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ABSTRACT

A multiscale approach to the description of geometrically complex 3D image data is proposed which
distinguishes between morphological features on a ‘macro-scale’ and a ‘micro-scale’. Since our method
is mainly tailored to nanostructures observed in compositematerials consisting of two different phases, an
appropriate binarization of grayscale images is required first. Then, a morphological smoothing is applied
to extract the structural information from binarized imagedata on the ‘macro-scale’. A stochastic algorithm
is developed for the morphologically smoothed images whosegoal is to find a suitable representation of the
macro-scale structure by unions of overlapping spheres. Such representations can be interpreted as marked
point patterns. They lead to an enormous reduction of data and allow the application of well-known tools
from point-process theory for their analysis and structural modeling. All those voxels which have been
‘misspecified’ by the morphological smoothing and subsequent representation by unions of overlapping
spheres are interpreted as ‘micro-scale’ structure. The exemplary data sets considered in this paper are 3D
grayscale images of photoactive layers in hybrid solar cells gained by electron tomography. These composite
materials consist of two phases: a polymer phase and a zinc oxide phase. The macro-scale structure of the
latter is represented by unions of overlapping spheres.

Keywords: adaptive thresholding, discrete skeleton, morphological smoothing, multiscale approach,
representation by overlapping spheres.

INTRODUCTION

In this paper, the nanomorphologies of composite
materials are considered, being blends of two different
(organic and inorganic) solid phases. For instance,
such materials are used in the photoactive layer of
hybrid polymer-zinc oxide solar cells, where the two
solid phases play the role of a polymeric electron
donor, consisting of poly(3-hexylthiophene), and an
inorganic zinc oxide(ZnO)-electron acceptor.

There is a great advantage of polymer solar cells
due to their potentially low production costs. However,
the efficiency of polymer solar cells critically depends
on the intimacy of mixing of the donor and the acceptor
semiconductors used in these devices to create charges
as well as on the presence of unhindered percolation
pathways in the individual solid phases of the
composite material to transport positive and negative
charges towards electrodes; seee.g., Yang and Loos
(2007). In short, there is a high correlation between
efficiency and morphology of the considered solar

cells. It is therefore very important to have tools at
one’s disposal which are suitable to analyze and model
the 3D morphology of these materials quantitatively.

As a data processing step for modeling purposes,
a stochastic algorithm is developed to find suitable
representations of complex 3D images by systems of
overlapping spheres. Besides an enormous reduction
of data, this allows the application of tools from point-
process theory to analyze and model the considered
image data.

More precisely, we show that a morphologically
smoothed version of the ZnO phase extracted from
electron tomography (ET) images and, in particular, its
representation by unions of overlapping spheres can
be regarded as a 3D marked point pattern where the
centers of spheres are the locations of points and the
corresponding radii are their marks. The advantage of
this off-grid representation of the macro-scale part of
the nanostructure is that it can be modeled relatively
easily, independent of any given resolution or grid
structure of the underlying ET images. This is the

19



THIEDMANN R ET AL : Representation of 3D Images

subject of a forthcoming paper where we develop a
stochastic simulation model of the 3D nanostructure;
seeStenzelet al. (2011). This model is based on the
multiscale approach to the description of image data
with geometrically complex structure considered in the
present paper.

Such models help to get a better insight into
the impact of morphology on the performance of
polymer solar cells and, simultaneously, they can be
used for virtual scenario analyses, where model-based
morphologies of solar cells are simulated to identify
polymer solar cells with improved nanostructures.

Note that the algorithm developed in the present
paper can be applied to various kinds of 3D data.
For instance, another application of this algorithm
is considered in Thiedmannet al. (2010), where
the microstructure of porous materials in electrodes
of lithium-ion batteries is analyzed and modeled
on the basis of its representation by unions of
overlapping spheres. However, we emphasize that in
Thiedmannet al. (2010) a stochastic point–process
model is developed for materials in Li-ion batteries,
which uses the representation by unions of overlapping
spheres just as a starting point. But,Thiedmannet al.
(2010) does not focus on the representation algorithm
itself.

