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ABSTRACT

Random sets play an essential role in modelling several phenomena in biology, medicine and material science.
However, sometimes it is hard to describe them using a specific model. Therefore it can also be difficult to
classify them or to compare their realisations. This contribution proposes a similarity measure between two
random sets whose realisations consist of many components based on just one realisation of each of them. The
similarity measure is obtained in a non-parametric way taking into account the shapes and the positions of the
components. The procedure is justified by a simulation study and consequently applied to real biomedical data
of histological images of mammary tissue.

Keywords: kernel test, non-parametric statistics, random tessellation, similarity measure.

INTRODUCTION

In recent years, random sets have been developed
as a valuable tool for modelling various phenomena
in many fields of science such as dynamics of cells in
organisms (Mrkvička and Mattfeldt, 2011; Hermann et
al., 2015), presence of different plants in ecosystems
(Diggle, 1981; Møller and Helisová, 2010) or particles
in materials (Helisová, 2014; Neumann et al., 2016).
In order to describe and explain these events, a wide
range of random set models are introduced.

A significant class of random set processes are
germ-grain models (Chiu et al., 2013), where the
random set is formed as a union of simple random
sets (grains) whose reference points (germs) form a
point process. The most simple model of this kind
is the Boolean model (Chiu et al., 2013), where the
process of the germs forms a Poisson point process,
the grains are independently distributed and their
distribution does not depend on the germs. Since this
model does not capture any dependencies between
grains, some more sophisticated models have had to
be developed. Let us mention for example Quermass-
interaction processes (Kendall et al., 1999) used in
the simulation study in the presented paper, where the
interactions among the grains are described through
geometric characteristics of the whole union, which
makes the model very flexible.

In order to compare or classify the random set
processes based on their realisations, a natural way
is to fit a particular class of parametric models to
the realisations and compare the obtained parameters.
Unfortunately, it can be hard to find a suitable model in
some situations. For example, Mrkvička and Mattfeldt

(2011) try to fit a random-disc Boolean model to
data of mammary tissue with the aim to distinguish
between mammary cancer and masthopatic tissue, but
they notice that only a few percents of the realisations
can be described in this way. Neither the Quermass-
interaction process fitted to the same data in Hermann
et al. (2015) appears to be satisfactory. Therefore
we have decided to construct a similarity measure of
random sets in a non-parametric way. The main idea
is to obtain a value describing the degree of belief
that two processes have the same feature of interest
so that it can be then further used for comparison and
classification purposes.

A similarity measure of random sets based on
just two realisations is constructed by Gotovac et al.
(2016) and improved by Gotovac and Helisová (2019).
The authors define a similarity measure through the
inner structure of the random sets. More precisely,
they approximate the realisations by a union of the
discs with identical radii which are tessellated to obtain
two groups of convex compact cells. Since the inner
structures of the random sets are characterised by
the shapes of the obtained random convex compact
cells, the distributions of those two groups of cells are
compared. Although the procedure gives satisfactory
results in some situations, there are some features
that cannot be captured. For example, in special cases
when having many small connected components in the
input realisations, it may be sensitive to small changes
in approximations because small differences in the
approximations can significantly change the shape of
the original realisation. Moreover, it does not take into
account the positions of the components.

This paper proposes a similarity measure between
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two realisations that focuses on the resemblance of
the distribution of set components and their positions.
It works with all the components completely visible
within the observation window with no need for their
further approximations. This method is flexible in
the sense that one can decide based on which set
components to compare the realisations. For example,
if we want to construct the similarity of random sets
based on the similarity of the distribution of their
connected components, the components of interest are
obtained by decomposing the set into its connected
components. When the nature of the problem imposes
assessing the similarity of some more specific set
component, we can further decompose the observed
set into those smaller set components of interest. The
idea is as follows:

1. After isolating the components of interest, the
underlying random set process is considered
as the disjoint union of those components
(usually rugged shaped) centred in their centroids.
Although it seems tempting to use the point
process of centroids for investigating the
position of the shapes, this approach has some
disadvantages. First, there is a loss of information
due to the edge effects (i.e. the components not
completely visible in the observation window
could have their centroid within the observation
window, but we do not have that information), and
second, we would have to investigate the shapes
and their positions independently. Therefore we
apply the following steps.

2. We define a neighbourhood of each connected
component as the set of all points that are nearer
to that connected component than to any other
connected component in the Hausdorff metric,
so we construct a random tessellation of the
observation window. Its purpose is to reveal the
position of the connected components.

3. We sample pairs of connected components and
their neighbourhoods from each realisation and
compare them by a permutation version of
the goodness of fit test based on N-distances
(Klebanov, 2006) for which we introduce a
particular kernel.

4. The similarity between two realisations is
calculated as the p-value of the aforementioned
test applied on the groups of ordered pairs of
centred components with their neighbourhoods.

The procedure is graphically represented in Fig. 3.

The paper is organised as follows. In the Materials
and Methods section, we recall the basic definitions
concerning random sets, N-distances and permutation

test, introduce neighbourhood tessellation of the set
and explain the methodology of construction of the
similarity measure in details. Then in the Results
section, we present the results of the simulation study
and apply the methodology to real data concerning
histological images of mammary tissue. Finally, we
give a summary of the paper with a brief discussion
and comments in the Discussion section.

