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ABSTRACT

In order to create an image segmentation method robust to lighting changes, two novel homogeneity criteria
of an image region were studied. Both were defined using the Logarithmic Image Processing (LIP) framework
whose laws model lighting changes. The first criterion estimates the LIP-additive homogeneity and is based
on the LIP-additive law. It is theoretically insensitive to lighting changes caused by variations of the camera
exposure-time or source intensity. The second, the LIP-multiplicative homogeneity criterion, is based on
the LIP-multiplicative law and is insensitive to changes due to variations of the object thickness or opacity.
Each criterion is then applied in Revol and Jourlin’s (1997) region growing method which is based on the
homogeneity of an image region. The region growing method becomes therefore robust to the lighting changes
specific to each criterion. Experiments on simulated and on real images presenting lighting variations prove
the robustness of the criteria to those variations. Compared to a state-of the art method based on the image
component-tree, ours is more robust. These results open the way to numerous applications where the lighting
is uncontrolled or partially controlled.

Keywords: Homogeneity of an image region, Image segmentation, Logarithmic Image Processing, Region

Growing, Robustness to lighting changes.

INTRODUCTION

Segmentation of images acquired with different
lighting conditions is a challenging task in image
analysis that can occur in many settings such as visual
inspection for industry (Cord et al., 2010; Noyel,
2011; Noyel et al., 2013; Parra-Denis et al., 2011),
medical images (Noyel et al., 2014; 2017), security
(Foresti et al., 2005), driving assistance (Hautiere
et al., 2006), etc. Lighting variations obviously
represent a substantial obstacle for the development
of reliable image processing algorithms. To overcome
this difficulty, we can determine the two following
approaches:

(1) Firstly, a practical approach consisting of
circumventing the problem, e.g. by a learning process.
This is often the case for face recognition, where a
database is created by varying together the acquisition
angle and the intensity of the lighting source (Ramaiah
et al., 2015). An alternative way to learning processes
aims at extracting from images some characteristics
independent of lighting conditions (Wang et al.,
2004; Shah et al., 2015). Another alternative aims at
attenuating the lighting variations effects by means
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of various methods like shadow suppression (Zhang
etal., 2019).

(i1) Secondly, a fundamental approach consists of
creating models and algorithms almost insensitive to
such variations. In that respect, Chen et al. (2006)
define the Logarithmic Total Variation (LTV) model in
order to remove varying illumination in face images.
Yu and Fan (2017) regard an image in the three-
dimensional space as a grey wave composed of peaks
and troughs which divide the image into many local
sub-regions. The Retinex model takes into account the
human perception of colours and contrasts. It has been
extensively reviewed by Elad er al. (2003) alongside
some related illumination compensation methods.
We can also mention the representation methods of
the image level sets by trees of their connected
components, such as: the component-tree, also named
max-tree (Salembier et al., 1998), or the tree of shapes,
also named inclusion tree (Monasse and Guichard,
2000). They are invariant to contrast changes due
to a continuous and increasing function applied to
the image (Monasse and Guichard, 2000). Recently,
Passat ef al. (2011) introduced a segmentation method
by component-tree presenting a certain robustness to
intensity inhomogeneity provided that the maximal
image contrast is in an intermediate range: not too low
and not too huge. The connected filtering on tree-based



shape spaces of Xu et al. (2016) is also theoretically
invariant to those contrast changes.

Nevertheless, only a few papers focus on the
causes of lighting variations. For this purpose,
Jourlin and Noyel (2018) have defined two new
homogeneity criteria in the LIP (Logarithmic Image
Processing) framework, namely the LIP-additive
and LIP-multiplicative homogeneity criteria. Each
criterion is based either on the LIP law of addition A
of two images or the multiplication A of an image by
a scalar. Such laws are now well-known to model the
lighting variations affecting the image acquisition step
(Jourlin, 2016). The LIP-additive law A especially
models changes of source intensity or exposure-time
whereas the LIP-multiplicative law A models the
thickness (or opacity) changes of the observed object.

