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ABSTRACT

The nucleator is a method to estimate the volume of a particle, i.e., a compact subset of R3, which is widely
used in Stereology. It is based on geometric sampling and known to be unbiased. However, the prediction of
the variance of this estimator is non-trivial and depends on the underlying sampling scheme.
We propose well established tools from quasi-Monte Carlo integration to address this problem. In particular,
we show how the theory of reproducing kernel Hilbert spaces can be used for variance prediction and how
the variance of estimators based on the nucleator idea can be reduced using lattice (or lattice-like) points. We
illustrate and test our results on various examples.

Keywords: nucleator, Quasi-Monte Carlo integration, stereology, variance prediction.

INTRODUCTION

Stereology is the science of inferring geometric
information, such as volume or surface area, of
a three-dimensional object from sections with
two-dimensional planes or one-dimensional lines.
Stereological methods are based on geometric
sampling and the resulting estimators are usually
assessed via their predicted variance. In contrast
to what can be achieved in computer simulations,
sample sizes are generally very small in the context
of microscopy due to costs or other biological and
technical limitations. This motivates a very careful
analysis of the variance of the involved estimators
when the sample size is small.

We propose well established tools from
quasi-Monte Carlo (QMC) integration to tackle
difficult problems in Stereology. Quasi-Monte Carlo
integration specialises on the construction and use of
deterministic point sets to minimise approximation
errors in numerical integration. In particular, it is
well known that the regular grid is a bad choice in
terms of worst case errors. However, using lattice
point sets can significantly improve the situation. In
our numerical experiments we show that switching to
point sets from QMC can significantly improve related
variance estimates in a stereological context. Our paper
is meant as a proof of concept which aims to stimulate
further research in both communities. For this reason
we try to keep our paper as simple as possible. While
classical stereological methods can indeed benefit

from low discrepancy sampling schemes, it turns out
that accurate variance prediction leads to an interesting
problem in the theory of reproducing kernel Hilbert
spaces which goes well beyond the scope of our paper.

The main aim of our paper is to analyse the
variance of a volume estimator based on the nucleator
as defined in Eq. 3 in Section “The nucleator”.
This problem was previously studied in (Cruz-Orive
and Gual-Arnau, 2000; Gual-Arnau and Cruz-Orive,
2002; González-Villa et al., 2017), where the authors
obtained a variance predictor for the special case that
p0, . . . ,pN−1 are points on a regular grid. We generalize
this result and show how to obtain variance predictors
for arbitrary point sets using the theory of integration
in reproducing kernel Hilbert spaces. In a second step,
we focus on the particular case of lattice point sets.

We remark that since we study functions and
integrals over S2 we could also directly work with
reproducing kernel Hilbert spaces on the sphere and
use point sets that have been designed and optimised
for the sphere. Brauchart and coauthors developed this
machinery in a series of papers (Aistleitner et al.,
2012; Brauchart and Dick, 2013; Brauchart et al.,
2014; 2015). We did not use these results to keep our
exposition as basic as possible, but strongly encourage
their use in future investigations.

In Section “The nucleator” we introduce the
nucleator as well as the main volume estimator we aim
to study. Section “Volume Estimator and its variance”
contains important properties of this estimator; i.e., we
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show that the estimator Eq. 3 is unbiased and derive an
expression for its variance in terms of the covariogram.
This expression is then used in Section “Variance as
worst case error” to form the connection to numerical
integration and (worst case) integration errors. We
model the variance in terms of a reproducing kernel
in Section “Model for variance”, and investigate the
modeled variance in Section “Variance prediction for
lattice point sets” in the special case when the points
pn are lattice points. Finally, we conclude this paper
with numerical results in Section “Simulations and
Conclusions”.