Correlation of nanomorphology and
functionality in polymer solar cells

The descriptive statistical analysis of ET images
for hybrid polymer-ZnO solar cells accomplished
in Oosterhoutet al. (2009) showed that there can
be drastic structural differences between the 3D
morphologies of photoactive layers made from
identical types of material, but having different
thicknesses. Moreover, it turned out that the efficiency
of these solar cells significantly depends on the
thickness of photoactive layers, sometimes called
‘films’ for brevity. This close relationship between
nanomorphology and functionality of polymer solar
cells can be explained as follows. Upon exposure
to light, photons are absorbed in the polymer phase
and so-called ‘excitons’,i.e., photoexcited electron-
hole pairs, evolve. Excitons are neutral quasi-particles
which diffuse inside the polymer phase within a
limited lifetime; seeShawet al. (2008). If an exciton
reaches the interface to the ZnO phase, it is split
up into a free electron (negative charge) in the ZnO
and a hole (positive charge) in the polymer phase.
This process is commonly referred to as quenching,
because it reduces the intrinsic fluorescent decay of
the exciton in the polymer. Provided that the electrons
in the ZnO phase and the holes in the polymer
phase reach the electrodes at the top and bottom

of the photoactive layer, respectively, photocurrent is
generated. A schematic illustration of the morphology
of photoactive layers in hybrid polymer-ZnO solar
cells is shown in Fig.1, where the electrodes are
supposed to be parallel to thex-y-plane. For further
information about polymer solar cells and the physical
processes therein we refere.g., to Brabecet al.(2008).

Fig. 1. Schematic layout of a polymer-ZnO thin film
solar cell, showing the percolation of photogenerated
holes (+) and electrons (−); black denotes ZnO and
white polymer.

Note that the extent of blending of the two
materials has a large impact on the efficiency of these
solar cells, because not all excitons are quenched
due to their limited lifetimes. Thus, a morphology
as displayed in Fig.1, where both materials are
mixed intimately, is desirable since the excitons are
more likely to reach the interface and charges can be
generated.

Furthermore, the existence of unhindered
percolation pathways within both phases (ZnO and
polymer) is crucial since the generated charges have to
be transported to the electrodes throughout the phases.
Because of the electric field between the electrodes,
these pathways should be preferably monotonous.

Hence, to obtain solar cells with high efficiency,
an intimately mixed morphology with monotonous
percolation pathways for both charge carriers is
desirable and should be taken into account when
producing devices. Spatial stochastic models as
considered inStenzelet al.(2011), which are based on
the results derived in the present paper, can be used
to identify morphologies with improved efficiency
by generating virtual morphologies and investigating
the transport processes of electrons and excitons,
respectively.

Preprocessing of image data

The stochastic algorithm to obtain an efficient
representation by unions of overlapping spheres
is applicable to binary images. Therefore an
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adequate binarization is required first. Since different
(location-dependent) brightnesses occur in the ET
images considered in the present paper, we perform
an adaptive thresholding procedure proposed by
Yanowitz and Bruckstein(1989) and Blayvaset al.
(2006).

Furthermore, since the representation of a
geometrically complex set by unions of overlapping
spheres works best if the boundary of the considered
set is not too rough, we additionally apply a
morphological smoothing. On the other hand, the
functionality of the solar cells heavily depends on the
fine structures, which are removed by morphological
smoothing. Thus, these ‘misspecified’ voxels are also
included into stochastic simulation models considered
in Stenzelet al. (2011). They are interpreted as
the ‘micro-scale’ nanostructure of the binarized
ET images, whereas the morphologically smoothed
images represented by unions of overlapping spheres
describe the nanostructure on a ‘macro-scale’.

Outline

The paper is organized as follows. First the ET
data are described which are considered in this paper.
Then the binarization method of adaptive thresholding
is presented which is followed by the explanation
of morphological smoothing, and how it leads to a
multi-scale representation of the binarized images. In
the same section, a stochastic algorithm is introduced
to represent complex 3D structures by unions of
overlapping spheres. Finally, a brief summary and
some concluding remarks are given.

DATA DESCRIPTION

In this section we briefly describe the 3D image
data of hybrid polymer-ZnO solar cells gained by
electron tomography (ET); seevan Bavelet al. (2009)
andOosterhoutet al.(2009). In particular, we consider
images for three devices with different thicknesses of
the photoactive layers: 57 nm, 100 nm, and 167 nm.
These are the examplary data, to which the stochastic
algorithm developed in the present paper is applied.

Electron tomography grayscale images

For each of the three different layer thicknesses,
the 3D ET images are given as stacks of 2D grayscale
images (being parallel to thex-y-plane, say), which are
numbered according to their location inz-direction.
The sizes of these images in thex-y-plane are 934×
911 voxels for the 57 nm film, and 942× 911 voxels
for the other two thicknesses. Each voxel represents a
cube with side length 0.71 nm.

