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ABSTRACT

The intact grains of the dead leaves model enables us to generate random media with non overlapping grains.
Using the time non homogeneous sequential model with convex grains, theoretically very dense packings
can be generated, up to a full covering of space. For these models, the theroretical volume fraction, the size
distribution of grains, and the pair correlation function of centers of grains are given.
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INTRODUCTION

Packings of objects provide models for granular
media. It is important for applications to get models
showing a high volume fraction of grains, for instance
for the prediction of macroscopic physical properties
of random media. When using spheres with a fixed
radius R, it is known that the highest volume fraction
is 0.7404, corresponding to Kepler’s conjecture, which
was proved by Th. Hales, as explained in Aste
and Weaire (2000). A full covering of space can
be obtained from the Apollonian packing (Aste and
Weaire, 2000) involving a discrete size distribution of
spheres. These ordered close packings provide regular
tessellations of space in a deterministic way, which can
be of interest to simulate crystal-like microstructures,
but are not suitable to describe the variability observed
in real media, which requires the use of probabilistic
models.

In Delarue and Jeulin (2001), up to 0.55 volume
fraction of spheres with the same radius could
be obtained, starting from a dense CFC (cubic
face centered) ordered arrangement of spheres, and
combining random deletion and translations of
spheres. Simulations of systems of non-overlapping
long fibers (Altendorf and Jeulin, 2011) were
developped from a combination of random walks and
of a combination of attractive and repulsing forces.

We will follow here a different approach, based
on a probabilistic model of non overlapping objects
obtained by means of the dead leaves model
(Matheron, 1968; Jeulin, 1980), when considering
grains which remain uncovered during the sequence
(Jeulin, 1998; 2000; 2002). When these grains are
spherical with a fixed radius R, the centres of non-
overlapping spheres produce a standard Hard-Core

point process (Matérn, 1960; Stoyan et al., 1987).
Using the time homogeneous model provides random
sets with a low volume fraction. In this paper, we
show that dense packings can be obtained when using
convex grains with a size distribution, and appropriate
sequences during the generation of the model. In what
follows, the results obtained for the time homogeneous
case are reminded, and some sequential versions are
studied, for which dense packing (surprisingly up to
space filling) can be reached theoretically. Theoretical
size distributions of grains generating these packings
are provided. Finally the pair correlation function of
centers of grains is given.

INTACT GRAINS OF THE DEAD
LEAVES MODEL FOR THE TIME
HOMOGENEOUS CASE

We first give a short reminder of basic definitions
and results concerning the time homogeneous dead
leaves tessellation of space (Matheron, 1968). We start
from a sequence of random grains A′ with Lebesgue
measure µn(A′) (or volume in the three-dimensionnal
space) implanted in the n dimensional space Rn

according to a space-time point Poisson process with
a constant intensity θ . During the sequence, only
parts of boundaries of new grains outside of already
present grains are kept. By construction, the union
of all grains appearing between time u = 0 and time
u= t generates a standard Boolean model with primary
grain A′ and intensity θ t. By analogy with dead leaves
falling from trees, visible boundaries of grains of this
version of the model are obtained by an observation
of the tessellation from below (Jeulin, 1980; 1987;
1989; 1993; 1997). In a second step, only the intact
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grains are kept, to generate a random set A(t) with non-
overlapping grains. The random set A(t) is therefore
obtained as the union of grains of the sequence falling
outside of the earliest grains. The population of the
intact grains in the dead leaves random tessellation can
be used to estimate the characteristics of the random
grains from an observation of the tessellation (Jeulin,
1993), or of its variants like primary functions in the
case of the dead leaves random function (Jeulin, 1989;
1993; 1997).