THE NUCLEATOR

Following the exposition in Gual-Arnau and Cruz-
Orive (2002) and González-Villa et al. (2017) we call
a compact subset Y of R3 a particle and consider its
volume vol(Y ). The nucleator (Gundersen, 1988) is a
particular method to estimate the volume of a particle,
which is widely used in stereology. For our purposes
we refine the definition of particle a little. We call a
compact subset Y of R3 a nice particle if it has the
following properties:

(P1) The boundary, ∂Y , of the compact set Y is a
smoothly embedded 2-manifold.

(P2) There exists a smooth local parametrisation Φp
for every point p ∈ ∂Y .

(P3) For almost all pivotal points O ∈ R3 all rays
emanating from O intersect ∂Y only in finitely
many points. We call such points O generic
pivotal points.

These assumptions on Y are reasonable in the context
of our intended application; such sets have positive
reach (see, e.g., Thäle, 2008, Proposition 14), but can
still have a complicated global structure and, therefore,
provide enough freedom to model many real world
particles.

To introduce the nucleator, let O ∈ R3 \Y denote
a fixed generic pivotal point associated with a nice
particle Y and let u ∈ S2 be the orientation of a ray
Lu emanating from O. In this paper we always assume
that a ray Lu passes through O. Each Lu may intersect Y
in m=m(u) line segments. We denote the endpoints of
these line segments by x1(u), . . . ,x2m(u) and sort them
by their Euclidean distance x(1)(u), . . . ,x(2m)(u) to O.
In the degenerate case, when Lu only touches Y in a
point, i.e., when the kth line segment is a point, we
think of it as a degenerate line segment in which the
endpoints coincide and set x(2k−1) = x(2k). Hence, we

always have an even number of points xi if we pick O
from R3 \Y . Defining a function fO,Y : S2→ R as

fO,Y (u) =
1
3

m(u)

∑
n=1

(
x(2n)(u)

3− x(2n−1)(u)
3)

leads to the general nucleator representation of volume

vol(Y ) =
∫
S2

fO,Y (u)du . (1)

To obtain an unbiased estimator of vol(Y ) from
Eq. 1 we first parametrize u by its spherical polar
coordinates; i.e., the longitude angle φ and the
colatitude angle θ . This leads to

vol(Y ) =
∫ 2π

0

∫
π

0
fO,Y (φ ,θ)sin(θ)dθ dφ .

This formula works for general compact particles.
However, it can be shown that fO,Y is smooth if Y is
a nice particle and O is a generic pivotal point. Note
that for our later application it is enough that fO,Y is of
class C4.

Lemma 1. If Y is a nice particle and O is a
corresponding generic pivotal point, then fO,Y is
smooth.

Proof. We write f for fO,Y and remark that (P3)
ensures that f is continuous for all u. Now, by the
definition of f it is enough to consider one line
segment. Let us assume Lφ ,θ intersects ∂Y in x1
and x2. By (P1) ∂Y is a smooth surface, hence
there exist open neighborhoods V1,V2 ⊂ R3 of x1 and
x2 as well as open sets U1,U2 ⊂ R2 such that the
local parametrisations Φ1 : U1 → V1 ∩ ∂Y and Φ2 :
U2 → V2 ∩ ∂Y are continuously differentiable. These
local parametrisations can be used to relate Lφ ,θ to
x1 and x2; i.e., x1 = Φ1(φ ,θ) and x2 = Φ2(φ ,θ).
Moreover, the transition maps between different local
parametrisations are smooth since ∂Y is smooth.
Hence, the claim follows from (P2), i.e., from the
smoothness of the local parametrisations.