The aim of this paper is to study these homogeneity
criteria in details. At the theoretical level, we
will demonstrate their insensitivity to the lighting
variations which are modelled by the corresponding
LIP-laws. At the application level, we will prove
their robustness to lighting changes on both simulated
and on real images. For segmentation purpose we
will apply them within the Revol and Jourlin’s
(1997) algorithm which is in the class of Region
Growing methods. This algorithm has the specificity
of evaluating the homogeneity of an image region at
each step. Its segmentation results will be compared to
those obtained by the component-tree method of Passat
etal (2011).

MATERIALS AND METHODS

In this section, we will present the theoretical
methods and their validation by the experimental
material. First, we will summarise the Logarithmic
Image Processing model. Second, we will present the
specific lighting variations which are modelled by each
LIP law. Third, we will introduce the LIP-additive
and LIP-multiplicative homogeneity criteria. Fourth,
we will recall the Revol and Jourlin’s (1997) region
growing algorithm based on the homogeneity of an
image region. Fifth, for comparison purpose, we will
recall the sate-of-the-art method of Passat et al. (2011).
Finally, we will present the experimental validation
with simulated and real images.

LOGARITHMIC IMAGE PROCESSING

Introduced by Jourlin and Pinoli (1988; 2001), the
LIP model possesses strong physical properties. Let f
and g be two grey level functions defined on the spatial
support D C R”, with values in the grey scale [0,M]
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where M € R. In fact, the addition f A g of f and g and
the scalar multiplication A A f of f by a real number A
are both deduced from the optical Transmittance Law
according to:

fAg=f+g—fg/M,
AAfF=M—-M(1-f/M)*.

(D
2)

Let us note that in the LIP framework, the grey
scale [0, M| is inverted in comparison with the classical
one. Indeed, due to the transmittance law, O represents
the “white” extremity of the scale, which corresponds
to the observation of the source intensity. The reason
of such an inversion is that 0 appears as the neutral
element of the addition A, i.e. when no obstacle is
placed between the source and the sensor.

From equation 1, the subtraction between two grey
level functions is easily deduced:

f_
1—

8

fag= 3)

N

Remark. f A g can take negative values except for
f(x) > g(x) at each point x. In such a case, the
subtraction f A g is a grey level image and the
difference f(x) A g(x) represents the Logarithmic
Additive Contrast between the grey levels f(x) and
g(x) (Jourlin and Pinoli, 2001). This difference is the
grey level which must be added to the brightest one
(here g(x)) in order to obtain the darkest one (here
O

Remark. Let us note that for 8-bit digitised images, M
is equal to 256 and the grey levels vary from O to 255.

At the mathematical level, it has been
demonstrated (Jourlin and Pinoli, 2001) that the laws
A and A give a Vector Space structure to the set
I(D,[0,M[) of images defined on a same spatial
support D. This allows the use of many mathematical
tools specific to this kind of space. In order to complete
the outstanding properties of the LIP Model, let us
recall that Brailean et al. (1991) have established its
consistency with the Human Visual System, which
opens the way to process images as a human eye would
do.

WHICH LIGHTING VARIATIONS ARE
MODELLED BY EACH LIP LAW?

Carre and Jourlin (2014) and Deshayes et al.
(2015) have shown that the LIP-addition (respectively
subtraction) of a constant to an image (resp. from an
image) perfectly models a decrease (resp. an increase)
of the camera exposure-time or of the source intensity.
By definition of the scalar multiplicative law, the scalar
A appears as a “thickness” parameter: in fact, if f is
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a grey level image, one can associate to it a virtual
half-transparent object producing f in transmission.
A A f represents then the image we would obtain by
stacking f on itself A times. The scalar multiplicative
law models therefore the “opacity” changing of a
half-transparent object or the thickness changing of a
homogeneous object.

HOMOGENEITY CRITERIA: LIP-
ADDITIVE HOMOGENEITY AND LIP-
MULTIPLICATIVE HOMOGENEITY

Let f be a grey level function defined on the
spatial support D C R", with values in the grey scale
[0,M[ and consider a region R of D. There exist
some classical parameters evaluating the homogeneity
of the image f in R, like the standard deviation
of(R) or the “diameter” of R in the mathematical
sense defined by sup,.p f(x) — infycg f(x) which is
nothing but the dynamic of the image region. Such
homogeneity parameters are obviously sensitive to
lighting variations, which justifies the introduction of
the two new criteria: the LIP-additive and the LIP-
multiplicative homogeneity.