MATERIALS AND METHODS

RANDOM SETS
In this section, we present some basics concerning

the theory of random sets. Definitions 1-4 are taken
from (Chiu et al., 2013) while Definition 5 of
Quermass-interaction process in this form can be
found in (Møller and Helisová, 2008).

Let F be the family of closed sets and C the
family of compact set of the topological space Rd with
the standard topology G .

Definition 1. Let (Ω,Σ,P) be a probability space. A
mapping X : Ω→F is a random closed set if, for every
compact set K ∈ C

{ω ∈ Ω : X(ω)∩K �= /0} ∈ Σ.

Definition 2. The distribution PX of a random
closed set X is given by the relation PX(F) =
P({ω ∈ Ω : X(ω) ∈ F}) for F ∈ B(F ), where
B(F ) is the Borel sigma algebra on F generated by
topology G .

Definition 3. A random closed set X is stationary if its
distribution is invariant under translation, i.e. for all
v ∈Rd, the distribution of X+v = {u+v,v ∈ X} is the
same as that of X.

For A,B ⊂ Rd let us denote by A⊕B := {x+ y :
x ∈ A,y ∈ B} and by |A| the n-dimensional Lebesgue
measure of the set A.

Definition 4. Let Y = {y1,y2, . . .} be a stationary
Poisson point process in Rd and {B1,B2, . . .} be
a sequence of independent identically distributed
random compact sets in Rd that are independent of
Y . If E|B1 ⊕K| < ∞ for all compact sets K, then the
random set

B = ∪∞
n=1(yn +Bn)

is called Boolean model.

Definition 5. Consider a planar random disc Boolean
model, i.e. the Boolean model with B1 being a disc
in R2 with random radius. The Quermass-interaction
process is a random set whose probability measure is
absolutely continuous with respect to the probability
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measure of the given Boolean model . The density of
its probability measure with respect to the probability
measure of the given Boolean model is of the form

fθ (b) =
1
cθ

exp{θ1A(Ub)+θ2L(Ub)+θ3χ(Ub)}

for each finite disc configuration b = {b1 . . . ,bn},
where A = A(Ub) is the area, L = L(Ub) is the
perimeter, χ = χ(Ub) is Euler-Poincaré characteristic
(i.e. the number of connected components minus the
number of holes) of the union Ub = ∪n

i=1bi, θ =
(θ1,θ2,θ3) is 3-dimensional vector of parameters and
cθ is the normalising constant.

NEIGHBOURHOODS OF COMPONENTS
We address the problem of describing the position

of the components of the set by introducing a
random tessellation of an observation window. This
tessellation splits up an observation window based on
the components Ci, i ∈ I in a way that each cell Ni
contains the original component Ci and all points in
the observation window that are closer to Ci than any
other Cj, j ∈ I \ {i} in Hausdorff metric. Let us recall
that Hausdorff metric on F is defined by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

‖x− y‖ ,sup
y∈B

inf
x∈A

‖x− y‖
}
,

A,B ∈ F ,

where we denote ‖·‖ the Euclidean norm on Rd .

Definition 6. Consider a finite union of disjoint
random sets {C1 . . . ,Cn} within the observation
window W. Every set Cj generates the neighbourhood

Nj = {y∈W : dH({y},Cj)≤ dH({y},Ck) for all j �= k}.

The system T of all sets Nj, j = 1, . . . ,n is called
the neighbourhood tessellation on a union of sets.

An example of neighbourhood tessellations of a
union of components is represented in Fig. 1.

NEGATIVE DEFINITE KERNELS AND N-
DISTANCES
In this section, we briefly introduce the reader

to the theory of N-distances, the distances between
probability distributions that are built using negative
definite kernels. We also provide some valuable
examples that will be used in the construction of the
similarity measure. All definitions, Propositions 8, 9
and 14, Theorem 10 and Example 11 can be found
in (Klebanov, 2006) and Example 12 is taken from
(Gotovac et al., 2017).

Definition 7. Let X be a non-empty set. A map L :
X ×X → C is called a negative definite kernel if for
any n∈N, arbitrary c1, ...,cn ∈C such that ∑n

j=1 c j = 0
and arbitrary x1, ...,xn ∈ X , it holds

n

∑
j=1

n

∑
k=1

L(x j,xk)c jck ≤ 0. (1)

Proposition 8. If L is a real function satisfying
L(x,y) = L(y,x) for all x,y ∈ X , then L is a negative
definite kernel if and only if (1) holds for arbitrary real
numbers c1, . . . ,cn under condition ∑n

j c j = 0.

Suppose that L is a real continuous function, and
denote by PL the set of all probability measures P on
X for which the integral∫

X

∫

X
L(x,y)dP(x)dP(y)

exists.
Proposition 9. Let L be a real continuous function on
X ×X satisfying

L(x,y) = L(y,x), x,y ∈ X .