We consider now the case where a single
symmetric convex grain A′ is used (for instance a
sphere with radius R, or equivalently a cube, an
ellipsoid, . . . ). The volume fraction (in R3) or more
generally the probability p(t) for a given point x to
belong to the random set A(t) is given by

p(t) = P{x ∈ A(t)}

=
1
2n

[
1− exp

(
−θ t 2n

µn(A′)
)]

. (1)

For t → ∞, we get p = 1
2n . As a result, the intact

grains of a dead leaves model generate a random set of
non overlapping grains with a limited packing density
(namely 0.5, 0.25, and 0.125 in R, R2 and R3).

Proof. The event “x ∈ A(t)” can be written: at some
u < t, x is covered by a random grain A′ falling outside
of the previous occurences of grains A′ from time 0 to
time u (generating a Boolean model with grain A′ and
with intensity θu). Therefore

p(t) =
∫ t

0
θ µn(A′) exp

(
−θu2n

µn(A′)
)

du , (2)

since µn(A′ ⊕ Ǎ′) = 2nµn(A′) for any symmetric
convex set A′.

It turns out that replacing the single grain by a
population of grains generates a random set with p <
1/2n, as conjectured in Andersson et al. (2006) and
shown in Kiderlen and Hörig (2000), so that the time
homogeneous model with a single grain provides an
upper bound of the probability p. It is the case of the
two dimensional simulations given in Figs. 1 and 2
with area fraction 0.25, obtained in the homogeneous
case.This is rather low, as compared to the non random
triangular close packing of discs, with area fraction
π/
√

12 = 0.9068 (Aste and Weaire, 2000).

Fig. 1. Non overlapping discs built from the dead
leaves model; area fraction 0.25.

Fig. 2. Non overlapping discs with a size distribution,
built from the dead leaves model; area fraction 0.25.

INTACT GRAINS OF THE DEAD
LEAVES MODEL FOR THE
GENERAL CASE

SPACE FRACTION COVERED BY THE
INTACT GRAINS
We consider now a time sequence of independent

random grains A′(t) implanted on Poisson points with
intensity θ(t). Keeping the grains of the sequence
falling outside of previous grains gives a random set
A(t). We have the following result.

4



Image Anal Stereol 2019;38:3-13

Theorem 1. The probability p(t) is given by

p(t) = P{x ∈ A(t)}=
∫ t

0
θ(u)µn

(
A′(u)

)
du ·

exp
(
−
∫ u

0
θ(v)µn

(
A′(v)⊕ Ǎ′(u)

)
dv
)

. (3)

Proof. The event “x ∈ A(t)” can be written: at some
u < t, x is covered by a random grain A′(u) falling
outside of the previous occurences of grains A′(v) from
time 0 to time u (generating a sequential Boolean
model with grain A′(v) and with intensity θ(v)).

In what follows, we use a family of grains A′(t)
with the same shape A′ and with size λ (t). When A′ is
a symmetric convex set,

µn
(
A′(v)⊕ Ǎ′(u)

)
= (λ (v)+λ (u))n

µn(A′) ,

and p(t) in Eq. 3 becomes:

p(t) = P{x ∈ A(t)}=
∫ t

0
θ(u)λ

n(u)µn
(
A′
)

du ·

exp
(
−
∫ u

0
θ(v)µn(A′) (λ (v)+λ (u))n dv

)
. (4)

The aim of the present study is to find some
combinations of functions θ(v) and λ (v) providing
large values of p(t) derived from Equation (4), with
possibly p(t) → 1 for t → ∞. For instance in the
case of spherical grains, it is possible by this way to
generate a space covering sequence of spheres (that
might be so-called composite spheres, namely spheres
of a first material embeded in a spherical shell made
of a second material), as used for instance in physics
and mechanics for the so-called Hashin composite
spheres model (Hashin, 1962). This type of composite
microstructure shows optimal physical properties such
as macroscopic electrical conductivity, given the
volume fraction and the individual properties of its two
components. As far as we know, no theoretical study is
available to generate such microstructures, despite its
fundamental interest.