Fig. 2.Cross-sectional image of the photoactive layer
of a complete device (reprinted with permission from
Oosterhout et al.(2009), c© 2009 Nature Publishing
Group).

The stacks of 2D images consist of 80, 184 and
208 slices for the 57 nm, 100 nm, and 167 nm
films, respectively. These numbers of slices do not
correspond directly to the (physical) thicknesses of the
photoactive layers, since some slices at the bottom and
top have not been used in the following. One reason
for this is the relatively rough surface of films, since
the thickness of the photoactive layers (polymer-ZnO)
varies locally due to the complex technology of blend
manufacturing; see Fig.2. This excludes some slices
near the top. Some slices at the bottom could not be
used because of tomography reconstruction artefacts
due to the limited number of tilting angles. This
explains why the number of slices does not correspond
exactly to the layer thickness. Note that the voxel size
is the same for all three layer thicknesses.

Fig. 3. 2D images of hybrid polymer-ZnO solar cells
with thickness of 57 nm (left), 100 nm (center) and
167 nm (right).

Fig. 3 shows representative 2D slices for the
three different film thicknesses, where the darker parts
of the images represent the ZnO phase due to a
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higher electron density compared to polymer. The
images displayed in Fig.3 indicate clear structural
differences for the three films. With increasing layer
thickness the separated domains of polymer and ZnO
are getting finer. In particular, the thinnest film,i.e.,
the photoactive layer with thickness of 57 nm, features
large domains of both polymer and ZnO.

Binarization by global thresholding

To apply the stochastic algorithm developed in
the present paper, the 3D grayscale images have to
be binarized appropriately. Binarization is necessary
since we need to decide which voxels are classified as
polymer and which as ZnO. An elementary approach
to binarize grayscale images is to use a global
threshold: voxels are set to white (polymer) if their
grayscale value exceeds a certain threshold, and are
otherwise set to black (ZnO).

In Oosterhoutet al. (2009) two different global
thresholds have been considered in order to binarize
the grayscale images as displayed in Fig.3. They have
been chosen in such a way that the ZnO phase can
be assumed to be a subset of the union of foreground
voxels (high threshold) and, vice versa, the union of
foreground voxels is contained in the ZnO phase (low
threshold); see Fig.4. Thus, it can be assumed that the
actual structure of the ZnO phase lies in between these
two bounding sets.

Fig. 4. Binarization with global thresholds. Left:
original grayscale image, center: binarization with
high threshold, right: binarization with low threshold.

A first, still crude quantitative description of
structural differences between the three films can
be given by the volume fractions of the binarized
3D images, that is the number of foreground (i.e.,
black) voxels divided by the number of all voxels
of the sampling window. The empirical ZnO volume
fractions have been computed for the images binarized
by the low and high threshold, respectively. The results
are displayed in Table1. The ZnO volume fractions
computed for the 57 nm film are rather different from
those of the 100 nm and 167 nm films. On the other
hand, the ZnO volume fractions of the 100 nm and
167 nm films coincide which is in accordance with

the images shown in Fig.3; see alsoOosterhoutet al.
(2009).

Table 1.ZnO volume fraction of photoactive layers.

layer low high mean
thickness threshold threshold value

57 nm 0.098 0.172 0.135
100 nm 0.133 0.295 0.214
167 nm 0.128 0.293 0.211

BINARIZATION BY ADAPTIVE
THRESHOLDING

It is difficult to find a single global threshold to
binarize the ET images adequately because of the
irregular brightness of these images. An example is
given in Fig. 5, with the red circle indicating an
underexposed domain.

Instead of considering global thresholds, a method
of adaptive thresholding can be used for binarization.
This method is based on techniques described in
Yanowitz and Bruckstein(1989) and Blayvaset al.
(2006), where the main idea is to construct a threshold
surfaceT (x,y) which is location-dependent. If the
grayscale value of the image at location(x,y) is larger
than T (x,y), the voxel with coordinates(x,y) is set
to white, otherwise set to black. In the special case
of global thresholding,T (x,y) is a constant, whereas
in adaptive thresholding,T (x,y) takes local conditions
like overexposure or underexposure into account.

Fig. 5. 2D image of 100 nm data with red circle
indicating an underexposed area.