It was proposed in Gual-Arnau and Cruz-Orive
(2002) to replace the measurement function with

F(φ ,θ)=
f (φ ,θ)+ f (φ +π,π−θ)

2
=

f (u)+ f (−u)
2

,

which corresponds to measuring antipodal points in
the sphere. This function satisfies F(φ + 2kπ,θ +
`π) = F(φ ,θ) for all integers k, l, and the variance
of F is at most half the variance of f , see Leobacher
and Pillichshammer (2014, Exercise 1.10). Next we
normalize the domain of the function by making a
change of variables,

vol(Y ) = 4π

∫ 1

0

∫ 1

0
G(φ ,y)dydφ , (2)
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where G(φ ,y) = F(2πφ ,(cos−1(2y − 1))). This
function is periodic and has period one in both
variables. Given a set of points p0, . . . ,pN−1 ∈ [0,1)2

and a one-periodic function G, we use the estimator

v̂ol(Y ) =
4π

N

N−1

∑
n=0

G((φ0,y0)+pn) , (3)

where (φ0,y0) is taken uniformly random in [0,1]2 and
points in R2 are added componentwise.
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Fig. 1. Sampling with lattice points vs sampling with
grid points. On the right we have the point sets in the
unit square. To obtain our sampling directions on the
sphere (left), we first pick a random point (φ0,y0) and
translate the point set by this vector, before we project
it to the sphere. Note that all projected lattice points
lie on the red spiral, whereas the projected grid points
lie at the center of the triangles resp rectangles on the
sphere. Thus, while points from the regular grid tend
to lie on very few great circles, this is not the case for
lattice points.

VOLUME ESTIMATOR AND ITS
VARIANCE

We start this section by showing that v̂ol(Y ) is
indeed an unbiased estimator for vol(Y ). Throughout
this paper {x} denotes the fractional part of x ∈ R. If
x ∈ Rd is a d-dimensional vector, then the fractional
part function is applied component-wise.

Lemma 2. For any set of points p0, . . . ,pN−1 ∈ [0,1)2

and any one-periodic function G, if (φ0,y0) is taken
uniformly random in [0,1]2 the estimator in Eq. 3 is
unbiased.

Proof. Suppose that (φ ,y) are uniform random
variables in [0,1)2. To show that the estimator is

unbiased, it is necessary to show that

∫ 1

0

∫ 1

0
G(φ ,y)dydφ =∫ 1

0

∫ 1

0

(
1
N

N−1

∑
n=0

G((φ ,y)+pn)

)
dydφ .

This case N = 1 holds since (φ ,y) + p0 mod 1 is
uniformly distributed in [0,1)2 if and only if (φ ,y)
is uniformly distributed for any p0 and because G is
one-periodic. The case N > 1 can be shown using
the case for N = 1 together with the linearity of the
integral.

Next, we show how to obtain an expression for
the variance of v̂ol(Y ) in terms of the covariogram
of G. The covariogram of a function is an efficient
tool to estimate the variance of an estimator and
was first proposed in Cruz-Orive and Gual-Arnau
(2000) to study the statistical properties of systematic
sampling in the circle. Later this theory was extended
to the sphere (Gual-Arnau and Cruz-Orive, 2002). The
covariogram g : R2→ R, is defined as,

g(h1,h2) =
∫ 1

0

∫ 1

0
G(φ ,y)G(φ −h1,y−h2)dydφ .

(4)
We summarize its main properties in the following
lemma.

Lemma 3 (Lemma 3.2, (Gual-Arnau and Cruz-Orive,
2002)). Given g, as defined in Eq. 4, the following
conditions hold:

(i) g(h1 + k,h2 + `) = g(h1,h2) for any integers k, `,
i.e., the covariogram is a periodic function, with
period one.

(ii) g(h1,h2) = g(−h1,−h2).

(iii)
∫ 1

0
∫ 1

0 g(h1,h2)dh1 dh2 =
(∫ 1

0
∫ 1

0 G(φ ,y)dydφ

)2
.

To prepare for the next step, we recall that H2,2,γγγ ,
with γγγ = (γ1,γ2) in which γ1,γ2 are positive reals,
denotes the weighted Korobov space of smoothness
2 (in dimension 2) as defined in (Leobacher and
Pillichshammer, 2014, Section 4.3); for a gentle
introduction and further details see also (Novak
and Woźniakowski, 2008, Appendix A) in which a
different normalization is used for the smoothness
parameter. In the following we will simply write Hγ1,γ2
for H2,2,γγγ . This space of functions is a reproducing
kernel Hilbert space and contains continuous, periodic
functions H : R2→ R.