Remark. When there is no ambiguity, we will consider
that the homogeneity of an image f over a region R
is equivalent to the homogeneity of the region R. The
region R is indeed supposed to be associated to the
image f.

LIP-additive homogeneity

The homogeneity H fA (R) of the region R is defined
as its dynamic in the LIP sense:

A inf f(x)

XER

Hf& (R) = sup f(x) 4)

XER

Let us note that H f& (R) lies in [0, M| and represents
thus a grey level which can be interpreted as the
maximal Logarithmic Additive Contrast observed in
the region (Jourlin and Pinoli, 2001).

The most important property of this homogeneity
criterion is its insensitivity to exposure time variations
modelled by LIP-addition/subtraction of a constant C:

Hisc(R) = Hf (R) 5)

Proof. Let us first remark that

sup{(fAC)(x)} = sup {rxrAc.

XER
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In fact, equation 1 gives:

sup {f} AC = sup{f}+C—(C.sup{f})/M
=(1-C/M)sup{f}+C=sup{f(1-C/M)}+C
=sup{f(1-C/M)+C} =sup{f+C— f.C/M}
=sup{fAC}.

In the same way, we have:
infyer {(fAC)(x)} =infrer {f(x)} AC.

In such conditions, equation 4 can be written:
Hfsc(R) = (sup ()} 4C) A (inf /(1)) AC).

The following computation shows that (A AC) A (BA
C)isequal to A AB:

A+C—4E—(B+C-BE
(AAC)A(BAC) = M = i)
| B AF
M
_A-B(1-5  (“a-B(1-5) _(A-B)
-F-§-% U-R0-§ (-8
=AAB.
The two previous results prove equation 5. J

LIP-multiplicative homogeneity

Now, we propose a homogeneity criterion based
on the LIP scalar multiplication and more precisely
on the notion of Logarithmic Multiplicative Contrast
(LMC) (Jourlin et al., 2012). Let us recall that the
LMC associated to a pair of grey levels g; and g,
where g and g» are strictly positive, is the real number
defined by the formula:

LMC(g1,82) Amin(g1,82) = max(g1,82).  (6)

In the context of images acquired in transmission,
this means that the LMC of two grey levels represents
the number of times the brightest of them must be
stacked upon itself to get the darkest one. In such
conditions, the LIP multiplicative homogeneity of a
region R is computed according to:

Hp (R) = LMC()S:EJII; {f@}inf{f()}) @

_In(1—sup, o {F(0)}/M)
In(1—inf e {f(x)}/M)
Remark. In the case where infycg f(x) = 0, one can

replace this value by 1 in order to avoid an infinite
value for H f& (R).

()




This homogeneity criterion possesses the
fundamental property to be insensitive to variations
of lighting modelled by the LIP-multiplicative law A,
like opacity or thickness variations:

Hyy ¢ (R) = Hp (R). )

Proof. Suppose that Hf& (R) = u, which means that
sup,cg f(x) = 1 Ainfycg f(x). We have to prove the
equality:

supA A f(x)

XER

=pAinfAA f(x). (10)

Given A > 0, it is easy to establish that:

sup {1 & f()} = sup {M(1~ (1 =/ (x)/M)")}
= M(1— inf {(1— f(x)/M)"})
= M(1— (inf {1 - f(x)/M})")
=M(1—(1 —iglg{f(ﬂ}/M)l)

= A Asup f(x).

XER

In the same way, infyegd A f(x) = A A
infycg f(x). Thus, equation 10 is established, which
ends the proof.

O]

A REGION GROWING ALGORITHM
BASED ON REGION HOMOGENEITY

Revol and Jourlin (1997) presented a region
growing method which minimises the region variance.
In the sequel, we propose to replace the variance by
one of the homogeneity criteria H® or H*. Let us
present the principles of this algorithm. The details are
given in (Revol and Jourlin, 1997).

Let dyny(R) be the dynamic range of the image
f over the region R. It is defined by dyns(R) =

[minyer{f(x)}, maxeer{f(x)}]-

At each step n, a region R, is dilated by a unitary
structuring element N, e.g a square of length side 3
pixels (Minkowski, 1903; Matheron, 1967; Serra and
Cressie, 1982; Najman and Talbot, 2013). This gives a
region D, = R, ® N whose homogeneity Hy(D,1)
is measured. Depending on a threshold value ¢, the
region is considered as homogeneous or not.
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LIf Hf(Dpy1) < t, the region D,y is then

considered as homogeneous. The new region R, 1
becomes D, 4.