Smoothing of grayscale images

Before constructing an adaptive threshold, the
grayscale images need to be smoothed to reduce image
noise and to make it easier to separate the objects
(ZnO domains) from the background (polymer); see
e.g., Jähne(2005). In particular, we applied a Gaussian
3×3×3 filter with varianceσ2 = 0.4 given in voxel
size. It is quite clear that such a small filter does not
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remove too much structure or detail which is important
for physical properties of the films.

Note that this smoothing is implemented in
3D, whereas the remaining binarization steps are
executed in 2D, i.e., they are applied to every
single 2D slice, being parallel to thex-y-plane.
This is sufficient for adaptive thresholding because
the exposure only depends on the(x,y)-location,
but not on itsz-coordinate, which can be seen by
considering subsequent slices of the 3D data sets. The
reconstruction of the 3D tomographic images imply
a high correlation of the gray-values inz-direction,
i.e., regions / locations of different brightness do not
change rapidly for subsequent 2D slices. In addition,
the sizes of the regions with different brightness are
on a much larger scale than the structure which is
analyzed,i.e., the ZnO phase. Hence, locally seen, the
2D adaptive thresholding can be interpreted as a nearly
global threshold.

Local maxima of gradient magnitudes

In the next step, the magnitudes of grayscale
gradients are derived for the smoothed images
obtained in the previous section. This is done
according to a method developed inUnser (1999)
and Thévenazet al. (2000), where a spline is put
through the grayscale values on the discrete lattice of
voxels. More precisely, a functionf : R

2 → [0,1] with
continuous domain is constructed such thatf (x,y) =
∑x′,y′ I (x′,y′)φ (x−x′,y−y′), where summation
extends over the lattice of voxels describing the image,
I (x′,y′) denotes the grayscale value of the voxel at
position (x′,y′) in the lattice andφ is a (separable)
cubic B-spline, that isφ (x,y) = β 3(x)β 3(y), where

β 3(x) =











2
3 −|x|2 + 1

2 |x|
3 if 0 ≤ |x| < 1,

1
6 (2−|x|)3 if 1 ≤ |x| < 2,

0 if 2 ≤ |x| .

The gradient of f is said to be the vector of
its first partial derivatives. In the resulting image of
gradient magnitudes, each voxel then takes the value
of the magnitude of the gradient,i.e., the length of the
gradient vector.

Finally, the local maxima of the gradient image
are determined. This is accomplished by comparing
each voxel with its eight neighboring voxels. To avoid
oversegmentation of the background (i.e., the polymer
phase), the set of local gradient maxima is thinned,
where the original smoothed image is binarized using
a global threshold which is calculated by iteration,
following Ridler and Calvard(1978). Then, all those
local maxima which belong to the background of this

globally thresholded image, are deleted. The reduced
set of local gradient maxima indicates voxels where
the grayscale values of the original smoothed image
are strongly fluctuating. These voxels are important in
order to determine the values of the adaptive threshold
surface.

Computing the threshold surface

Let A = {(xi ,yi) , i = 1, . . . ,N} denote the
(thinned) set of local gradient maxima with
(xi ,yi) being the corresponding coordinates on
the discrete lattice of voxels. For each point of
A, the original grayscale value of the (smoothed)
image is used as adaptive threshold,i.e., T (xi ,yi) =
I (xi ,yi) , i = 1, . . . ,N. For the remaining voxels
the adaptive threshold is computed by interpolating
the grayscale values of points inA, where the
method of inverse-distance weighting is used as
described inYanowitz and Bruckstein(1989). Hence,
considering an arbitrary voxel(x,y) 6∈ A, the adaptive
thresholdT (x,y) is calculated as a weighted sum of
T (xi ,yi) , i = 1, . . . ,N, i.e.,

T (x,y) =
1

∑i ωi
∑
i

ωi T (xi ,yi) .

Here, the summation runs over all points ofA
within a sufficiently large neighborhood of(x,y),
in our case a square of length 100 voxels centered
at (x,y), and the weight ωi is given by the
inverse distance between(x,y) and (xi ,yi), i.e., ωi =

1/
√

(x−xi)2 +(y−yi)2.