SIZE DISTRIBUTION OF THE INTACT
GRAINS
It is possible to compute the “number” f (λ ) and

the “measure” g(λ ) size distributions of the intact
grains. For the “number” size distribution, every grain
is counted with the same weight (1), whatever its
size. For the “measure” size distribution, every grain
is counted proportionally to its Lebesgue measure µn,
namely its volume in the three-dimensional space.

Using a decreasing sequence λ (u), the size is
univoquely parametrized by u. We give now the
expressions of f (λ (u)) and of g(λ (u)).

Theorem 2. Provided the expression in the
denominator below, giving the total number of
grains per unit volume, is finite, the “number” size
distribution f (λ (u)) is given by

f (λ (u)) =[
θ(u)exp

(
−
∫ u

0
θ(v)µn(A′)(λ (v)+λ (u))n dv

)]/
[∫

∞

0
θ(u)du exp

(
−
∫ u

0
θ(v)µn(A′)(λ (v)+λ (u))n dv

)]
.

(5)

Proof. The specific number of intact grains per unit
volume appearing between time u and u + du is
proportional to θ(u) and to the probability for the grain
with size λ (u) to be outside of the Boolean model
made of all grains that appeared from time 0 to time
u.

Theorem 3. The “measure” size distribution g(λ (u))
is given by

g(λ (u)) =
1

p(t)

[
θ(u)λ

n(u)µn
(
A′
)
·

exp
(
−
∫ u

0
θ(v)µn(A′) (λ (v)+λ (u))n dv

)]
. (6)

Proof. The probability pi(u) to belong to grains with
size λ (u) is derived from Eq. 4:

pi(u) = θ(u)λ
n(u)µn

(
A′
)
·

exp
(
−
∫ u

0
θ(v)µn(A′) (λ (v)+λ (u))n dv

)
.

Normalizing pi(u) by the overall probability p(t) gives
Eq. 6.

EXAMPLES OF MODELS OF
DENSE PACKINGS

Some specific cases, obtained for a particular
choice of the functions θ(u) and λ (u) used in the
model, are detailed now. Of course other choices
are possible and would also lead to dense packings.
To generate a random set A(t) with compact grains
and to maximize p(t), we decide to use an
initial compact grain A′ with measure µn (A′) = 1
and a decreasing sequence λ (v), with λ (0) = 1.
In what follows, numerical calculations and most
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analytical calculations were made with the software
Mathematica.

From our results, packings obtained for an
increasing function λ (u) show a bounded volume
fraction p(t) < 1

2n . Therefore to generate a packing
with compact grains, decreasing functions λ (u) are
used, with λ (0) = 1. To get a dense packing is
considered the limit case obtained for t → ∞. The
union of all grains appearing between time 0 and
time t is a Boolean model A1(t) with q1(t) = 1−
P{x ∈ A1(t)}. We have, noting λ n(u) = (λ (u))n

q1(t) = exp
(
−
∫ t

0
θ(u)µn(A′)λ

n(u)du
)

.

Since by construction p(t) = P{x ∈ A(t)}< 1−q1(t),
we have to impose q1(∞) = 0 to get the densest
packings with p(∞) = p ' 1. Therefore we will make
a choice of functions θ(u) and λ (u) satisfying∫

∞

0
θ(u)µn(A′)λ

n(u)du =+∞ .

In this paper, we make use of simple tractable
analytical functions for θ(t) and λ (t). Some other
choices were made without success. A more general
and systematic guideline would probably involve to
work on variational techniques to maximize p(t) in
Eqs. 3 or 4, This is matter for further research, but the
task is not easy, since the space of allowed functions
θ(t) and λ (t) is rather huge.

CONSTANT RATE OF IMPLANTATION
A constant rate of implantation (or time-space

intensity) is obtained when θ(u)µn(A′)λ n(u) = θ

(D. Jeulin, unpublished work). In that case, q1(t) =
exp(−θ t) and q1(t) → 0 when t → ∞. With these
assumptions, Eq. 4 becomes

p(t) = θ

∫ t

0
du exp

(
−θ

∫ u

0

(
1+

λ (u)
λ (v)

)n

dv
)
,

and the limit p obtained for p(t) when t → ∞ is given
by

p = θ

∫
∞

0
du exp

(
−θ

∫ u

0

(
1+

λ (u)
λ (v)

)n

dv
)
.