143



GOMEZ-PEREZ D ET AL: Estimation of volume with the nucleator

The Fourier coefficients of such a function H are
defined as

Ĥ(h1,h2) =∫ 1

0

∫ 1

0
exp(−2πI(φh1 + yh2))H(φ ,y)dydφ .

Since these coefficients are complex numbers we
denote their complex conjugates by Ĥ(h1,h2). Now,
Hγ1,γ2 is the Hilbert space of periodic functions
defined in [0,1)2 with finite norm ‖H‖2 = 〈H,H〉,
where the inner product is given by

〈H1,H2〉= ∑
n1,n2∈Z

r2,γ1,γ2(n1,n2)Ĥ1(n1,n2)Ĥ2(n1,n2) ,

with

r2,γ1,γ2(n1,n2) = r2,γ1(n1) · r2,γ2(n2) ,

and rα,γ(n) = 1 if n = 0 and rα,γ(n) = |n|2/γ if
n 6= 0. The inner product defines a norm of functions
and this gives a distance between two functions. The
vector γγγ contains weights for measuring the distance
between functions; i.e., if γ1 is greater than γ2, the first
coordinate of the function has more importance when
calculating the norm.

This space of functions contains any periodic
function with continuous first and second derivative
(Leobacher and Pillichshammer, 2014, Proposition
4.16). Note that by Lemma 1 our function G (and
therefore also the covariogram g) lies indeed in the
space Hγ1,γ2 . As in (González-Villa et al., 2017;
Hinrichs and Oettershagen, 2016), we concentrate on
this space.

The following lemma shows the relation between
the variance of an estimator and the covariogram.

Lemma 4. Let v̂ol(Y ) be the estimator defined in
Eq. 3. If G is as defined above then

var
(

v̂ol(Y )
)
=

16π2

N2

N−1

∑
n1,n2=0

g(pn1−pn2)−vol(Y )2 ,

where g is the covariogram of G.

Proof. Using the definition of the variance and the fact
that the estimator is unbiased, we have that

var

(
1
N

N−1

∑
n=0

G((φ ,y)+pn)

)
=

∫ 1

0

∫ 1

0

1
N2

(
N−1

∑
n=0

G((φ ,y)+pn)

)2

dydφ− vol(Y )2

16π2 .

Now, we expand the first term on the right hand side
and use the definition of the covariogram to get

∫ 1

0

∫ 1

0

1
N2

(
N−1

∑
n=0

G((φ ,y)+pn)

)2

dydφ

=
1

N2

N−1

∑
n1,n2=0

∫ 1

0

∫ 1

0
G((φ ,y)+pn1) ·

G((φ ,y)+pn2) dydφ

=
1

N2

N−1

∑
n1,n2=0

g(pn1−pn2) .

This finishes the proof.

VARIANCE AS WORST CASE
ERROR

The goal of quasi-Monte Carlo integration is to
provide point sets which can be used to approximate
integrals defined on the d-dimensional unit cube via∫

[0,1]d
f (x)dx≈ 1

N

N−1

∑
n=0

f (pn) ,

in which P = {p1, . . . ,pN} are deterministically
chosen points in [0,1]d . The integration error for a
particular function f is given as

err( f ,P) :=
∫
[0,1]d

f (x)dx− 1
N

N−1

∑
n=0

f (pn) .

A Hilbert space of functions H in on [0,1)d is called
a reproducting kernel Hilbert space if there exists a
function K : [0,1)2d → R such that

K1: K(y, ·) belongs to H ; for all y ∈ [0,1)d ;

K2: 〈 f ,K(y, ·)〉 = f (y), i.e., the dot product of any
function in H with K gives the evaluation in y.

