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ABSTRACT

In this article, we propose a novel, efficient method for computing a random tessellation from its level
sets representation at each voxel of a discretized domain. This method is based upon the solution of the
Eikonal equation and has a complexity in O(N logN), N being the number of voxels used to discretize the
domain. By contrast, evaluating the implicit functions of the level sets representation at each voxel location
has a complexity of O(N2) in the general case. The method also enables us to consider the generation of
tessellations with rough interfaces between cells by simulating the growth of the germs on a domain where
the velocity varies locally. This aspect constitutes the main contribution of the article. A final contribution is
the development of an algorithm for estimating the multi-scale tortuosity of the boundaries of the tessellation
cells. The algorithm computes the tortuosity of the boundary at several scales by iteratively deforming the
boundary until it becomes a straight line. Using this algorithm, we demonstrate that depending on the local
velocity model, it is possible to control the roughness amplitude of the cells boundaries.
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INTRODUCTION

Most materials used in contemporary life and
industry are heterogeneous and exhibit a complex
internal microstructure. The microstructure is a
key feature of the global material, which largely
determines most of its physical properties at the
macroscopic level (Jeulin, 1991; Ohser and Schladitz,
2009; Torquato, 2013). As a consequence, one is
often interested in generating random microstructures
that reproduce accurately some geometrical features
of the original material (Moreaud et al., 2012; Wang
et al., 2015). The simulated microstructures can in
turn serve as a basis to investigate the physical
or mechanical properties of heterogeneous materials
through extensive numerical simulations (Gasnier et
al., 2015; Figliuzzi et al., 2016; Koishi et al., 2017).
This approach can notably be used to understand
the influence of the microstructure on the physical
properties of the material at the macroscopic scale,
or to determine microstructures yielding optimized
functional properties for some considered application.

Stochastic geometry models provide useful tools
to describe the complex microstructures observed
in heterogeneous materials (Chiu et al., 2013). A
significant amount of work can therefore be found
in the literature related to microstructure simulation
based upon classical morphological models (Jeulin,
1991; 2012; 2015). Morphological models can for
instance deal with the simulation of microstructures
including random inclusions in a matrix or random

crystal structures. A general introduction to this topic
can be found in Jeulin (1991). An efficient way to
generate a random geometric model of a material
microstructure is to rely on implicit functions and
level sets to describe the geometry. Implicit functions
and level sets cannot be directly used to conduct
a numerical computation of the physical properties
of the materials. The computation is indeed usually
performed using a finite elements method or a fast
fourier transform method, which both require the
geometry to be represented on a discretized grid of
voxels. In practice, the discretization is computed by
evaluating the implicit functions representating the
microstructure at each voxel location, which can lead
to expensive computations.

In this article, we propose a method for computing
a random tessellation from its level sets representation
at each voxel of a discretized domain based upon
the solution of the Eikonal equation. The Eikonal
equation describes the propagation of a wave from
an initial set of boundaries on a domain where the
local propagation velocity can vary (Malladi et al.,
1995; Sethian, 1996). Efficient algorithms have been
developed over the years to solve the Eikonal equation
on a domain. The fast marching algorithm has for
instance a complexity in O(N logN), N being the
number of voxels used to discretize the domain. By
contrast, evaluating the implicit functions of the level
sets representation of the tessellation at each voxel
location has a complexity of O(N2) in the general case.
In addition, by relying on the developed methodology,
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we were able to develop a novel stochastic model
enabling the generation of tessellations with rough
interfaces between cells (Lee and Cowan, 1994;
Lee, 1999; Jeulin, 2015). Models of tessellation with
rough boundaries can find applications to describe
microstructures for which the area of contact between
components is a key geometrical feature that strongly
influences the effective physical properties of the
materials at the macroscopic scale (Bortolussi et al.,
2018).

The article is organized as follows. In section
“Mathematical model”, we present classical stochastic
models used to generate random tessellations, before
introducing a new generation model based upon
the solution of the Eikonal equation. Finally, we
present the application of the model to the generation
of tessellations with rough interfaces. In section
“Numerical experiments”, we present and discuss the
results of the Eikonal based model. To that end, we
introduce a novel multi-scale tortuosity descriptor,
which allows us to quantify the roughness at the
boundaries of the cells of the tessellation. Conclusions
are drawn in the last section.