Additionally, the threshold surface obtained in
this way is shifted up or down until the resulting
binarizations yield the mean volume fraction of ZnO
given in Table1. This threshold surface is then used
for binarizing the solar cell data by comparing the
grayscale values of the smoothed imageI =

(

I(x,y)
)

to
the values of the threshold surfaceT =

(

T(x,y)
)

, i.e., if
I (x,y) > T (x,y), then the voxel with coordinates(x,y)
is set to white (polymer), otherwise to black (ZnO).

Examples of binarizing the ET images by adaptive
thresholding as explained above, are displayed in
Fig. 6.

STOCHASTIC REPRESENTATION

In this section we state a stochastic algorithm
which we developed to represent a morphologically
smoothed version of the ZnO phase by unions of
overlapping spheres. This algorithm has been inspired
by the stochastic watershed algorithm described in
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Angulo and Jeulin (2007) and Noyelet al. (2007)
where the locations of seeds/markers,i.e., the initial
points, for the watershed transformation are chosen
at random. Since the initial points for each single
run are chosen at random, the result of one run
cannot be ensured to be optimal. Hence, severals
runs are performed and all resulting watershed lines
are subsequently convoluted using kernel density
techniques. The result of the kernel density estimation
is an ‘intensity map’ in which the multiply found
watershed lines are emphasized. Hence to come up
with the final result, the most dominant watershed lines
have to be extracted from the intensity map, wherefore
several possibilities are proposed inFaessel and Jeulin
(2010). Further developments on this segmentation
technique are discussed inCativa Tolosaet al. (2009),
where the placement of the markers is more specific to
avoid an over-segmentation of the data.

The morphology of the ZnO phase obtained by
adaptive thresholding of ET images is rather complex;
see Fig. 6. This makes it difficult to represent a
preferably large part of the ZnO phase by unions
of spheres, where we simultaneously try to keep the
number of spheres as small as possible; see Fig.7 for
a (schematic) illustration in 2D.

The reason for this is that the binarized ET images
described in the previous section contain very fine
structural components such as ‘thin ZnO branches’,
i.e., thin ZnO parts connected to larger ZnO domains,
‘isolated ZnO particles’,i.e., small ZnO particles in the
polymer domains, and ‘polymeric holes’,i.e., small
polymeric particles inside the ZnO domains; see Fig.
8. Since it is difficult to represent these fine structural
components by unions of sufficiently large spheres,
we first apply a morphological smoothing of the ET
images.

Smoothing of binarized images

The morphological transformations which we use
for smoothing the binarized ET images are ‘dilation’
and ‘erosion’ which are defined as follows. LetB ⊂
R

3 be an arbitrary set and letb(s, r) = {s′ ∈ R
3 :

|s− s′| ≤ r} denote the three-dimensional sphere with
centers ∈ R

3 and radiusr > 0. Then, the dilation
of B by b(o, r) is given by the Minkowski sumB⊕
b(o, r) = {s+ s′ : s∈ B,s′ ∈ b(o, r)}, whereb(o, r) is
called ‘structuring element’. Furthermore, the erosion
of B by b(o, r) is given by the Minkowski difference
B⊖ b(o, r) =

⋂

s′∈b(o,r){s− s′ : s ∈ B}. In general,
erosion is not the inverse of dilation. Further details
regarding morphological transformations can be found
e.g., in Jähne (2005), Ohser and Schladitz(2009),
Serra (1982,1988), andSoille (2003).

Fig. 6. 2D images of hybrid polymer-ZnO solar
cells; left column: original grayscale images of
57 nm, 100 nm, and 167 nm films; right column:
corresponding binarized images using adaptive
thresholding.

Fig. 7.Schematic 2D representation of a set by union
of circles

Let now B denote the ZnO phase observed in a
certain sampling windowW, i.e., B ⊂ W ⊂ R

3. One
aim of morphological smoothing is to remove small
isolated ZnO particles inW. This is accomplished
by a so-called ‘closing’ of the polymer phaseBc,
which leads to the set

(

Bc ⊕ b(o, r)
)

⊖ b(o, r), where
Bc = W \B denotes the complement ofB with respect
to W. This means that we first apply a dilation
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and then a subsequent erosion of the polymer phase
Bc, considering the same structuring elementb(o, r)
for both morphological operations. Due to different
roughnesses of microstructures in the films, different
values (in voxel) of the radiusr have been used, that
is r = 2

√
3 for the 57 nm file, andr =

√
3 for the

100 nm and 167 nm films. The result of this closing
is the elimination of small isolated ZnO particles such
that all interior voxels are closer to the polymer phase
than r. Additionally, some of the thin ZnO branches
are removed as well.