2If Hf(Dpy1) > t, the region D,y is then
inhomogeneous. A reduction process Rdctf(Dy1)
truncates the extremal classes of the histogram
of D, by keeping only the pixels belonging to
the dynamic range of R,, dyns(Rdct;(Dpi1)) =
dyny(R,). This gives a region D), , ;.
2alf Hy(D),,) <t the region D , is then
modified by an extension process which adds
the neighbouring pixels to the region according
to both following conditions. i) The new pixel
values have a LIP-difference less or equal than
1 with the maximum or the minimum values
of f over D, . ii) The new pixels give an
homogeneous region. The new region R,
becomes the extension of D), ;: E(D;,_ ;).

n+1

2bIf He(D) ) > t, a contraction process reduces
the dynamic range of the region D/ , by
removing the extremal classes of its histogram
until the region becomes homogeneous. LIP-
addition and LIP-subtraction replace the
classical addition and subtraction used by Revol
and Jourlin (1997). The new region R, is the
contraction of D), ,: Ctrct(D,_, ).

The algorithm stops when the region R,; does not
grow any more.

For a fully automatic segmentation method, the
seed points could be chosen as the minima of a
function such as: a gradient of the image - like for the
watershed transform (Beucher and Meyer, 1992) - or a
map of Asplund’s distances of the image (Jourlin et al.,
2012; 2014; Noyel and Jourlin, 2015; 2017b;a). The
seed points could also be automatically determined
by a previous classification (Noyel et al., 2007; 2010;
2014). As the homogeneity criterion is invariant to
contrast changes with an optical cause, the threshold
could be learnt from a training database (Lu et al.,
2017). It could also be automatically chosen as the
most frequent contrast on every pixel neighbourhoods
(Jourlin, 2016).

A STATE OF THE ART METHOD BASED
ON THE IMAGE COMPONENT-TREE

Our method will be compared to the state-of-the-
art one of Passat et al. (2011) which is based on
level sets and presents a certain robustness to lighting
variations. It consists of an interactive segmentation
by component-tree. A component-tree is the tree
formed by the inclusion relation between the binary
components of the successive image level sets. A node
N of the component-tree is a connected component
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of the image level set X,(f) = {x € D|f(x) > v}.
Let X be the set of all connected components of
all level sets. The subset X' C X of the connected
components which best fits the user selected region
G in D is automatically determined by the following
minimisation problem:

X = in {d*(UycqoN,G)}.

arg x/?$?x){ (UvexrN, G)}
P(X) is the set of the parts of K. The pseudo-distance
d® is defined by

d*(X,Y) = alX\ Y|+ (1 - o)y \ X|,

where a € [0,1]. d°(X,Y) = [Y \ X| and d'(X,Y) =
|X \ Y| are respectively the amount of false-negatives
and false-positives in X with respect to Y. A solution
to this minimisation problem can be found by dynamic
programming. The details are given in (Passat et al.,
2011). In the sequel, we have used the publicly
available code of Naegel and Passat (2014).

EXPERIMENTAL VALIDATION

We have just established that the LIP-additive
homogeneity criterion H fA (R) is theoretically
insensitive to a LIP-addition A or to a LIP-subtraction
A of a constant to or from an image, respectively.
These operations model the lighting changes caused by
a variation of the source intensity or of the exposure-
time of the camera. As for the LIP-multiplicative
homogeneity criterion Hf&(R), it is insensitive to a
LIP-multiplication of an image f by a scalar which
models the variations of the object thickness or
opacity. Let us perform an experimental validation of
these insensitivities through simulated and real images.
Let us also compare the presented approach to the
state-of-the-art method of Passat et al. (2011).

Simulated images

For this experiment, we have selected a colour
image of a butterfly (Fig. la) from the dataset
YFCCI100M (Yahoo Flickr Creative Commons 100M)
(Thomee et al., 2016; Butterfly, 2010). We have
extracted its luminance as a grey-level image
f (Fig. 1b). In order to verify the respective
insensitivities of the criteria H® and H® to lighting
variations simulated by a LIP-addition A or a LIP-
multiplication A, we have darkened and brightened
this luminance image f by using each of the LIP-
operations.