The function K is called the (reproducting) kernel of
H .

Assuming f is taken from a reproducing kernel
Hilbert space H , the integration error err( f ,P) as
well as the worst case error

err(H ,P) = sup
f∈H ,‖ f‖≤1

|err( f ,P)| (5)

have nice representations in terms of the reproducing
kernel K of the space. In particular, it is known (see,
e.g., Leobacher and Pillichshammer, 2014, Eq. 3.9)
that

err( f ,P) = 〈 f ,h〉 , (6)
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where

h(x) =
∫
[0,1]d

K(x,y)dy− 1
N

N−1

∑
n=0

K(x,pn) .

As explained in Novak and Woźniakowski (2008,
Appendix A) the kernel of the space Hγ1,γ2 which
contains the function G is

Kγ1,γ2((p1, p2),(q1,q2)) =

(1+ γ1k(|p1−q1|))(1+ γ2k(|p2−q2|)) , (7)

where k(t) = t2− t +1/6. Note that k is the Bernoulli
polynomial of degree 2 and their properties have been
studied in a stereological context in dimension 1 (see,
e.g., Cruz-Orive and Gual-Arnau, 2000, Proposition
2.2).

Using this kernel, the properties of reproducting
kernels and Eq. 6 we obtain a representation of
the variance of our volume estimator which is a
generalization of Cruz-Orive and Gual-Arnau (2000,
Proposition 2.2).

Lemma 5. Let Kγ1,γ2((p1, p2),(q1,q2)) be as in Eq. 7.
If G ∈Hγ1,γ2 then

var
(

1
4π

v̂ol(Y )
)
=〈

g,
1

N2

N−1

∑
n1,n2=0

Kγ1,γ2(p
n1−pn2 , ·)−111F

〉
,

where 111F is the constant function which returns 1 at
any point.

Proof. By Eq. 2 and Lemma 3(iii) we know that

vol(Y )2 = 16π
2
(∫ 1

0

∫ 1

0
G(φ ,y)dydφ

)2

= 16π
2
∫ 1

0

∫ 1

0
g(h1,h2)dh1 dh2 .

Thus, by Lemma 4 we see that the negative of the
variance can be expressed as an integral approximation
error. This approximation error can now be rewritten as
an inner product using Eq. 6〈

g,−
∫
[0,1]2

Kγ1,γ2(y, ·)dy+

1
N2

N−1

∑
n1,n2=0

Kγ1,γ2(p
n1−pn2 , ·)

〉
.

In Leobacher and Pillichshammer (2014, Chapter 4,
page 91f) it is shown that for any fixed x∫

[0,1]2
Kγ1,γ2(y,x)dy = 1 ,

which gives the stated formula.

We remark that this result is a generalization
of Cruz-Orive and Gual-Arnau (2000, Proposition
2.2), because there are no restrictions on the point set.
Of course, the interesting point sets are those with low
discrepancy.

MODEL FOR VARIANCE

Our next goal is to find a model for the variance in
Lemma 5.

It is well known that by the Moore-Aronszajn
theorem (Aronszajn, 1950) any function H ∈ Hγ1,γ2
can be represented as an infinite sum of evaluations
of the kernel Kγ1,γ2(·,q) at particular points q ∈ [0,1)2.
This generic representation of functions H ∈Hγ1,γ2 as
infinite sums of evaluations of the kernel and the fact
that g∈Hγ1,γ2 motivate the following simple model for
the covariogram:

g̃(h1,h2) = c0 + c1Kγ1,γ2((h1,h2),(0,0)) . (8)

Note that there is no quantified version of the result of
Moore-Aronszajn. So the initial and main motivation
for this particular model is the hope that it turns out
to be useful as well as its simplicity. We will explain
one way to estimate the parameters c0,c1,γ1,γ2 of this
model from a single sample in the next section.