MATHEMATICAL MODEL

VORONOI AND JOHNSON-MEHL
TESSELLATIONS
Let Ω denote a compact observation window in

RD. We consider a Poisson point process P in Ω with
intensity θ . A Poisson point process on Ω is a point
process such that the number N(K) of points contained
in any compact subset K of Ω is a Poisson random
variable with parameter θV (K):

P{N(K) = k}= (θV (K))k

k!
exp(−θ V (K)) , (1)

where V (K) denotes the volume of the compact subset
K. For a given realization of P in Ω, we denote by
{p1, p2, ..., pn} the implanted Poisson points. It follows
from the definition of the Poisson distribution (Eq. 1)
that the average number N of Poisson points in the
domain Ω is

N = θ V (Ω) . (2)

It is possible to construct a tessellation based upon the
Poisson point process P by constructing cells which
associate each point of Ω to the closest point pi, i =
1, ..,N of the point process. In mathematical terms, if
the set of points {p1, p2, ..., pn} is a realization ofP ,
then we can associate to each point pi with i = 1, ...,n
the cell Ci defined by

Ci =
{

p ∈Ω,∀ j 6= i,‖pi− p‖ ≤ ‖p j− p‖
}
. (3)

Obviously, we have

∪n
i=1 Ci = Ω , (4)

so that the cells Ci, i = 1, ...,n form a tessellation
of Ω. This tessellation is referred to as the Voronoi
tessellation in the stochastic geometry literature.
Voronoi tessellations have been extensively studied in
the literature. We refer the reader interested in their
properties to the references Jeulin (1991) and Chiu et
al. (2013).

Other types of tessellations can be constructed
from a Poisson point process P . For instance, let
us assume that each point of P carries a mark ti.
For sake of simplicity, we assume that the mark ti is
sampled according to the uniform distribution on the
interval [0,T ] for some T > 0. Then, an alternative to
the Voronoi tessellation is to consider the tessellation
constructed with the cells

Ci =
{

p ∈Ω,∀ j 6= i, ti +‖pi− p‖ ≤ t j +‖p j− p‖
}
.

(5)
The tessellation resulting from this construction
is known as the Johnson-Mehl tessellation in
the literature. The Johnson-Mehl tessellation was
originally introduced to model the growth of crystals.
It is now a classical model in stochastic geometry
(Johnson and Mehl, 1939; Møller, 1989; 1992;
1994), which has been employed to model numerous
microstructures in materials engineering or geophysics
applications (Ohser and Schladitz, 2009; Figliuzzi et
al., 2016; Belhadj et al., 2018; Bortolussi et al.,
2018). The Johnson-Mehl tessellation can be seen as a
sequential version of the Voronoi model, for which the
Poisson points are implanted sequentially according to
their mark t. From this perspective, it is convenient to
interprete the marks as implantation times. All cells
grow then isotropically with the same velocity. The
growth of the cell boundaries is stopped when two
boundaries meet. When a Poisson point from P is
implanted in an already existing cell, it is immediately
removed.

Simulations of random tessellations are often
performed on a grid of points. One can however rely on
a completely different approach based upon level sets.
In this approach, the tessellation cells are described
by implicit functions, which are real valued functions
defined in the ambient space. The level sets of an
implicit function Φ are described by an equation of
the form Φ(p) = c, for some constant c. A surface
is described as a level set of the function Φ, most
commonly the set of points for which Φ(p) = 0. In this
case, the points for which Φ(p)< 0 correspond to the
interior of the cell associated to the implicit function,
the points for which Φ(p) > 0 to its complementary
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Fig. 1. Simulation of a random Voronoi tessellation (left) and of a Johnson-Mehl tessellation (right). We can note
that while the boundaries of the Voronoi tessellation are straight lines, the boundaries of the Johnson-Mehl are
portions of hyperboles.

and the level set Φ(p) = 0 to the boundary of the
tessellation cell. In the Voronoi case, the implicit
function associated to cell i can be expressed as

Φ(p) = ||p− pi||2− inf
1≤ j≤N, j 6=i

||p− p j||2 .