For the LIP-additive homogeneity criterion
Hf&(R), a dark image fs, is obtained by a LIP-
addition of a constant k = 120 to the complement f*
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of the image f, far. = (f° A k)¢ (Fig. 1c). The image
complement, which is defined by f =M —1— f,
allows to take advantage of the LIP-scale. A bright
image fp, is also simulated by a LIP-subtraction of
the same constant: f,., = (f¢ Ak)° (Fig. 1d).

For the LIP-multiplicative homogeneity criterion
Hf&(R), a dark image fyi, is obtained by a LIP-
multiplication by a scalar A; = 4 of the image
complement f€, faxm = (Aqr A f€)° (Fig. le). A bright
image fp,, is also simulated by a LIP-multiplication
by a scalar A, = 0.1, fi.m = (Apr A f€)° (Fig. 1f).

In all these five images f, fuk.a fora» fakm and for
the same region R is selected. The homogeneity criteria

H” and H® are then computed in the region R of
the images f, fak.a» fora and of the images f, fuk m,
Jorm» respectively. Their values are given in section
“Results” (p. 6).

Real images

The robustness to lighting variations of the LIP-
additive homogeneity criterion H* and of the LIP-
multiplicative criterion H2 needs to be verified on real
images by using specific experimental material.

The LIP-additive homogeneity criterion H® is
expected to have a low sensitivity to variations of
source intensity or exposure-time of the camera. In
order to verify this assumption, we have conducted an
experiment. An image of the same scene is acquired
by a camera with significantly different exposure-times
and slightly different positions. The scene is composed
of a soft toy monster named “Nessie” (Fig. 2). Three
colour images are captured with different exposure-
times 1/40 s (Fig. 2a, 2b), 1/400 s (Fig. 2c, 2d) and
1/800 s (Fig. 2c, 2e). They are converted to luminance
images in grey levels: fp, f1 and f», respectively. The
shorter the exposure-time is, the darker the image
becomes. A segmentation is performed by Revol
and Jourlin’s (1997) algorithm using the LIP-additive
homogeneity criterion H* and a threshold of 200 to
decide if a region R is homogeneous (i.e. HfA (R) <
200) or not. The initialisation of the algorithm is
done by a seed point manually selected inside the
letters on the body of “Nessie”. To take advantage of
the LIP-scale, the segmentation is performed on the
complement of the three luminance images fj, f{ and
f5 . Three segmented regions Ry (Fig. 2a), Ry (Fig. 2¢)
and R, (Fig. 2e) are thereby obtained in the images fp,
J1 and f>, respectively. The LIP-additive homogeneity
of those regions is then computed. For comparison
purpose, Passat er al.’s (2011) segmentation method
is applied to the images fy (Fig. 2b), f1 (Fig. 2d) and
Jf> (Fig. 2f). The user selected regions G are the same
seed points which are used for our approach after a



dilation by a square of length side 3 pixels. As the user
selected regions G are much smaller than the letters
that we want to segment, we choose a parameter o = 0
in order to minimise the number of false-negatives
dO(U NexrN, G) in those regions G. After minimisation,
this number is equal to zero.

In order, to verify the low sensitivity to
object opacity of the LIP-multiplicative homogeneity
criterion H®, we have selected three X-ray images
of a luggage acquired under different exposures for
security purpose (Fig. 3). The images are coming from
a publicly available database, namely GDXray (Mery
et al., 2015; GDXray, 2015). The object to be detected
is a razor blade. Depending on its orientation, the X-
rays pass through different thicknesses of the matter
and are therefore more or less absorbed. In the first
image fy (Fig. 3a), the razor blade is perpendicular
to the x-rays coming from the source. The image of
the razor blade is obviously brighter in this image fy
than in the two others f; (Fig. 3c) and f, (Fig. 3e)
where the razor blade is oblique to the x-rays. To detect
this object, Revol and Jourlin’s (1997) segmentation
approach is used with a threshold of 2.7 on the LIP-
multiplicative homogeneity criterion H* of a region.
The algorithm is initialised by manually selected seed
points inside the razor blade (Fig. 3a, 3c and 3e).
Three regions Ry (Fig. 3b), R; (Fig. 3c) and R,
(Fig. 3e) corresponding to the object are then obtained
in the images fy, fi and f,, respectively. The LIP-
multiplicative homogeneity of those regions is then
estimated. Its values are presented in the following
section.