The inequality

2
∫

X

∫

X
L(x,y)dP1(x)dP2(y)

−
∫

X

∫

X
L(x,y)dP1(x)dP1(y)

−
∫

X

∫

X
L(x,y)dP2(x)dP2(y)≥ 0

holds for all P1,P2 ∈ PL if and only if L is a negative
definite kernel.

Definition 10. A map L : X × X → R is
called a strongly negative definite kernel if L is
a negative definite kernel and for an arbitrary
probability measure Q ∈ P and an arbitrary
c : X → R such that

∫
X c(x)dQ(x) = 0 and∫

X

∫
X L(x,y)c(x)c(y)dQ(x)dQ(y) exists, relation

∫

X

∫

X
L(x,y)c(x)c(y)dQ(x)dQ(y) = 0

implies c(x) = 0 Q-almost everywhere.

Theorem 11. Let L be a strongly negative definite
kernel on X × X satisfying L(x,y) = L(y,x) and
L(x,x) = 0 for all x,y ∈ X . Let N : PL ×PL → R
be defined by

N (P1,P2) =2
∫

X

∫

X
L(x,y)dP1(x)dP2(y)

−
∫

X

∫

X
L(x,y)dP1(x)dP1(y)

−
∫

X

∫

X
L(x,y)dP2(x)dP2(y).

Then N= N 1/2 is a distance on PL.
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(a) Union of the disjoints components (b) Components and neighbourhoods (c) Neighbourhood tessellation

Fig. 1: Neighbourhood tessellations of union of components

Example 12. If X = Rd , we have that

L(x,y) = ‖x− y‖r ,

for 0 < r < 2 is a strongly negative definite kernel on
Rd ×Rd .

For C1,C2 ⊂ Rd let us denote C1∆C2 := {x ∈
Rd : x ∈ C1,x /∈ C2 or x /∈ C1,x ∈ C2} the symmetric
difference between sets C1 and C2.

Example 13. If X = C the family of all compact sets
in Rd we have that

L(C1,C2) = µr/2(C1∆C2),

where 0 < r ≤ 2 and µ is an arbitrary finite measure
on C , is a negative definite kernel on C ×C (Gotovac
et al., 2017).

Let us further on take µ(D) = µA(D), where
µA(D) is the area of the set D ∈ C . Suppose we have
discretised versions of the sets C1 and C2, i.e. the sets
are represented as the matrices of zeros and ones,
denoted by MC1 and MC2 respectively. Then

LA(C1,C2) = µr/2
A (C1∆C2) = ||MC1 −MC2 ||

r
F ,

where || · ||F stands for Frobenius matrix norm, is
by Example 12 a strongly negative definite kernel on
the set of all matrices for 0 < r < 2. Fig. 2 presents
the difference between two matrices representing
discretised sets whose Frobenius norm approximates
the square root of the area of the symmetric difference
between the original sets.

Proposition 14. If a negative definite kernel L : X ×
X → R satisfies the conditions L(x,x) = 0, L(x,y) =
L(y,x) for all x,y ∈ X , then there exists a real Hilbert
space and a family (ax)x∈X of its elements such that

L(x,y) =
∥∥ax −ay

∥∥2
, x,y ∈ X .

Proposition 15. Let X1 and X2 be arbitrary non-
empty sets and L1 : X1 × X1 → R and L2 : X2 ×
X2 → R negative definite kernels on X1 and
X2, respectively, satisfying conditions L1(x1,x1) =
L2(x2,x2) = 0, L1(x1,y1) = L(y1,x1) and L2(x2,y2) =
L2(y2,x2) for all x1,y1 ∈ X1, x2,y2 ∈ X2. Let X =
X1 ×X2 and define L : X ×X → R by

L
(
(X1,X2) ,

(
X ′

1,X
′
2
))

=
√

L1
(
X1,X ′

1

)
+L2

(
X2,X ′

2

)
,

for (X1,X2),(X ′
1,X

′
2)∈X . Then L is a negative definite

kernel on X .

Proof. Note that from Proposition 14 it follows that L1
and L2 are non-negative functions, so L is well defined.

For n ∈ N, arbitrary c1, ...,cn ∈ R such that
∑n

j=1 c j = 0 and arbitrary(
X (1)

1 ,X (1)
2

)
, . . . ,

(
X (n)

1 ,X (n)
2

)
∈ X it holds

n

∑
j=1

n

∑
k=1

L
((

X ( j)
1 ,X ( j)

2

)
,
(

X (k)
1 ,X (k)

2

))
c jck

=
n

∑
j=1

n

∑
k=1

√
L1

(
X ( j)

1 ,X (k)
1

)
+L2

(
X ( j)

2 ,X (k)
2

)
c jck

≤
n

∑
j=1

n

∑
k=1

(
1+L1

(
X ( j)

1 ,X (k)
1

)
+L2

(
X ( j)

2 ,X (k)
2

))
c jck

≤
n

∑
j=1

n

∑
k=1

L1

(
X ( j)

1 ,X (k)
1

)
c jck+

+
n

∑
j=1

n

∑
k=1

L2

(
X ( j)

2 ,X (k)
2

)
c jck ≤ 0.

