin gaps is failed with our
method. We will continue to research to overcome the
shortcomings in the future work.
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Fig. 11. The classification of microstructural elements in each discrete region. (a) to (l) are twelve regions
corresponding to the regions 1 to 12 of row 3 in Fig. 10. In each image, the microstructural elements which
have the same color belong to the same class.
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