Overall, using implicit functions to perform the
simulation allows us to build complex combinations
of simulations that we could not easily process
with a pixel based method. Furthermore, implicit
functions based simulations do not require a large
amount of computer resources. However, for materials
engineering applications, it is usually necessary to
simulate images of the generated tessellation. To that
end, the domain Ω is discretized and the implicit
functions associated to the cells of the tessellation are
evaluated at each voxel location. Generating an image
from a vectorial simulation can be computationally
expensive, especially when high resolution is required.
If we denote by P the number of voxels in the image
used to discretize the domain Ω, the average number
of Poisson points in P is proportional to P. Hence, the
complexity of the image generation algorithm is on the
order of O(P2).

EIKONAL BASED TESSELLATIONS
In this section, we relate the problem of generating

an image from a vectorial simulation of a tessellation
to the one of solving the Eikonal equation on a domain.
The Eikonal equation is a non-linear partial differential
equation which describes the propagation of waves in a
medium. The Eikonal equation has the following form
at each point p of the considered domain Ω:

||∇t(p)||= 1
u(p)

, (6)

where ∇ is the gradient operator. t and u can be
conveniently interpreted as the propagation time of
the waves and as the local velocity, respectively.
Eq. 6 requires initial conditions to be specified. Let us
assume that we have sampled a vectorial simulation of
the Johnson-Mehl tessellation model. We denote by N
the number of Poisson points in P , N = |P|, and by
(τ1, ...,τN) the corresponding germination times. Then,
we consider the following problem: ||∇t(p)||= 1

u(p)
t(pi) = τi,∀i = 1, ..,N .

(7)

For all p in Ω, we denote by d the signed distance
function defined by

d(p,P) = inf
i=1,...,N

||p− pi|| . (8)

Proposition 1 below (Sethian, 1996) relates the signed
distance function d to the solution of the Eikonal
equation on the domain Ω

Proposition 1 Let Ω be a subset of the Euclidean
space RD. Then, the distance function is differentiable
almost everywhere, and its gradient satisfies the
Eikonal equation

||∇t(p)||= 1 ,

with initial conditions t(pi) = 0,∀i = 1, ..,N.

An immediate consequence of proposition 1 is
provided by the following corollary:
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Corollary 1 On the domain Ω, when the velocity
u is set to be constant on Ω, the solution t of the initial
values problem (Eq. 7) satisfies, for all p ∈Ω,

t(p) = inf
i=1,...,N

(τi + |p− pi|) . (9)

In other words, the solution of Eq. 7 exactly matches
the distance used for constructing the Johnson-Mehl
tessellation. Solving the Eikonal equation therefore
provides an efficient way to compute the Johnson-
Mehl distance on a grid of points. Efficient algorithms
are available for this task, including the fast marching
algorithm described in the next section of the article.

FAST MARCHING ALGORITHM

The fast marching algorithm solves the Eikonal
equation by iteratively computing the arrival times
outwards from the initial conditions. In this article,
we introduce a slightly modified version of the fast
marching algorithm that computes the Johnson-Mehl
distance from the germs in P while keeping track of
the labels of the initial germs during the propagation.
To keep notations simple, we present the algorithm
in a 2D setup. However, it is straighforward to apply
the algorithm for higher dimensions. The algorithm is
initialized as follows:

1. An arrival time map is initialized: each voxel p
is associated the arrival time t = ∞, except if it
contains the germ pi in P . In this case, the voxel
p is associated the corresponding germination time
τi.

2. A label map is initialized: the voxels p containing
one germ pi are associated the label i. The other
voxels are associated the value 0 as label.

3. All voxels that contain one of the germs in P
and that have consequently been associated a finite
time are regrouped in a set referred to as narrow
band.

At each iteration, the voxel P := (X ,Y ) of the narrow
band with the smallest associated time is extracted
and labeled as frozen. Arrival times are computed for
its neighbors in a 4-neighborhood, which are in turn
added to the narrow band. Note that frozen voxels are
used to compute the arrival times in other voxels, but
their arrival times is never recomputed. At a neighbor
location p := (x,y) of P := (X ,Y ), the arrival time is
computed by solving the Eikonal equation

||∇t||(x,y)u(x,y) = 1 . (10)

The difficulty here is to propose a correct way to
approximate the gradient term. The following formula

is classically used to compute the squared length of the
gradient at p := (x,y) (Sethian, 1996):

||∇t(x,y)||2 = max(tx,y− tx,y+1, tx,y− tx,y−1,0)2

+max(tx,y− tx+1,y, tx,y− tx−1,y,0)2 .
(11)