The first inequality results from the fact that for
a non-negative real number x it holds

√
x ≤ 1 + x.

Consequently, following inequality (2) and Proposition
8, we conclude that L is a negative definite kernel.
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Example 16. Suppose that X = C ×C and that we
only have available discretised versions of the sets.
Then we can use following kernel

LA ((C1,N1) ,(C2,N2)) =
√

µA (C1∆C2)+µA (N1∆N2)

=
√
||MC1 −MC2 ||2F + ||MN1 −MN2 ||2F ,

where (C1,N1),(C2,N2) ∈ C ×C and MC1 , MN1 , MC2 ,
MN2 ∈ {0,1}n×m are the matrices consisting of zeros
and ones representing the approximations of the sets
C1,N1,C2 and N2, respectively.

SIMILARITY MEASURE BASED ON N-
DISTANCES

Similarity measures are used to represent the
nearness of two objects. In statistics and related
fields they play an important role in cluster analysis
and alignment algorithms. The value of a similarity
measure increases as two objects become more similar.
In this section, we introduce a similarity measure
that is inspired by the permutation version of the
test of equality in distribution based on N-distances
(Klebanov, 2006).

Consider two random elements A and B taking
values in X . Let L be a negative definite kernel on
X ×X .

Suppose we have two samples X = (X1, . . . ,Xm1)
from a random element A with distribution P1
and Y = (Y1, . . . ,Ym2) from a random element B
with distribution P2, where P1,P2 ∈ PL. Further on,
suppose that the samples X and Y are such that the
sequence of random elements X1, . . . ,Xm1 ,Y1, . . . ,Ym2
is exchangeable under the assumption that P1 = P2.
The aim is to define similarity between distributions
P1 and P2 as the p-value of a statistical test with the
null hypothesis P1 = P2.

First, we evaluate the empirical estimate of the
square of the N-distance between P1 and P2 from
Theorem 11

ˆN =
2

m1m2

m1

∑
j=1

m2

∑
k=1

L(Xj,Yk)−
1

m2
1

m1

∑
j=1

m1

∑
k=1

L(Xj,Xk)

− 1
m2

2

m2

∑
j=1

m2

∑
k=1

L(Yj,Yk).

We choose the number of permutations s
(recommended to be about 1000), and then s
times, we permute the considered joined sample
X1, . . . ,Xm1 ,Y1, . . . ,Ym2 , subsequently split them back

into two samples of the length m1 and m2, respectively,
and for each calculate empirical values of ˆN j, j =
1, . . . ,s. Under the assumption P1 = P2, permutations
do not modify the distribution of the random variable

ˆN . If the distributions of the two samples differ, we
expect that after the permutations, the value of the
N−distance is smaller, so we define

p =
#
{

j : ˆN j ≥ ˆN
}
+1

s+1

which will be the similarity between two samples (or
two distributions P1 and P2). The smaller values of this
similarity indicate lower degree of belief that these two
distributions are the same. Note that this similarity p
should be uniformly distributed on the segment [0,1] if
P1 = P2.

METHODOLOGY

Suppose we have two stationary random closed
sets X and Y in R2, which can be expressed as X =

∪n∈N

(
xn +C(1)

n

)
and Y = ∪n∈N

(
yn +C(2)

n

)
, where(

C(1)
n

)
n∈N

and
(

C(2)
n

)
n∈N

are sequences of identically
distributed random compact sets centred at the origin
(further referred as the components), {xn} and {yn}
are stationary point processes. Further on, suppose that
the random sets are observed within the observation
windows W1 and W2, respectively. We set

(
N(1)

n

)
to be

the neighbourhood tessellation of
{
(xn +C(1)

n )∩W1

}

and
(

N(2)
n

)
to be the neighbourhood tessellation of{

(yn +C(2)
n )∩W2

}
. In order to compare X and Y,

we introduce the similarity measures defined as the p-
values of the statistical tests with the following null
hypothesis:

•
(

C(1)
n

)
d
=

(
C(2)

n

)
, when we concentrate only on

the similarity of the components shapes or

•
(

C(1)
n ,N(1)

n

)
d
=
(

C(2)
n ,N(2)

n

)
and

•
(

N(1)
n

)
d
=

(
N(2)

n

)
, when we want to obtain the

similarity based on the shapes and the positions of
the components.

Let us now propose the procedure for sampling
and testing the aforementioned hypothesis when we
have just two realisations of random sets available.
As mentioned in the Introduction, the procedure of
comparing two realisations of random sets works in the
following steps (Fig. 3):

5



190  

Gotovac V: Similarity between random setsGOTOVAC V: Similarity between random sets

(a) Example of a discretised set MC1 (b) Example of a discretised set MC2 (c) Difference MC1 −MC2

Fig. 2: Difference between matrices representing discretised sets.

First, we determine the components of interest in
each realisation. It can be done simply by considering
the connected components of the realisations as
usually done when we do not have enough information
about the input data, or we can take into account
the nature of the data and split them due to the
required purpose as done for the example here in the
Application to real data section.