Fig. 8. 2D image of a cutout of the 100 nm file with
‘thin ZnO branches’ (red), ‘isolated ZnO particles’
(blue) and ‘polymeric holes’ (yellow).

Another aim of morphological smoothing is to
remove small polymeric holes within the ZnO phase.
Therefore, in the third step, we dilate the preprocessed
ZnO phaseB′ = W \

((

Bc⊕b(o, r)
)

⊖b(o, r)
)

, using
the same structuring elementb(o, r) as before. Thus,
as a further desirable effect, the boundary∂B′′ of the
dilated ZnO phaseB′′ = B′ ⊕ b(o, r) becomes much
smoother than the boundary∂B of the original ZnO
phaseB; see Fig.9. This makes it easier to represent
the setB′′ by unions of spheres.

Fig. 9. Original image of 57 nm film split up into
structural components at two different scales.

Main steps of the algorithm

We first decompose the setB′′ into its connected
components and apply our stochastic algorithm to
each of these components separately. This leads
to an essential reduction of runtime. To determine
the connected components ofB′′, the algorithm of
Hoshen and Kopelman(1976) has been used which
works very efficiently.

Let C ⊂ B′′ be an arbitrary connected component
of the morphologically transformed ZnO phaseB′′.
The main steps of our algorithm can be described as
follows:

1) Place a points at random in the setC and mark it
with the maximum radiusrmax such that the sphere
b(s, rmax) is completely contained inC. Then, a
candidate for the next center of a sphere is located
at random inC, where this point can be accepted
or rejected, according to the acceptance-rejection
rule described later in this section. This process
of ‘sphere placement’ is continued until a certain
desired volume fraction ofC is covered.

2) The procedure described above is repeated several
times. Then, an intensity map of locations of
accepted centers is computed, using a kernel
density estimation, which indicates preferred
locations of centers.

3) The local maxima of this intensity map are used to
construct the final representation ofC by a union
of spheres.

Placement of spheres

As already mentioned above, to begin with, a point
s is located at random in the setC and marked with the
maximum radiusrmax such that the sphereb(s, rmax) is
completely contained inC. This step is implemented
by sampling a uniformly distributed random variable
on the sub-lattice of those voxels belonging toC. The
maximum radiusrmax can efficiently be determined
by computing a distance transformation ofC; see
Saito and Toriwaki(1994). To avoid trivial spheres,
the radiusrmax should be greater than or equal to√

3 voxel sizes, otherwise the points is rejected.
Then, a candidate for the next center of a sphere is
located at random inC, where the radius is chosen
in the same way as before. This point is rejected if
the corresponding sphere only covers such parts ofC
which are already covered by the union of previously
accepted spheres. Otherwise, the point is accepted.
This process of sphere placement is continued until
a certain volume fraction ofC, say 99%, is covered
by spheres. Alternatively, to avoid infinite loops, the
sphere-placement algorithm stops after 1000 trials to

25



THIEDMANN R ET AL : Representation of 3D Images

get a new center accepted. Finally, all those spheres
are deleted which are completely covered by other
spheres. Note that a matching of the original data by
the union of spheres in 100% of the volume fraction is
not necessary for the subsequent stochastic modeling
using marked point processes, since there also a certain
variability occurs.

Intensity map

The representation ofC by unions of spheres, as
described above, is random. Therefore, it is possible
to obtain a more or a less efficient result, where a
smaller or a larger number of spheres is needed to
cover the setC; see Fig.7. In order to achieve an
efficient representation with smallest possible number
of spheres, the sphere-placement procedure described
above is repeated one hundred times, say, which
appears to be sufficient to stabilize the computation
of intensity maps for the considered morphologies.
However, note that the required number of repetitions
of random placements depends on the considered
structures.

Subsequently, a 3D intensity mapD = {D(s),s∈
C} is computed by kernel density estimation. In the
present paper, we have used a uniform kernel with
the size of one voxel for the solar cell data since it
turns out that in this case, it works most efficient. This
means that for any locations∈ C, the valueD(s) is
proportional to the number of accepted centers which
are located in a certain (infinitesimal) neighborhood
of s∈ C. However, note that for another application
of our stochastic algorithm to represent 3D image
data of electrodes used in Li-ion batteries by unions
of overlapping spheres (Thiedmannet al. (2010)), a
Gaussian kernel with bandwidth of 1.5 voxel sizes
worked best.