For the model with a constant rate of implantation,
the two size distributions become (dropping the
denominator for f (λ (u))) :

f (λ (u))∼
θ

(λ (u))n
µn(A′)

exp
(
−θ

∫ u

0

(
1+

λ (u)
λ (v)

)n

dv
)
,

g(λ (u)) =
θ

p
exp
(
−θ

∫ u

0

(
1+

λ (u)
λ (v)

)n

dv
)
.

For illustration, we consider some case studies in
the three-dimensional case.

Case 1: λ (u) = 1/(1+u)α

We get

∫ u

0

(
1+

λ (u)
λ (v)

)3

dv =
∫ u

0

(
1+
(

1+ v
1+u

)α)3

dv

and

∫ u

0

(
1+
(

1+ v
1+u

)α)3

dv =

u+
3(u+1)

α +1
+

3(u+1)
2α +1

+
u+1

3α +1

−

(
3

2α +1

(
1

u+1

)2α

+
1

3α +1

(
1

u+1

)3α
)

+
3

α +1

(
1

u+1

)α

. (7)

From numerical calculations, high concentrations can
be obtained for different combinations of θ and α .
For instance, p = 0.909935 for θ = 1 and α = 100;
p = 0.949683 for θ = 0.1 and α = 100; p = 0.953786
for θ = 0.01 and α = 100. Higher values of θ ,
in the range 1–10 produce lower volume fractions,
decreasing with θ .

To reach very high volume fractions, high
coefficients α are required (typically α = 100), so
that very small grains have to be generated during the
simulation. Typically for θ = 0.1 and α = 100, about
150 orders of magnitude of sizes have to be generated
with this set of parameters, which is out of reach in
practical simulations.

We give in Table 1 the volume fraction reached for
α = 100 and θ = 1 when stopping the simulations at
time t for which λ (t) = 10−2, 10−3 and 10−6. This
last range would correspond to grains in the scales
between 1 nm and 1 mm.

Table 1. Some examples of volume fractions for
packings involving a finite range of sizes (α = 100 and
θ = 1) .

λ (t) 10−2 10−3 10−6

p 0.044 0.066 0.13116
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Case 2: λ (u) = exp(−αu)

When λ (u) = exp(−αu),

∫ u

0

(
1+

λ (u)
λ (v)

)3

dv =
∫ u

0
(1+ exp(−α(u− v)))3 dv

and

∫ u

0
(1+ exp(−α(u− v)))3 dv =

1
6α

(
29−2e−3αu−9e−2αu−18e−αu +6αu

)
. (8)

Very high values of p are obtained for θ = 0.01
and α in the range 2–20, where we get 0.975 < p <
0.996. For α = 1 and θ = 0.01, p = 0.953185. For
α = 5 and θ = 0.01, p = 0.990395. A full covering of
space can be theroretically accessed with this model,
but a covering fraction of 0.95 requires 131 orders
of magnitude for the range of sizes involved in the
simulation, which is non realistic in practice.

We give in Table 2 below the volume fraction
reached for α = 1 and θ = 0.01 when stopping the
simulations at time t for which λ (t) = 10−2,10−3and
10−6.

Table 2. Some examples of volume fractions for
packings involving a finite range of sizes (α = 1 and
θ = 0.01) .

λ (t) 10−2 10−3 10−6

p 0.0435 0.064 0.1233

Case 3: λ (u) = β +1/(1+u)α

This variant of Case 1 enables us to generate
populations of grains with a finite range of strictly
positive sizes, since λ (0)= β +1 and λ (∞)= β . When
β = 0.1, the typical range of sizes is around 10, and
when β = 0.01, it is around 100. In the present case,
we have

ϕ(β ,u) =
∫ u

0

(
1+

λ (u)
λ (v)

)3

dv

=
∫ u

0

(
1+

β +(1+u)−α

β +(1+ v)−α

)3

dv .