Then we construct neighbourhood tessellations
with respect to the obtained components as described
in the Neighbourhoods of components section.

After the construction of the neighbourhood
tessellations, to avoid edge effects, we exclude the
connected components intersecting the boundary of
the observation window, i.e. the ones that are not
completely visible (coloured by dark grey in Fig. 3
while the considered components are coloured in
black). Furthermore, if we moreover want to compare
the positions of the components, we exclude all the
neighbourhoods touching the boundary together with
their connected components (coloured by grey in
Fig. 3 while the neighbourhoods to be considered
are coloured in blue). In this way, we identify each
realisation with a realisation of a marked point process,
where the collection of centroids corresponding to
the components form the point process (red dots
in Fig. 3) and the corresponding components and
neighbourhoods, respectively, play the role of marks.
Then assuming that the observed random sets are
stationary, all the centred components together with
their centred neighbourhoods have identical joined
distribution. Furthermore, suppose that those two
realisations are generated by the same random set,
then two collections of pairs of the components with
their neighbourhoods form an exchangeable sequence
of random pairs.

Finally, we construct the similarity measure
between two realisations of such marked point

processes using the approach described in the
Similarity measure based on N-distances section.

Suppose we have a sample of m1 centred
components C(1)

1 , . . . ,C(1)
m1 paired with its centred

neighbourhoods N(1)
1 , . . . ,N(1)

m1 from the first realisation
and m2 centred components C(2)

1 , . . . ,C(2)
m2 paired with

its centred neighbourhoods N(2)
1 , . . . ,N(2)

m2 from the
second realisation.

The approach requires us to choose the appropriate
negative definite kernel that captures the most
important features of the shapes (i.e. this negative
definite kernel should obtain smaller values when
evaluated on two sets having similar features of
interest). So if we want to focus only on the
similarity of the component shapes (or only on the
neighbourhoods shapes) we can consider a negative
definite kernel in the form from Example 13, where we
chose kernel LA. In case we want to incorporate also
the position of the components, we can use the kernel
LA from Example 16 on ordered pairs of components
and their neighbourhoods.

Using these kernels we calculate the p-value of the
permutation test based on N-distances , which presents
the measure of similarity between two realisations of
random sets.

6
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Similarity=p-value

1 1

2 2

3
3

Fig. 3: Steps in calculating the similarity between
two random sets. Step 1.: Isolate the components of
interest from each realisation (different components
are coloured in different shades of grey). Step 2.:
Construct neighbourhood tessellations with respect to
obtained components (coloured in different shades of
blue and light grey). Those suitable for sampling are
components coloured in black with their centroids
coloured red and neighbourhoods coloured in different
shades of blue, i.e. ones not intersecting the boundary
of the observation window. Step 3.: Calculate the
similarity of two collections of pairs of centred
components and their neighbourhoods using the
procedure from Similarity measure based on N-
distances section.

RESULTS

SIMULATION STUDY

We applied the methodology described in the
previous section to different simulated realisations of
random sets to see if we can differentiate between
them based on the shape of the connected components
and their position. The first one is the random-disc
Boolean model (see Definition 4) with centres of discs
in the window 25×25, the intensity of the disc centres
equal to 0.4 and the uniform distribution of radii on
the interval (0.5,1) (see Fig. 4c). The second one
is the random-ellipse Boolean model (see Definition
4) with centres of ellipses in the window 25 × 25,
the intensity of the ellipse centres equal to 0.4 and
uniform distribution of semi-major axes on the interval
(0.5,1) and semi-minor axes on interval (0.2,0.7) (see
Fig. 4b). The third one is the Quermass-interaction
process (see Definition 5) with the parameters θ1 =
0.62, θ2 = -0.86 and θ3 = 0.7 with respect to the
random-disc Boolean model mentioned above. Since
this process produces realisations with larger area and
smaller perimeter compared to the reference process,
it tends to create clusters (see Fig. 4d). Therefore, we
will refer to it as the cluster process in the rest of the
text. The fourth data set is simulated as Quermass-
interaction process with parameters θ1 = -1, θ2 = 1
and θ3 = 0 with respect to the same random-disc
Boolean model. It prefers smaller area and larger
perimeter than the reference random-disc Boolean
modes, so its realisations are usually small non-
overlapping components (see Fig. 4a) and therefore the
process will be referenced as the repulsive process in
the rest of the text. We have simulated 200 realisations
for each of the mentioned processes, all realisations
are transformed to matrices of 400 × 400 black and
white pixels which play the role of the input data. Just
note that the input random-disc Boolean and repulsive
random sets models are the same as the ones used
in (Gotovac et al., 2016) and (Gotovac and Helisová,
2019).

To explore the sensitivity of the methodology
between two different processes as well as within
the classes of the same processes, the following
approach is taken. First, the input matrices are
divided into two groups so that we have 100 pairs
of realisations for the random-disc Boolean model,
random-ellipse Boolean model, cluster process and
repulsive process, respectively, and the similarity is
studied within these groups separately for different
processes. Additionally, we considered 100 pairs of
realisations of different processes, namely random-
disc Boolean vs random-ellipse Boolean, random-
disc Boolean vs cluster random-disc Boolean vs
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repulsive, random-ellipse Boolean vs cluster, random-
ellipse Boolean vs repulsive, and cluster vs repulsive
processes, and studied the similarity again.