The intensity map D describes the spatial
distribution of frequencies of locations of accepted
centers,i.e., if D(s) > D(s′) for some locationss,s′ ∈
C, then it is more likely that a center is accepted
at locations than at locations′. An example of an
intensity map is shown in Fig.10.

Final representation by union of spheres

The intensity map described in the previous section
is used to construct the final representation of the
connected componentC by a union of spheres. For
this purpose, the local maxima of the intensity map are
ranked in descending order of their intensity values.
According to this ranking we then put points at these
local maxima within the setC and associate them
with their corresponding radii, starting with an empty
configuration.

Fig. 10. Left: morphologically smoothed 2D image
of 57 nm file, right: corresponding intensity map
(image has been brightened up and then inverted for
demonstration purposes).

In other words, the first point is put at the local
maximum s1 ∈ C with the highest intensity value,
and the sphereb(s1, r1,max) with corresponding radius
r1,max such thatb(s1, r1,max) ⊂ C is drawn. Then the
next point is put at the local maximums2 ∈ C of
the intensity map with the second highest intensity
value, and so on. This procedure is continued until
99%, say, of the volume ofC is covered by spheres,
or until centers of spheres are assigned to all local
maxima of the intensity map. As already mentioned
in the section above, there might be centers and
corresponding spheres that do not contribute to the
final representation ofC by a union of spheres,
because they are completely covered by other spheres.
Therefore this last step of ‘cleaning’ is necessary to
delete those redundant spheres.

Restriction of domain to discrete skeleton

The above developed algorithm to find an optimal
representation of 3D objects by unions of overlapping
spheres can in some cases be further improved w.r.t.
runtime. This goal can be achieved by a restriction of
the domainC for the random placement of spheres.

More precisely, we consider the discrete skeleton
of the setC, which has been introduced byLantúejoul
(1978), see alsoSerra(1982). We call a spherebmax a
maximum sphere inC if bmax⊂C andbmax is tangent
to at least two distinct points of the boundary∂C of
C. The union of all centers of maximum spheres is the
discrete skeleton ofC. As stated inLantúejoul (1978),
the union of all maximal spheres equals the setC.
Therefore, the idea is to restrict the random sphere
placement of the developed algorithm to the discrete
skeleton. This reduces the number of rejected spheres,
since for the algorithm acting on the unrestricted
domain, the averaging performed in the construction
of intensity maps prefers locations on this skeleton.
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Fig. 11. 2D images of hybrid polymer-ZnO solar
cells; left column: smoothed images of 57 nm, 100
nm, and 167 nm films; right column: corresponding
representations by unions of spheres.

Empirically, we found out that this restriction
of the search domain can improve the runtime of
our algorithm essentially. In particular, for large and
‘smooth’ setsC, the runtime decreases. Whereas for
very fine structures as the considered ZnO phases of
polymer solar cells, the runtimes are more or less the
same.

Some numerical results

The representation of the morphologically
smoothed ZnO phaseB′′ by unions of spheres, which
is obtained by the stochastic algorithm stated above,
is denoted byB′′′. An illustrating example is given
in Fig. 11, where a single 2D slice of the macro-
scale componentB′′ of a binarized ET image is
shown, together with the corresponding slice of its
representationB′′′ by unions of overlapping spheres.

Note that the representation of the geometrically
complex setB′′ by unions of spheres leads to an
enormous data reduction. This can be seen in Table2,

where the mean number of voxels covered per single
sphere,i.e., the number of ZnO voxels divided by the
number of spheres, is considered showing how many
ZnO voxels are represented by a single sphere on
average.

Table 2. Results of the representation by unions of
overlapping spheres for the morphologically smoothed
images.

film number of number of mean number
ZnO voxels spheres of voxels

per sphere
57 nm 5,007,344 44,453 112.6436

100 nm 24,238,789 398,833 60.7743
167 nm 28,816,600 480,819 59.9323

But an even more important aspect is the fact
that the complex structure of the morphologically
smoothed ZnO domain is represented by unions of
spheres, which can be interpreted as a marked point
pattern. The locations of the spheres are the points and
the corresponding radii the marks. This representation
allows us to analyse and model the setB′′′ using tools
from point-process theory; seeStenzelet al. (2011).

Another example of application of the stochastic
algorithm developed in the present paper can be found
in Thiedmannet al. (2010) where the microstructure
of porous materials used in electrodes of lithium-ion
batteries is modeled by marked point processes.