Assuming that g≈ g̃ with an unspecified error that
we will ignore in the following, we derive a modelled
variance var of the estimator defined in Eq. 3 based
on the above covariogram model as follows; see also
Gual-Arnau and Cruz-Orive (2002, Proposition 4.2)
for a different approach to model the variance.

First we use Lemma 5 and the linearity of the inner
product to get:〈

g,−111F +
1

N2

N−1

∑
n1,n2=0

Kγ1,γ2(p
n1−pn2 , ·)

〉
=

−〈g,111F〉+
1

N2

N−1

∑
n1,n2=0

〈
g,Kγ1,γ2(p

n1−pn2 , ·)
〉
. (9)

Next, we replace g by g̃. Using property K2 of a
reproducing kernel Hilbert space, we get

−〈g̃,111F〉=−c0− c1 ,
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and

〈g̃, Kγ1,γ2(p
n1−pn2 , ·)

〉
= c0

〈
111F ,Kγ1,γ2(p

n1−pn2 , ·)
〉
+

c1
〈
Kγ1,γ2(·,(0,0)),Kγ1,γ2(p

n1−pn2 , ·)
〉

= c0 + c1Kγ1,γ2(p
n1−pn2 ,(0,0)) ,

where we used the definition of a reproducing kernel in
the last step; see Leobacher and Pillichshammer (2014,
Chapter 3, Definition 3.3). We collect all terms to build
our modelled variance:

var
(

1
4π

v̂ol(Y )
)
=

− c1 +
c1

N2

N−1

∑
n1,n2=0

Kγ1,γ2(p
n1−pn2 ,(0,0)) . (10)

VARIANCE PREDICTION FOR
LATTICE POINT SETS

So far we have only considered general sets of
N points. In the following we look at a particular
construction.

Let d,N ∈ N, N ≥ 2 and let q ∈ Zd . The point set
P(q,N) = {q0, . . . ,qN−1} with

qn :=
{ n

N
q
}
,

in which the fractional part function {·} is
applied component-wise, is called a lattice point
set. The vector q is its generating vector. Such
point sets have been extensively studied; see e.g.,
(Dick and Pillichshammer, 2010; Leobacher and
Pillichshammer, 2014; Niederreiter, 1992; Sloan and
Joe, 1994; Wang and Hickernell, 2002) and references
therein.

Lattice point sets are additive sets which means
that the fractional part of the sum of two points is
another point in the set. In the following we write
v̂ol(Y,P(q,N)) to indicate that we use a lattice point
set to generate our estimator; i.e.,

v̂ol(Y,P(q,N)) =
4π

N

N−1

∑
n=0

G((φ0,y0)+qn)

For P = P(q,N), additivity reduces the formula in
Eq. 10 to

var
(

1
4π

v̂ol(Y,P)

)
=−c1+

c1

N

N−1

∑
n=0

Kγ1,γ2 (q
n,(0,0)) .

(11)

We first show that we can always find a good
upper bound for the modelled variance based on the
covariogram model if we use a particular choice of
lattice points. Thus, the variance converges to zero
quite fast as the number of points increases. Note
that this result holds for fixed but arbitrary parameters
c0,c1,γ1,γ2.

Lemma 6. For coprime q and N, let P = P(q,N)
be the lattice point set with generating vector q. Then,
for every N, there exists a choice for q such that
the modelled variance of the estimator based on the
covariogram model Eq. 8 satisfies

var
(

1
4π

v̂ol(Y,P)

)
∈ O

(
(logN)2 log logN

N2

)
,

in particular for γ1 = γ2 = 1, we have

var
(

1
4π

v̂ol(Y,P)

)
≤ c1

((
1+

π2

3

)2
)
·

1+100(1+ logN)2 log logN
N2 .

Proof. The proof is an immediate consequence of
the following results: Leobacher and Pillichshammer
(2014, Lemma 4.20) and Larcher (1986, Theorem
3), using the known bounds for the sum of divisors
of a positive integer and the value of the Euler
constant.