When α = 1, we get

ϕ(β ,u) =
1

2β 4(u+1)3

(
2βu(2β (u+1)+1)3

−6(βu+β +1)(2β (u+1)+1)
)

+
1

2β 4(u+1)3

(
βu−

6(βu+β +1)(2β (u+1)+1)2 log(βu+β +1)+β +1
)

− (βu+β +1)
2β 4(u+1)3

(
(βu+β +1)2

(β +1)2

− 6(2β (u+1)+1)(βu+β +1)
β +1

−6(2β (u+1)+1)2 log(β +1)
)
.

For illustration some calculations were made when
α = 1. For β = 0.1, a maximal value p = 0.198436
is obtained for θ = 0.05. When β = 0.01 a maximal
value of p = 0.237714 is given for θ = 0.022. When
β = 0.001, a maximal value of p = 0.256222 is given
for θ = 0.007. It seems that no dense packing can be
reached with this version of the model.

When α = 2, we have

ϕ(β ,u) =
∫ u

0

(
1+

β +(1+u)−2

β +(1+ v)−2

)3

dv

=− 3
8β 7/2(u+1)6

[
25β

3(u+1)6 +47β
2(u+1)4

+27β (u+1)2 +5
]

tan−1
(√

β (u+1)
)

+
8
√

β (u+1)
(
2β (u+1)2 +1

)3

8β 7/2(u+1)6

−
2
√

β (u+1)
(
β (u+1)2 +1

)
8β 7/2(u+1)6

+
3
√

β (u+1)
(
β (u+1)2 +1

)(
7β (u+1)2 +3

)
8β 7/2(u+1)6

+
3

8β 7/2(u+1)6

[
25β

3(u+1)6 +47β
2(u+1)4

+27β (u+1)2 +5
]

tan−1
(√

β

)
−

2
√

β
(
β (u+1)2 +1

)3

(β +1)2
(
8β 7/2(u+1)6

)
+

3
√

β
(
7β (u+1)2 +3

)(
β (u+1)2 +1

)2

(β +1)
(
8β 7/2(u+1)6

)
+

8
√

β
(
2β (u+1)2 +1

)3(
8β 7/2(u+1)6

) .
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When β = 0.01 a maximal value of p = 0.274566
is given for θ = 0.1. When β = 0.001, a maximal value
of p = 0.315167 is given for θ = 0.05.

No dense packing seems to be obtained with this
limitation in the range of sizes.

Case 4: λ (u) = β + exp(−αu)

This variant of Case 2 generates again grains with
a finite range of strictly positive sizes. We have

∫ u

0

(
1+

λ (u)
λ (v)

)3

dv=
∫ u

0

(
1+

β + exp(−αu)
β + exp(−αv)

)3

dv

=
e−3αu

2αβ 3

(
β

3e3αu(16αu−9)+β
2e2αu(24αu−11)

− (βeαu +1)
(β +1)2

(
2(β +1)2 log(β +1) ·(

7β
2e2αu +5βeαu +1

))
+

β (βeαu +1)
(β +1)2

(
9β

3e2αu +4β
2eαu (2eαu +3)

+β (10eαu +3)+2
)

+2
(
7β

3e3αu +12β
2e2αu +6βeαu +1

)
log
(
e−αu +β

)
+2βeαu(6αu−1)+2αu)

For α = 1 and β = 0.01, a maximum of p =
0.313331 is obtained for θ = 0.15. When β = 0.001
(involving a range of 1000 in the sizes), a maximum
of p = 0.379635 is obtained for θ = 0.13. When β =
10−4, 10−5 or 10−6, a maximum of p = 0.431963,
0.4735995, 0.459862 is obtained for θ = 0.11, 0.11,
0.09. Again no highly dense packing is accessed with
this range of sizes and this model.