Nanostructure on micro-scale

The very fine structural components such as
‘thin ZnO branches’, ‘isolated ZnO particles’,
and ‘polymeric holes’, that are removed by the
morphological smoothing (see Fig.9), are important
for the physical properties of the films. Hence a multi-
scale representation of the ZnO phase is proposed,
where each structural component is considered
separately. More precisely, we distinguish between
the macro-scale componentB′′′ of the binarized ET
images, which is obtained by the morphological
smoothing of the setB and subsequent representation
of B′′ by unions of spheres, and several micro-scale
components, which consist of all those voxels that have
been misspecified by these image transformations; see
also Fig.9.

In particular, the setB△B′′′ = (B\B′′′)∪ (B′′′ \B)
of misspecified voxels is further decomposed into
several sub-components, which can be included
separately into stochastic simulation models of the
ZnO phase as considered inStenzelet al.(2011). First,
two main types of misspecifications are distinguished:
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outer misspecifications and inner misspecifications.
Each ZnO voxel belonging to the setB \ B′′′

and therefore constituted as polymer, is called an
outer misspecification. Typically, thin branches and
isolated ZnO particles are outer misspecifications.
On the other hand, each polymer voxel belonging
to B′′′ \ B and constituted as ZnO is called an
inner misspecification. Inner misspecifications are
further subdivided into boundary misspecifications and
interior misspecifications. Polymer voxels (belonging
to Bc) constituted as ZnO and located near the
boundary ∂B′′′ of the macro-scale componentB′′′,
are called boundary misspecifications, whereas each
inner misspecification which is not a boundary
misspecification, is called an interior misspecification.
Typically, polymeric holes belong to interior
misspecifications.

SUMMARY AND CONCLUSIONS

In the present paper, a multiscale approach to
represent geometrically complex image data in 3D is
developed and applied to images of hybrid polymer-
ZnO solar cells gained by electron tomography. This is
done with the aim to find an efficient representation
of the morphologically smoothed nanostructure by
unions of overlapping spheres.

In the first step, the grayscale ET images are
smoothed using a Gaussian filter. Then the resulting
(smoothed) image data is binarized using an adaptive
thresholding procedure due to varying brightnesses of
the images. A subsequent morphological smoothing
of the binarized images provides the basis for the
proposed algorithm in order to find an efficient
representation of the morphologically smoothed ZnO
phase by unions of overlapping spheres. A flow chart
of these image processing steps is given in Fig.12.

The great advantage of representing geometrically
complex structures by unions of spheres is, on one
hand, the enormous data reduction, see Table2, where
the mean number of voxels covered per single sphere
is shown. On the other hand, it allows the application
of tools from point-process theory to further analyze
and model the corresponding data sets, because each
sphere can be interpreted as a marked point, where the
point itself represents the center of the sphere and its
mark the corresponding radius.

Fig. 12.Flow chart of image processing steps.

Since the functionality of the considered solar
cells heavily depends on the fine structures removed
by morphological smoothing, these ‘misspecified’
voxels are not ‘thrown away’. They are interpreted
as the ‘micro-scale’ nanostructure of the binarized
ET images, whereas the morphologically smoothed
images, represented by unions of overlapping spheres,
describe the nanostructure on a ‘macro-scale’. Thus,
for the description of the nanomorphology of
photoactive layers in hybrid polymer-ZnO solar cells,
a multiscale approach is proposed, where the macro-
scale as well as the micro-scale can be modeled using
tools from the theory of random marked point process;
see, e.g., Illian et al. (2008), Kendallet al. (2010),
Møller and Waagepetersen(2004), and Stoyanet al.
(1995). This is the subject of a forthcoming paper,
where we develop separate stochastic simulation
models for the macro-scale and micro-scale of the
nanomorphology of photoactive layers in hybrid
polymer-ZnO solar cells; seeStenzelet al. (2011).

Another example of application of the algorithm
developed in the present paper is considered in
Thiedmannet al. (2010), where the microstructure of
porous materials used in electrodes of lithium-ion
batteries is analyzed and modeled on the basis of its
representation by unions of overlapping spheres.

These two examplary applications considered in
Stenzelet al. (2011) and Thiedmannet al. (2010),
respectively, show that the stochastic algorithm
developed in the present paper is a powerful tool for
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finding easy to handle representations of geometrically
complex 3D structures.
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