We finish this section with an outline of how to
estimate the parameters c0,c1,γ1 and γ2 that appear in
our model for the covariogram in Eq. 8 from a single
sample {(φ0,y0)+qn} with q = (1,q) and q 6= 1; see
also Gual-Arnau and Cruz-Orive (2002, Section 5).
Note that the restriction to q = (1,q) has no effect on
the result in Lemma 6. An unbiased estimator for the
covariogram g(h1,h2) as defined in Eq. 4 is given by

ĝ(h,P) =

1
N

N−1

∑
n=0

G((φ0,y0)+qn)G((φ0,y0)+qn−(h1,h2)) .

(12)

Setting N = x · q+ y, we choose the four points p1 =
(0,0), p2 = (1,q), p3 = (x + 1,q− y) and p4 = (x +
2,2q− y) (see Fig. 2) and evaluate Eq. 12 at these
different points to get four equations:

c0 + c1Kγ1,γ2(pi,(0,0)) = ĝ(pi,P) .
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Fig. 2. The lattice point set P((1,3),11) such that
N = x · q+ y = 3 · 3+ 2. The highlighted rectangle is
thus spanned by the vectors (1,3) and (4,1).

Solving these equations for c0,c1,γ1 and γ2 gives
the desired estimates for the parameters. We remark
that we model the space Hγ1,γ2 , finding γ1,γ2.

SIMULATIONS AND
CONCLUSIONS

We use the same two objects as in González-
Villa et al. (2017) to test the volume estimator
and the variance predictor; i.e., a Gaussian particle
introduced in (Gual-Arnau and Cruz-Orive, 2002) and
a computer reconstruction of a rat brain; see Fig. 3. The
Gaussian particle is very smooth whereas the computer
reconstruction of the rat brain has edges (and as such
may not fully qualify as a nice particle). We use the
following point sets in the unit square to generate
direction vectors u ∈ S2 for the rays in our volume
estimation:

1) Lattice points – for a given N we choose the
generating vector (1,q), with 1 ≤ q ≤ N − 1,
such that q,N are coprime and the resulting
lattice has the smallest discrepancy among all
possible such lattices with N points; for details
we refer to (Pausinger and Topuzoğlu, 2018). Note
that discrepancy is a standard tool from uniform
distribution theory to assess the distribution quality
of a point set used in numerical integration.

2) Optimal points – for a given N these point sets
minimize the worst case integration error Eq. 5
in our function space as shown by (Hinrichs and
Oettershagen, 2016).

3) Systematic Points (4,4) – Points on a regular 4×4
grid which were previously introduced and used
by (González-Villa et al., 2017; Gual-Arnau and
Cruz-Orive, 2002). We consider a set of 16 points
to compare favourably with the other point sets.

EXPERIMENT 1: PERFORMANCE OF
VOLUME ESTIMATOR
In the first set of computer experiments, we

compare the performance of the different estimators

based on the nucleator idea. We sample M = 1800
uniform random points (φ0,y0) ∈ [0,1]2 and estimate
the volume for each of these seeds and each of the
above point sets. Similar to Hinrichs and Oettershagen
(2016) we consider point sets with 4 ≤ N ≤ 16
points, which are also realistic sample sizes in the
context of stereology. The empirical mean Ee(v̂ol(Y ))
and variance vare(v̂ol(Y )) of these experiments are
computed as follows

Ee(v̂ol(Y )) =
1
M

M

∑
i=1

v̂ol(Y,Pi) ,

vare(v̂ol(Y )) =
1
M

M

∑
i=1

(
v̂ol(Y,Pi)−Ee(v̂ol(Y ))

)2
,

in which v̂ol(Y,Pi) denotes the value of the estimator
using the ith point set with 1 ≤ i ≤ M. In the
stereological literature, the quality of quantitative
estimates obtained from design-based stereological
methods is often investigated via the square coefficient
of error CE2 defined as

CE2
e

(
v̂ol(Y )

)
=

vare(v̂ol(Y ))

Ee(v̂ol(Y ))2
.