This leads to the equation

max(tx,y− tx,y+1, tx,y− tx,y−1,0)
2

+max(tx,y− tx+1,y, tx,y− tx−1,y,0)
2 =

1
u(x,y)2 . (12)

In this equation, the only unknown is the arrival time
t(x,y) at point p := (x,y). At this point, it is clear that

max(tx,y− tx,y+1, tx,y− tx,y−1,0)
2 =

(tx,y−min(tx,y+1, tx,y−1))
2 . (13)

Hence, the arrival time t(x,y) at point p := (x,y) is
solution of the quadratic equation

(tx,y−min(tx,y+1, tx,y−1))
2+

(tx,y−min(tx+1,y, tx−1,y))
2 =

1
u(x,y)2 . (14)

Eq 14 has two distinct solutions. However, to respect
the consistency of the scheme, the arrival time must
be higher than the time t(X ,Y ) at the selected point P
in the narrow band. Hence, the arrival time t(x,y) is
necessarily the largest solution of Eq. 14.

Once the arrival time t(x,y) has been computed,
two situations can be encountered. When the neighbor
point (x,y) is in the narrow band, it has already
been associated an arrival time told(x,y). If t(x,y) <
told(x,y), then we affect the arrival time t(x,y) to p :=
(x,y) as well as the label of point P := (X ,Y ). By
contrast, if t(x,y) > told(x,y), then the label and the
arrival time at (x,y) remains unchanged. When the
neighbor point (x,y) is not in the narrow band, we
affect to it the arrival time t(x,y), the label of (X ,Y )
and we add it to the narrow band.

At each iteration of the algorithm, it is necessary
to extract the element of the narrow band with the
smallest arrival time. To reduce the complexity of the
algorithm, the elements of the narrow band are stored
in a binary heap. We refer the reader interested in more
details on the fast marching algorithm implementation
to the original articles (Malladi et al., 1995; Sethian,
1996; 1999a;b).
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Fig. 2. Rough Voronoi tessellations (left) and corresponding local velocity field (right). All tessellations have been
generated using the same Poisson point process P on a 50× 50 domain D , discretized on a 500× 500 regular
grid. The local velocity fields are realizations of Voronoi tessellations with respective intensities θ = 0, θ = 0.1,
θ = 1 and θ = 10. To account for edges effects, the level sets simulation of these tessellations are conducted on
a domain larger than D .
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(a) Original curve (b) Deformed curve with d = 0.1

(c) Deformed curve with d = 0.2 (d) Deformed curve with d = 1.

Fig. 3. Illustration of the multi-scale tortuosity computation on a toy example.

PROPAGATION ON A RANDOM
VELOCITY FIELD

Up to this point, we have assumed that the velocity
field used to compute the Johnson-Mehl tessellation
was constant. However, solving the Eikonal equation
also enables us to generate a tessellation of space built
by growing germs on a field where the velocity varies
from point to point. This observation opens the way to
the development of tessellation models that cannot be
directly obtained with classical approaches including
the Voronoi and the Johnson-Mehl tessellations
described previously. A potential application is for
instance the generation of tessellations of space with
rough boundaries between adjacent cells.

Let P be the realization of a marked point process
with intensity θ on an open domain Ω, for which the
marks are drawn according to the uniform distribution
U ([0,L]) on an interval [0,L] ⊂ R+. The points in P
as well as their respective marks allow to compute a
Johnson-Mehl tessellation on the domain Ω by solving
problem in Eq. 7. In this section, we construct a
random velocity field u on domain Ω by

1. computing a Voronoi tessellation of Ω based upon
a Poisson point process Pv with intensity θv, and

2. setting a random velocity drawn according to
some distribution D in each cell of the Voronoi
tessellation.