RESULTS

The experimental results are given for the
simulated and the real images.

SIMULATED IMAGES

The LIP-additive homogeneity criterion H of the
region is computed for the image f (Fig. 1b), its
darkened version fy; , by LIP-addition (Fig. 1¢) and its
brightened version f,, by LIP-subtraction (Fig. 1d).

For each image, the criterion H* of the region R is

equal to:
HR(R) = Hf%kia (R) = Hgm(ze) = 150.7. This result

verifies thereby the insensitivity of the LIP-additive
homogeneity criterion H* to LIP-addition A or LIP-
subtraction A of a constant to or from an image,
respectively.

The LIP-multiplicative homogeneity criterion H*
is also estimated in the image f (Fig. 1b) and
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its darkened and brightened versions by LIP-
multiplication fy,, (Fig. le) and f},.,, (Fig. 1f),
respectively. For each image the criterion H of the
region R is equal to:
H%(R) = Hie (R)

- H2
fdk,m b

fhr,m

(R) = 3.33. This result

shows the insensitivity of the LIP-multiplicative
criterion H® to the LIP-multiplication A of an image
by a scalar.

(a)

-~ N

© fuaka = (FS A 120)° (@) fora = (f€ A120)°

(e fdk,m () fbr,m

Fig. 1. (a) Colour image of a butterfly and (b)
its luminance image f with a region R in red. (c)
Darkened image fui . obtained by LIP-addition of a
constant k = 120. (d) Brightened image fy,, obtained
by LIP-subtraction of k. (e) Darkened image fai m
obtained by a LIP-multiplication of f¢ by A4
4. (f) Brightened image fp,,, obtained by a LIP-
multiplication by Aj,, = 0.1.

(4Af)

= = (0.1 A f)°

REAL IMAGES

Let us give the results obtained on the real images
of figures 2 and 3.

The LIP-additive homogeneity criterion H” is
illustrated in figure 2. One can notice that the
segmentations of the letters on the body of “Nessie”
are very similar in all the three images fp (Fig. 2a),
f1 (Fig. 2c) and f> (Fig. 2e) using this criterion
H” within the Revol and Jourlin’s (1997) method
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(i.e. our approach). In addition, the Values of the
homogeneity criterion are as follows: H%(Ry)

7
198.5, H{¢(Ri) = 197.5 and Hy(Ry) = 197.0. These
values are very close for the three regions Ry, R
and R, of these images which were acquired with
significantly different exposure-times. Those results
prove therefore the robustness of the LIP-additive
homogeneity criterion H® in Revol and Jourlin’s
(1997) segmentation method to the variations of the
camera exposure-time. This approach is also compared
to the one of Passat et al. (2011). One can notice
that the segmentations with this latter method are
different between the three images fy (Fig. 2b), fi
(Fig. 2d) and f> (Fig. 2f). Those results show that
Passat et al.’s (2011) method lacks of robustness
for important variations of the camera exposure-time,
whereas ours is robust to such variations. In addition,
the letters are not entirely extracted with Passat et al.’s
(2011) method whereas with ours, their segmentations
are better (Fig. 2a, 2c and 2e).

Figure 3 presents the results obtained for the
LIP-multiplicative criterion H%. The segmentations
of the razor blade are very similar in the three
images (Fig. 3b, 3d and 3f) using this criterion
H“ within the Revol and Jourlin’s (1997) method.
As the three images were captured with different
exposures, the x-rays were differently absorbed by
the object. In addition, the values of the homogeneity
criterion are the following for each segmented regions:
H&( 0) = 2.11, Hf%( 1) = 2.50 and He( 2)
194 One can notice that the criterion Values are
of similar amplitudes for the three regions of an
object presenting different thicknesses which absorb
the x-rays. This experiment illustrates the robustness
of the LIP-multiplicative criterion H in Revol and
Jourlin’s (1997) segmentation method to different
object opacities (or absorptions).