EXAMPLES OF TIME DEPENDING
RATES OF IMPLANTATION

We will consider various cases where θ(u)
and λ (u) are respectively an increasing and a
decreasing function of u, with the condition∫

∞

0 θ(u)µn(A′)λ n(u)du =+∞.

Some polynomial laws

When θ(u)µn(A′) = θ(1+u)β and λ (u) = 1/(1+
u)α , it comes

λ
n(u)θ(u)µn(A′) = θ

(1+u)β

(1+u)nα
,

and

∫ u

0
(1+ v)β

(
(1+ v)−α +(1+u)−α

)3 dv

=
(

2
(
−3α

3 +20α
2(β +1)−18α(β +1)2

+4(β +1)3)(u+1)−3α+β+1
)/

(
(β +1)(−3α +β +1)(−2α +β +1)(−α +β +1)

)
− (u+1)−3α

β +1
− 3(u+1)−2α

−α +β +1

− 3(u+1)−α

−2α +β +1
− 1
−3α +β +1

.

To get dense packings, we require β ≥ nα − 1. Some
typical results for n = 3 are given in Table 3.

Table 3. Probability p for some sets of parameters.

θ 0.1 0.01 0.001

α = 2, β = 6 0.317 0.358 0.364
α = 2, β = 5.5 0.414 0.478

A special case is given for β = nα − 1 and
therefore β = 3α−1. We have

f (α,u)

=
∫ u

0
(1+ v)3α−1 ((1+ v)−α +(1+u)−α

)3 dv

=
1

2α

(
− (u+1)−3α −6(u+1)−2α

+(u+1)−α(6α log(u+1)+5)+2
)
, (9)

and
p = θ

∫
∞

0

du
1+u

exp(−θ f (α,u)) .

For α = 1 and θ increasing from 0.01 to 0.1, p
decreases from 0.95 to 0.6. When θ increases from
0.001 to 0.01, p decreases from 0.995 to 0.95.

For α = 3, p decreases from 0.999 to 0.985 when
θ increases from 0.001 to 0.01.

For α = 5, p decreases from 0.9999 to 0.9915
when θ increases from 0.001 to 0.01.

Therefore this special case gives access to
extremely high density of packings. As for the
previous exponential case, 131 orders of magnitude for
the range of sizes are required for a simulation where
p reaches 0.95 when α = 1 and θ = 0.01 , which is
practically out of reach.

We give in Table 4 below the volume fraction
reached for α = 1 and θ = 0.01 when stopping
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the simulations at time t for which λ (t) =
10−2,10−3and10−6 and 10−6. They are close to what
was obtained for cases 1 and 2 above.

Table 4. Some examples of volume fractions for
packings involving a finite range of sizes (α = 1 and
θ = 0.01).

λ (t) 10−2 10−3 10−6

p 0.04325 0.064 0.1233

Use of exponential laws for λ (u) and θ(u)

When λ (u) = e−αu and θ(u)µn(A′) = θeβu, we
require β ≥ nα in order to obtain dense packings. In
this case, we have

p = θ

∫
∞

0
exp(β −3α)udu ·

exp
(
−θ

∫ u

0
eβv (e−αu + e−αv)3 dv

)
and (for β 6= 3α , β 6= 2α , β 6= α)

∫ u

0
eβv (e−αu + e−αv)3 dv

=

(
6α3−40α2β +36αβ 2−8β 3

)
eu(β−3α)

β (α−β )(2α−β )(3α−β )

−
(e−αu +1)3

(
− 3e2αu

2α−β
− e3αu

3α−β
− 3eαu

α−β
+ 1

β

)
(eαu +1)3 . (10)

Typical results for p are given in Table 5, where
θ = 0.01. It appears that very dense packings are
reached when β ≈ nα .

Table 5. Probability p for some sets of parameters in
the case of exponential laws.

α β p

3 10 0.433
5 16 0.54
5 20 0.266
5 15.1 0.904486
7 21.1 0.929732
7 25 0.34

10 30.01 0.99043

For illustration, the probability p = 0.93 is reached
for α = 7 and β = 21.1, which requires 99 orders of
magnitude in the involved range of sizes, and therefore
cannot be implemented in simulations.