By solving the problem ||∇t(p)||= 1
u(p)

,

t(pi) = τi,∀i = 1, ..,N ,
(15)

we obtain a tessellation of the domain Ω ressembling
the Johnson-Mehl tessellation generated by solving
Eq. 7, but with rough boundaries between adjacent
cells. Moreover, the roughness at each boundary
is strongly related to the characteristic length of
the velocity field fluctuations. This characteristic
length depends upon the intensity θv of the Voronoi
tessellation used to compute the velocity field. A large
value of θv yields for instance a large number of small
Voronoi cells, which results in velocity variations over
small distances. Hence, the generated Johnson-Mehl
tessellation exhibits boundaries with a high density of
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roughness patterns with relatively small amplitude. By
contrast, Johnson-Mehl tessellations generated from
velocity fields constructed with a small value of θv
exhibit boundaries with a low density of roughness
patterns with larger amplitudes.

NUMERICAL EXPERIMENTS

We present in this section numerical simulations of
Voronoi tessellations with rough boundaries computed
with different values of the velocity parameter θv. We
quantify the roughness of the cells boundaries using
a multi-scale tortuosity descriptor, which iteratively
computes the tortuosity of smoothened versions of
the boundary. The multi-scale tortuosity descriptor is
introduced in the first part of this section.

MULTI-SCALE TORTUOSITY
Let C be a connected curve in a domain Ω ⊂ R2.

We discretize the domain Ω on a regular grid with
equal spacing h in both directions. The curve C is also
discretized and can be represented as a set of points of
the grid:

C = {c1,c2, ..,cN} . (16)

We consider that two points of the curve are neighbors
when they are connected by an edge of the regular
grid. The discrete curve C can then be conveniently
represented by an adjacency graph G connecting
together the points {c1,c2, ..,cN}. From now on, we
assume

1. that the graph G is connected (C.1),

2. that each point ci is at most connected to two points
(C.2),

3. that there are no cycles in the graph (C.3).

Necessarily, when N > 2, two points in {c1,c2, ..,cN}
have a single neighbor, while the others have exactly
two neighbors. We refer to the points with a single
neighbor as the extremities of the curve C . For
convenience, we can re-index the set of points
{c1,c2, ..,cN} so that c1 and cN are the extremities of
the curve, and so that for all n such that 1 < n < N, the
point cn is connected to cn−1 and cn+1. In this case, the
length of the curve C is given by the expression

LC :=
N−1

∑
i=1
||ci+1− ci|| . (17)

A straightforward method to estimate the tortuosity of
C is to consider the ratio of the length L of the curve
and of the distance Dc between the extremities of C ,

τ =
L

Dc
. (18)

A limitation of this approach is that it does not
involve the notion of scale in the tortuosity description.
Hence, the tortuosity computed on a curve with
repeated small roughness patterns can be the same as
the tortuosity computed on a curve whose tortuosity
arise at a larger scale. To address this issue, we
propose to rely on a novel multiscale descriptor of the
contour tortuosity computed by iteratively deforming
the original contour.

To that end, let us denote by d > 0 some arbitrary
distance. We consider the problem of finding the
curve Z d = {z1, ...,zN} with minimal length sharing
the same endpoints as C and such that each point
zi,i=2,...,N−1 remains at a distance less than d from the
corresponding point ci of C . In mathematical term, this
can be formulated as the optimization problem

Z d = argmin
N−1

∑
i=1
||zi+1− zi||2 ,

subject to z1 = c1,zN = cN , (19)
∀n = 2, ...,N−1, ||zn− cn|| ≤ d.

It is important to note that the objective function
considered in Eq. 19 differs from the length of the
curve, given by Eq. 17. The length of the curve is
not a strictly convex function of the variables zi, i =
1, ..,N. In particular, the minimum of the function is
not unique. By contrast, it is straightforward to note
that the objective function used in Eq. 19 as well
as the constraints are strictly convex, and that the
minimum of this objective function is included in the
set of the global minima of the function (Eq. 17).
Hence, the considered optimization problem has an
unique minimizer that can easily be estimated using
the proximal gradient descent method or the projected
gradient method. We refer the reader interested in more
details on these algorithms to the article of Parikh and
Boyd (2014).