Using the methodology from the Methodology
section, for each realisation, the connected
components are isolated, and their neighbourhoods
are constructed (see Fig. 4e, Fig. 4f, Fig. 4g and
Fig. 4h). We use connected components that are not
touching the boundary when we construct a similarity
based on the components shapes and their connected
components together with their neighbourhoods that
are also not touching the boundary of the observation
window for the construction of the similarity based
on the shapes of connected components and their
positions. Note that the realisations of the random-
disc Boolean model have on average 32 connected
components and 25 neighbourhoods not touching the
boundary. From the random-ellipse Boolean model
realisations, an average of 73 connected components
and 58 neighbourhoods were sampled. The repulsive
process realisations have 91 connected components
and 83 neighbourhoods on average, and the cluster
model realisations have on average 33 connected
components and 20 neighbourhoods not touching the
boundary.

In order to compare the methodology presented
in this paper with the existing methodology for
comparing the inner structure of the sets from Gotovac
et al. (2016) and Gotovac and Helisová (2019), the
realisations were approximated by the union of the
convex compact sets following the recommendations
from Gotovac et al. (2016). In more details, for
comparison of repulsive vs random-ellipse Boolean,
random-ellipse-Boolean vs random-disc Boolean and
random-ellipse Boolean vs cluster, the realisations
were approximated by the union of the discs with
the radii of 4 pixels. When comparing repulsive vs
random-disc Boolean and repulsive vs cluster, we
used approximation by discs with radii 5 and for
comparison of random-disc Boolean and cluster the
radii of the discs in approximation was 7.

The Voronoi tessellation of the obtained union
of the discs was constructed, which resulted in two
groups of convex compact cells for each comparison.
For each realisation, 100 non-neighbouring convex
compact cells were sampled. For comparing two
samples of convex compact cells, we used the
permutation test based on the N-distances. The kernel
that we used it this permutation test was introduced in
Gotovac and Helisová (2019) and it was selected as the
one that showed the best empirical power when testing
the equality in the distribution of convex compact cells.

Fig. 5 shows the histograms of p-values when
comparing the same processes using the method

introduced in this paper. We observe that those
p-values are approximately uniformly distributed.
Fig. 6 and Fig. 7 present the histograms of the
p-values when comparing different processes when
using the methodology from present paper together
with the histograms of the p-values when using
the methodology from Gotovac et al. (2016) and
Gotovac and Helisová (2019) as described above. The
percentages of the p-values that are less or equal to
0.05 obtained by the method presented in this paper
are higher than the ones obtained by the other method,
with the exception of comparing repulsive vs cluster
model using only connected components.

The weaker results of the powers obtained when
comparing cluster model with other models using
the methodology presented in this paper are due to
the smaller sample sizes of connected components in
cluster samples and only a few connected components
which are significantly larger and can be seen as
the outliers when testing equality in distribution.
Also, for some realisations, the larger components
characterising the cluster model are touching the
boundary, so they were excluded from the sampling.
In these cases one can consider using the methodology
from Gotovac et al. (2016) and Gotovac and Helisová
(2019) instead of the methodology presented in this
paper.

APPLICATION TO REAL DATA
We apply the procedure also to data of mammary

tissue with the aim to distinguish between mammary
cancer and masthopatic tissue. Note that the breast
contains a branching system of ducts spanning down
from the nipple to glands. The tissue between the
ducts and glands is made of fat and fibrous tissue of
differing proportions. The morphology of this tissue
may indicate various malignant or benign changes.

We consider 8 samples of mastopathic breast
tissue (called Masto in the sequel, see Fig. 8) and 8
samples of mammary cancer tissue (called Mamca in
the sequel, see Fig. 9) that were kindly provided by
the authors of (Mrkvička and Mattfeldt, 2011). Each
sample consists of 10 sub-samples formed by matrices
of 512 × 512 black and white pixels. The samples
present histological images of cross sections of the
ducts branches, where the black areas represent the
surrounding tissue between ducts and glands.

The aim is to compare the samples based on the
shapes of the ducts and their surrounding tissue which
are the components of interest. So, we proceed as
follows. First, we isolate the components of interest.
We decompose the samples so that the holes, i.e. the
white pixels surrounded by the black pixels, can be
interpreted as the ducts. So, heuristically, we assign to
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(a) Repulsive model (b) Random-ellipse Boolean
model

(c) Random-disc Boolean
model

(d) Cluster model

(e) Repulsive model with
neighbourhood tessellation

(f) Random-ellipse Boolean
model with neighbourhood

tessellation

(g) Random-disc Boolean
model with neighbourhood

tessellation

(h) Cluster model with
neighbourhood tessellation

Fig. 4: Examples of realisations of simulated repulsive model (a) and its decomposition to connected components
and neighbourhood tessellation (e), random-ellipse Boolean model (b) and its decomposition to connected
components and neighbourhood tessellation (f), random-disc Boolean model (c) and its decomposition to
connected components and neighbourhood tessellation (g) and cluster model (d) and its decomposition to
connected components and neighbourhood tessellation (h) .

each hole (duct) all black pixels ( surrounding tissue)
that are closer to that hole than to any other hole within
the corresponding connected component. In more
detail, first we decompose sample to its connected
components and than each connected component is
further decomposed based on the holes as described
above. An example of such decomposition is presented
in Fig. 10.