Fixing N, we calculate CE2
e for each run of M = 1800

experiments and present the results in Fig. 3.

This first experiment reveals two interesting facts.
First, refining the sampling scheme, i.e., replacing grid
points by lattice or lattice-like points as in Hinrichs
and Oettershagen (2016) considerably reduces the
variance. In fact, it seems that we can obtain a similar
precision with only half as many points, whereas we
vastly improve the precision when using the same
number of points. Second, it is interesting to see that
our results illustrate previous results by Hinrichs and
Oettershagen (2016, Table 1). Whenever the optimal
point set is not a lattice, there is a spike in our graphs.
We would like to highlight the case N = 6; here the
choice of lattices is particularly limited since the only
possible generating vectors are (1,1) and (1,5). On the
other hand, note that the optimal points in Hinrichs
and Oettershagen (2016) are designed to minimize
the worst case error in the function space, whereas
our experiments only look at a particular function in
this space. Thus, it is of course not surprising that
lattice point sets can also achieve better results for this
particular function than the so called optimal points.
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Fig. 3. Results of the simulations for the Gaussian particle (left) and the reconstructed rat brain with transversal
(middle) and longitudinal (right) vertical axes through the center of mass. The graphs show the corresponding
coefficient of error for estimators based on different point sets.

Fig. 4. Each black dot corresponds to the predicted variance of one of our experiments and the red curve is the
average of all black dots whereas the blue line is the empirical variance of the volume estimators. The two plots
on the left show the results for our new variance predictor, while the two plots on the right show the results for
the adapted variance predictor from Gual-Arnau and Cruz-Orive (2002).
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EXPERIMENT 2: PERFORMANCE OF
VARIANCE PREDICTOR

In our second experiment, we focus only on lattice
point sets and compare our variance predictor based
on the simple covariogram model Eq. 8 to a previously
suggested variance predictor for grid points based on
a different model for the covariogram. This variance
predictor was introduced in (Gual-Arnau and Cruz-
Orive, 2002) and can be adapted to our point sets as
follows

var1(v̂ol(Y,P)) =
16π2 · (C0−C1)

6N2−6N
, (13)

in which

C j =
N−1

∑
i=0

G((φ0,y0)+qi)G((φ0,y0)+qi+ j) .

This variance predictor is not based on a kernel
function and the price for its improved precision is that
its computation is more cumbersome in practice and its
precise analysis is much more technical and involved.

We calculate for each of our M experiments the
variance predicted by Eq. 11 as well as by Eq. 13
and compare the mean of the values of the predicted
variance to the empirical variance already computed in
Experiment 1 as part of calculating CE2

e ; see Fig. 4.
The main observation is that while the curves in Fig. 4
agree very well, the values are much more spread for
our new variance predictor. Given the simplicity of our
covariogram model (Eq. 8), this is not too surprising.

The main question that arises in this context is how
to improve our covariogram model (Eq. 8). In theory,
a better approximation could be given using first
eigen-functions obtained of the spectral decomposition
of the kernel, which gives the best approximations,
see Hsing and Eubank (2015). Unfortunately, we could
not find an easy analytical expression in this case.
Note that the Moore-Aronszajn theorem provides a
theoretical justification for adding more terms to our
model. However, there is no approximate version
of this theorem meaning it is not clear how to
actually improve this approximation systematically;
i.e., at which points we have to evaluate the kernel
or how many terms are needed to reach a certain
approximation error. Therefore, we conclude with the
following questions for future research:

How to improve our covariogram model (Eq. 8) by
adding more terms? How to quantify the quality of this
approximation of the covariogram? How to choose the
additional points at which the kernel function should
be evaluated?
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