Table 1. Multiscale tortuosity parameters of the
tessellations displayed in Fig 2. Each parameter has
been computed on a basis of 20 simulations

θv = 0 θv = 0.1 θv = 1 θv = 10

d = 1. 1.23 1.36 1.41 1.44
d = 2. 1. 1.08 1.11 1.04
d = 3. 1. 1.06 1.05 1.01
d = 4. 1. 1.05 1.03 1.
d = 5. 1. 1.04 1.01 1.
d = 6. 1. 1.03 1. 1.
d = 7. 1. 1.02 1. 1.
d = 8. 1. 1.02 1. 1.
d = 9. 1. 1.01 1. 1.
d = 10. 1. 1.01 1. 1.
d = 11. 1. 1. 1. 1.
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Let us consider boundary ci j separating cells i and
j of the generated tessellation. We denote by d0 > 0
some arbitrary distance. d0 can for instance be chosen
to be the voxel size. We define the tortuosity at scale
s = 0 to be the tortuosity of the boundary c(0) := ci j:

τ0 =
L(c(0))
D(c(0))

, (20)

where D(c) is the Euclidean distance between the
extremities of c and L(c) is the length of c. The multi-
scale tortuosity is computed iteratively as follows.

1. At step n, compute a smoother version c(n) of the
original boundary c(0) by solving the optimization
problem (19) with d := dn.

2. Compute the tortuosity

τn =
L(c(n))
D(c(n))

. (21)

3. Update the distance, dn+1 = dn +d0.

The algorithm runs until the tortuosity is below 1+ ε ,
ε > 0 being arbitrarily fixed.

The algorithm is illustrated on a toy example in
Fig. 3. We can note that each iteration removes distinct
scales of the roughness observed on the boundary.

NUMERICAL EXPERIMENT
The Eikonal based generation of rough Voronoi

tessellations is illustrated in Fig. 2. In this figure,
we generated four distinct Voronoi tessellations on a
domain with size 50× 50 discretized on a 500× 500
regular grid from the same realization of a Poisson
point process P with intensity θ = 5× 10−2. We
generated random velocity fields by first constructing a
Voronoi tessellation of the domain, and then selecting
a random velocity drawn from the uniform distribution
U on the interval [0.2,1.8] for each cell of the
tessellation. The characteristic length λv of the velocity
variation can be related to the intensity θv of the point
process used to construct the germs of the tessellation.
More precisely, the average area of the cell is given by

S̄ =
1
θv

.

Hence, we can define the characteristic length of the
velocity variations to be

λv =

√
1
θv

.

The fast marching algorithm returns a label image
of the tessellation. We can extract the cells boundaries

by scanning the label image and by retaining the
edges of the discretization grid separating voxels
with distinct labels. This procedure yields a contour
ci, j for each couple of adjacent regions i and j.
We obtain a representation of the boundaries as an
adjacency graph by retaining the vertices of the edges
of the discretization grid that constitute the boundary.
Two vertices are considered to be adjacent if there
is an edge of the discretization grid linking them.
The corresponding adjacency graph is not necessarily
connected. However, each connected component of
the graph represents a connected portion of the
boundary between two adjacent cells which satisfies
conditions C.1, C.2 and C.3, and it is therefore
possible to characterize the multi-scale tortuosity of
the cells boundaries using the algorithm described in
the previous section.

We computed the multi-scale tortuosity parameters
for the tessellations displayed in Fig. 2 in Table 1.
As expected, the tortuosity at the smallest scale is
maximal for the tessellation with θv = 10. By contrast,
the largest tortuosity measured at subsequent scales
correspond to the tessellation with θv = 0.1. We note
that the tortuosity of the original tessellation is not one
at scale d = 0, despite the fact that the boundary of
a Voronoi tessellation should be a straight line. This
is due to artefacts caused by the discretization of the
diagonal elements of the boundaries on a regular grid
with preferential directions ex and ey.

CONCLUSION

In this article, we introduced a novel method
for computing a random tessellation based upon
the solution of the Eikonal equation. This method
yields a complexity in O(N logN), N being the
number of voxels used to discretize the simulation
domain, and enabled us to generate tessellations
with rough interfaces. In addition, we introduced an
algorithm for characterizing the roughness of the cells
boundaries at different scales. Using this algorithm,
we showed that the local velocity model could be
parameterized to control the roughness amplitude on
the cells boundaries. A natural extension of the model
presented in this article is the generation of random
tessellations growing over an anisotropic velocity field.
Another line of research could also be to generalize
the multiscale characterization algorithm to the 3D
setting. The difficulty here would be to propose a
strictly convex objective function accounting for the
smoothness of the curve. This will be the object of
further work.
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