(a) Original sample of
mammary cancer

(b) Decomposed sample of
mammary cancer

(c) Original sample of
mastopathic tissue

(d) Decomposed sample of
mastopathic tissue

Fig. 10: Example of the decomposition of original set
based on holes; Original samples are in sub-figures (a)
and (c) and obtained component are in sub-figures (b)
and (d), respectively (coloured in different shades of
grey)

Then we determine the centroids of the obtained
components and construct the neighbourhood
tessellation. From each sample, 50 components with
their neighbourhoods which are not touching the
boundary of the sub-samples are then collected

9
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Repulsive vs repulsive
Random-ellipse Boolean

vs
Random-ellipse Boolean

Random-disc Boolean
vs

Random-disc Boolean
Cluster vs cluster
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Fig. 5: Histograms of p-values for testing pairs of same simulated processes when using only components
(first row), components and neighbourhood tessellations (second row) and only neighbourhood tessellations
(third row). Here, we compare repulsive vs repulsive (first column), random-ellipse Boolean vs random-ellipse
Boolean (second column), random-disc Boolean vs random-disc Boolean (third column), cluster vs cluster (fourth
column); 100 realisations of each process were used.

randomly. For all pairs of samples, corresponding
p-values of the tests are evaluated (see Similarity
measure based on N-distances section) using only
components and also using components together with
the neighbourhoods. Note that in both cases, the
number of permutations is s = 999, so that the smallest
possible p-value is 0.001.

The obtained p-values from both permutation tests
are presented in Table 1 for Masto vs Masto (left
sub-table) and Mamca vs Mamca (right sub-table)
and Table 2 for Masto vs Mamca. From the left
sub-table in Table 1, we can observe that the higher
similarities are in the blocks on the diagonal. It
suggests that we can cluster those images based on
the shapes of components into 3 clusters: the first one
consisting of the samples Masto1 and Masto2, the
second one of the samples Masto3, Masto4, Masto5
and Masto6, and the third one including the samples
Masto7 and Masto8. The right sub-table in Table 1
shows us that Mamca samples can be divided into
two groups: the first one with the samples Mamca1 to
Mamca5 and the second one containing the samples
Mamca6 to Mamca8. Table 2 shows that comparing

two groups of different samples, we mostly obtain
small p-values, which means that the procedure can
distinguish between those two types of tissue.
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to
7

M
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to
8

Mamca1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.001

Mamca2 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.013
0.001 0.001 0.001 0.001 0.001 0.001 0.006 0.009

Mamca3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.006 0.114

Mamca4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.013 0.009

Mamca5 0.001 0.001 0.001 0.001 0.001 0.001 0.011 0.017
0.001 0.001 0.001 0.001 0.001 0.001 0.055 0.023

Mamca6 0.007 0.002 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.097

Mamca7 0.010 0.015 0.001 0.001 0.001 0.001 0.001 0.011
0.001 0.001 0.001 0.001 0.001 0.001 0.024 0.051

Mamca8 0.021 0.015 0.001 0.001 0.001 0.001 0.006 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.040 0.015
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Fig. 6: Histograms of p-values for testing pairs of different simulated processes by the method from
(Gotovac et al., 2016) (histograms coloured light grey), by the method from (Gotovac and Helisová, 2019)
(histograms coloured grey) and by the method from the present paper (histograms coloured in black) when
using only components (first column), components and neighbourhood tessellations (second column) and only
neighbourhood tessellations (third column). Here, we compare repulsive vs random-ellipse Boolean (first row),
repulsive vs random-disc Boolean (second row), repulsive vs cluster (third row). 100 realisations of each process
were used. Percentages of p-values less or equal to 0.05 are displayed in legend.

Table 2: Table of the p-values (similarity measures)
between samples of mammary cancer tissue and
mastophatic tissue; Each row consists of two sub-rows:
the first sub-row presents results of the test when only
components are taken into the consideration (black)
and the second sub-row consists of results of the test
when both shape of components and their position are
considered (dark grey); p-values larger than 0.05 are
in bold.

DISCUSSION

The presented research shows that a similarity
measure can be a useful tool to differentiate between
random set processes, especially in cases where there
is no suitable parametric model to describe the data.

When comparing two realisations, due to the high

complexity of some random sets in the applications
and in order to avoid overfitting, it is recommendable
to concentrate on specific features of interest. Here, we
proposed a new similarity measure between random
sets based on just two realisations that concentrates on
the shapes of set components as well as their position.

The presented methodology can be summed in
the following steps: isolating components of interest,
constructing the neighbourhood tessellation (this step
can be omitted if positions of components are not
important), choosing features of components that are
of interest and consequently finding a kernel which
will be sensitive to those features, and finally applying
the permutation test. Therefore, the method is very
flexible since a researcher could easily modify the
steps in order to adjust the method for the specific
needs.