Combination of exponential law and of
polynomial law

Using λ (u) = 1/(1 + u)α and θ(u) = θeβu, we
satisfy q(∞) = 0. We have

ϕ(α,β ,u) =
∫ u

0
eβv ((1+ v)−α +(1+u)−α

)3 dv .

With this combination, we could not obtain high
packing densities.

SIZE DISTRIBUTIONS FOR
DENSE PACKINGS

It is interesting to derive theoretical size
distributions (Eqs. 6 and 5) of grains involved in some
cases of previously introduced dense packings.

CONSTANT RATE OF IMPLANTATION
AND λ (u) = 1/(1+u)α

The “measure” size distribution is derived from
Eq. 7, replacing u by its expression in λ . It is given
by

g(λ ) =
θ

p
exp

(
−θ

[
−1

+λ
−α

(
1+

3
α +1

+
3

2α +1
+

1
3α +1

)
−
(

3λ

α +1
+

3λ 2

2α +1
+

λ 3

3α +1

)])
,

for 0≤ λ ≤ 1.

We have g(0) = 0 and g(1) = θ/p. The pdf g(λ )
increases with λ .

The “number” size distribution is proportional to

f (λ )∼ θ

pµn(A′)λ 3 exp

(
−θ

[
−1

+λ
−α

(
1+

3
α +1

+
3

2α +1
+

1
3α +1

)
−
(

3λ

α +1
+

3λ 2

2α +1
+

λ 3

3α +1

)])
,

for 0≤ λ ≤ 1.

We have f (1)∼ θ

pµn(A′)
, and f (λ )→∞ for λ → 0.
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CONSTANT RATE OF IMPLANTATION
AND λ (u) = exp(−αu)
The “measure” size distribution is derived from

Eq. 8, replacing u by its expression in λ . It is given
by

g(λ )=
θ

p
λ

θ
α exp

[
− θ

6α
(29−18λ −9λ

2−2λ
3)

]
for 0≤ λ ≤ 1.

We have g(1) = θ

p and g(0) = 0. The pdf g(λ )
increases with λ . This is illustrated in Fig. 3 for some
sets of parameters.

The “number” size distribution is proportional to

f (λ )∼
θ λ θ/α

pµn(A′)λ 3 exp
[
− θ

6α
(29−18λ −9λ

2−2λ
3)

]
for 0≤ λ ≤ 1.

We have f (1)∼ θ

pµn(A′)
. If θ

α
< 3, f (λ )→∞ when

λ → 0. If θ

α
> 3, f (λ )→ 0 when λ → 0. If θ = 3α ,

f (0)∼ θ

pµn(A′)
exp(−29

2 ).

Fig. 3. p
θ

g(λ ) as a function of λ , for θ = 0.1 and α = 1
(black), θ = 0.1 and α = 2 (red), θ = 0.01 and α = 5
(green).

TIME DEPENDING RATE OF
IMPLANTATION AND POLYNOMIAL LAW
We consider now the case when θ(u)µn(A′) =

θ(1+ u)β and λ (u) = 1/(1+ u)α , with β = 3α − 1.
We get the ”measure” size distribution, using Eqs. 6
and 9,

g(λ ) =
θ

p
λ

3θλ+1
α exp

[
− θ

2α
(2+5λ −6λ

2−λ
3)

]
for 0≤ λ ≤ 1,

with g(1) = θ/p and g(0) = 0. The pdf g(λ ) increases
with λ . It is illustrated in Fig. 4 for various sets of
parameters. They are very different from what was
obtained in Fig. 1.

The “number” size distribution is proportional to

f (λ )∼
θ

pµn(A′)λ 3 λ
3θλ+1

α exp
[
− θ

2α
(2+5λ −6λ

2−λ
3)

]
,

for 0≤ λ ≤ 1.