DISCUSSION

The results obtained with the simulated images
show that the LIP-additive homogeneity criterion
H” is insensitive to the LIP-addition A or the
LIP-subtraction A of the image complement f*
by a constant. These operations A and A model
a darkening or a brightening of the image by a
variation of the source intensity or the exposure-
time of the camera (Jourlin, 2016). This result
proves the theoretical insensitivity of the LIP-
additive criterion H* to such variations. Similarly,
the LIP-multiplicative homogeneity criterion H% is
theoretically insensitive to the variations of the object
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opacity or thickness which are modelled by a LIP-

multiplication A by a scalar (Jourlin, 2016).

@ fo. Hf% (Ro) = 198.5 (b) fo, Passat et al. (2011)

©) fis Hf%(Rl) =1975 (d) f1, Passat et al. (2011)

197.0

© f2, Hj (Ry) = (f) f», Passat e al. (2011)

Fig. 2. Comparison of the robustness to three exposure-
time variations (a, ¢, e) of Revol and Jourlin’s (1997)
method with a LIP-additive homogeneity criterion
H® and (b, d, f) of Passat et al.’s (2011) method.
Colour versions of the luminance images (a, b) fo,
(c, d) f1 and (e, f) f» acquired at 1/40 s, 1/400 s
and 1/800 s, respectively. The segmented regions are
depicted in magenta colour. The homogeneity criterion
values H]%(Ro), HfAlc (Ry), HJ% (Ry) of the regions Ry,
Ry and Rz are given under the images (a), (c¢) and (e),
respectively.
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(d) Hf: (Ry) =2.50
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Fig. 3. Robustness to variations of object opacity of
the segmentation by LIP-multiplicative homogeneity
criterion H®. (a) (b) and (c) Three images fo, fi
and f> acquired for different exposures of a luggage
containing a razor blade. The seed points are shown
by a red cross. (d) (e) and (f). The segmented regions
Ro, Ry and R, of the images fy, f1 and f>, respectively,
are shown in magenta colour. The values of the
homogeneity criteria H%(Ro), H%(Rl), H%(Rz) are
given under the images (b), (d) and (f).

These simulations are confirmed by the
experimental results. Figure 2 proves the robustness
of the LIP-additive homogeneity criterion H fA (R) to
lighting changes caused by a variation of an exposure-
time of the camera. This lighting variation is equivalent
to a variation of the source intensity. Although
the methods based on levels sets are theoretically
robust to a contrast change caused by a continuous
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and increasing function applied to the image, the
results obtained in figure 2 prove that the level set
approach of Passat er al. (2011) lacks of robustness
for important variations of the camera exposure-time.
The results given in figure 3 prove the robustness of
the LIP-multiplicative homogeneity criterion H f& (R)
to lighting changes caused by variations of the object
opacity.

The previous results show that the level sets
methods based on component-trees (Salembier et al.,
1998; Passat et al., 2011) or on inclusion trees
(Monasse and Guichard, 2000; Xu et al., 2016) will
therefore strengthen their robustness to strong contrast
changes - due to an optical cause - by using a LIP
homogeneity criterion. The optical cause can either
be a variation of the source intensity, which will
be corrected by the LIP-additive criterion H2, or a
variation of the object opacity, which will be corrected
by the LIP-multiplicative criterion H2. These findings
will be studied in a future paper.

CONCLUSION

We have therefore successfully introduced
two new region homogeneity criteria which are
robust to lighting changes, namely the LIP-additive
homogeneity criterion H and the LIP-multiplicative
criterion H*. With experiments on simulated and on
real images, we have shown that the LIP-additive
homogeneity criterion H* is robust to changes caused
by variations of source intensity (or exposure-time of
the camera) whereas the LIP-multiplicative criterion
H?® is robust to changes due to variations of object
opacity (or thickness). The introduction of those
criteria in Revol and Jourlin’s (1997) segmentation
method gives it the same robustness. Compared to
Passat et al.’s (2011) method based on the component-
tree of the image level sets, ours is more robust to
strong intensity changes due to one of the previous
optical cause. As far as we know, this is the first
time that a segmentation method based on a region
homogeneity parameter robust to those type of lighting
changes has been shown. This novel method of
segmentation paves the way to numerous applications
presenting strong lighting variations.
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