This methodology was justified by a simulation
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Fig. 7: Histograms of p-values for testing pairs of different simulated processes by the method from
(Gotovac et al., 2016) (histograms coloured light grey), by the method from (Gotovac and Helisová, 2019)
(histograms coloured grey) and by the method from the present paper (histograms coloured in black) when
using only components (first column), components and neighbourhood tessellations (second column) and only
neighbourhood tessellations (third column). Here, we compare random-ellipse Boolean vs random-disc Boolean
(first row), random-ellipse Boolean vs cluster (second row), random-disc Boolean vs cluster (third row). 100
realisations of each process were used. Percentages of p-values less or equal to 0.05 are displayed in legend.

study, where it has shown better results on simulated
samples than the methodology introduced in (Gotovac
et al., 2016) and (Gotovac and Helisová, 2019) in cases
when we have enough connected components fully
visible within the observation window. The procedure
was consequently applied to mastopatic breast tissue
and mammary cancer data in order to distinguish
between different types of tissue, as well as finding
the most similar samples within the group of the
same tissue type. The similarity matrix between the
presented samples can be constructed using the p-
values from Table 1, Table 2 and Table 3 and can be
further used in various machine learning algorithms.

Furthermore, since this method is concentrated
on the distribution of the components and their
neighbourhoods, it would not be so sensitive to
possible outliers. For example, if we have a few

components that are significantly larger than the others
in the sample, this similarity measure could oversee it.
So, it is not recommended to use this procedure when
these outliers play an important role in distinguishing
between sets. As an alternative in these cases, one
can use methodology from (Gotovac et al., 2016)
or (Gotovac and Helisová, 2019). Also, since the
larger components are more likely to be touching
the boundary of the observation window, they can be
excluded from the sampling with a higher probability.
In these cases, a visual inspection is recommended in
order to make sure that all the important features of
the realisation are preserved after the removing the
components on the boundary. The safer alternative
is to check whether the mean area of the sampled
components is greater or equal to the mean area of
the parts of the omitted components visible within the
observation window. A more detailed simulation study
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(a) Sample ”Masto1”

(b) Sample ”Masto2”

(c) Sample ”Masto3”

(d) Sample ”Masto4”

(e) Sample ”Masto5”

(f) Sample ”Masto6”

(g) Sample ”Masto7”

(h) Sample ”Masto8”

Fig. 8: Samples of masthopatic breast tissue kindly provided by Mrkvička and Mattfeldt (2011)
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(a) Sample ”Mamca1”

(b) Sample ”Mamca2”

(c) Sample ”Mamca3”

(d) Sample ”Mamca4”

(e) Sample ”Mamca5”

(f) Sample ”Mamca6”

(g) Sample ”Mamca7”

(h) Sample ”Mamca8”

Fig. 9: Samples of mammary cancer kindly provided by authors of (Mrkvička and Mattfeldt, 2011)
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Table 1: Tables of the p-values (similarity measures) between samples of masthopatic tissue (left) and between
samples of mammary cancer tissue (right) ; Each row consists of two sub-rows: the first sub-row presents results
of the test when only components are taken into the consideration (black) and the second sub-row consists of
results of the test when both shape of components and their position are considered (dark grey); p-values larger
than 0.05 are in bold.
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Masto1 0.199 0.001 0.004 0.024 0.039 0.001 0.001
0.092 0.026 0.004 0.017 0.023 0.001 0.002

Masto2 0.001 0.001 0.003 0.002 0.001 0.001
0.022 0.004 0.012 0.075 0.001 0.001

Masto3 0.726 0.037 0.042 0.001 0.001
0.001 0.007 0.039 0.001 0.001

Masto4 0.507 0.281 0.001 0.001
0.666 0.226 0.001 0.001

Masto5 0.686 0.001 0.001
0.393 0.001 0.001

Masto6 0.001 0.001
0.001 0.001

Masto7 0.160
0.376
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Mamca1 0.052 0.260 0.149 0.026 0.001 0.001 0.001
0.079 0.046 0.001 0.001 0.001 0.001 0.001

Mamca2 0.341 0.489 0.181 0.001 0.051 0.005
0.004 0.001 0.001 0.001 0.085 0.037

Mamca3 0.386 0.163 0.001 0.001 0.002
0.021 0.080 0.001 0.004 0.001

Mamca4 0.117 0.001 0.001 0.001
0.095 0.001 0.001 0.001

Mamca5 0.001 0.049 0.001
0.001 0.005 0.003

Mamca6 0.681 0.146
0.681 0.067

Mamca7 0.054
0.198

on the samples of the processes from the Simulation
study section showed that this bias in the sampling
did not significantly affect the distribution of obtained
p-values. However, in situations when one sample
has larger components that are omitted and the other
sample does not have those components, the bias in
the sampling can lead to false high similarly values.

ACKNOWLEDGEMENTS

The research was supported by The Czech Science
Foundation, project No. 19-04412S. The author is
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