We have f (1) ∼ θ

pµn(A′)
. If α > 1/3, f (λ )→ ∞

when λ → 0. If α < 1/3, f (λ )→ 0 when λ → 0. If
α = 1/3, f (0)∼ θ

pµn(A′)
exp(−3θ).

Fig. 4. p
θ

g(λ )v as a function of λ , for θ = 0.1 and
α = 1 (black), θ = 0.1 and α = 2 (red), θ = 0.01 and
α = 5 (green).

TIME DEPENDING RATE OF
IMPLANTATION AND EXPONENTIAL
LAW

When λ (u) = exp(−αu) and θ(u)µn(A′) =
θ exp(βu), the ”measure” size distribution is obtained
from Eqs. 6 and 10:

g(λ ) =
θ

p
λ

3−β/α ·

exp
{
−θ

[
λ

3−β/α

(
6α3−40α2β +36αβ 2−8β 3

)
β (α−β )(2α−β )(3α−β )

−
(
− 1

3α−β
− 3λ

2α−β
− 3λ 2

α−β
+

λ 3

β

)]}
for 0≤ λ ≤ 1; with with g(1) = θ/p and g(0) = 0.

10
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The “number” size distribution is proportional to

f (λ )∼ θ

pµn(A′)
λ
−β/α ·

exp

{
−θ

[
λ

3−β/α

(
6α3−40α2β +36αβ 2−8β 3

)
β (α−β )(2α−β )(3α−β )

−
(
− 1

3α−β
− 3λ

2α−β
− 3λ 2

α−β
+

λ 3

β

)]}
for 0≤ λ ≤ 1.

We have f (1)∼ θ/(p µn(A′)) and f (λ )→∞ when
λ → 0.

PAIR CORRELATION FUNCTION
OF INTACT GRAINS CENTERS

For a point process we can define the pair
correlation function G(r) as a function of the density
ρ (average number of points per unit volume) from
Stoyan et al. (1987):

ρ2G(r)dV1dV2 = P{two points of the process are
located in the volume elements
dV1 and dV2 centered in two
points at the distance r}

For a stationary point process, when r→ ∞ we get
G(r)→ 1.

We can derive the pair correlation function G(r, t)
of the centres of non-overlapping convex grains A′ with
time decreasing sizes, in the random packing generated
from the dead leaves model (in Stoyan and Schlather,
2000, it is deduced for disks in 2D in the limit area
fraction 0.25, using results of Matérn (1960)).

Theorem 4. In the time non homogeneous case for
random packings, we have, using a normalization
factor k, D being the diameter of A′(0) in the direction
of vector h, we get

G(h, t) = 0 , for h < D ,

kG(h, t) = 2
∫ t

0
θ(u)du

∫ u

0
θ(w)dw ·

exp
(
−
∫ u

0
θ(v)µn(A′(u) ∪A′(w)h)⊕ Ǎ′(v)dv

)
for h≥ D .

Since for |h| → ∞ we have G(h, t)→ 1, we obtain for
h≥ D

G(h, t) =
[∫ t

0
θ(u)du

∫ u

0
θ(w)dw ·

exp
(
−
∫ u

0
θ(v)µn(A′(u)∪A′(w)h)⊕ Ǎ′(v)

)
dv
]/

[∫ t

0
θ(u)du

∫ u

0
θ(w)dw ·

exp
(
−
∫ u

0
θ(v)

(
µn(A′(u)⊕ Ǎ′(v)) +

+µn(A′(w)⊕ Ǎ′(v))
))

dv
]
. (11)

Proof. Consider the last event concerning point x or
point x + h: at some time u < t, a Poisson point
appeared in dV1 centered in x (or in dV2 centered in
x + h), while at some time w < u a Poisson point
appeared in dV2 centered in x+h (or in dV1 centered in
x), A′(u)∪A′(w)h being outside of the Boolean model
generated by grains A′(v) appearing from 0 to u. From
the theoretical expression (11), it is clear that the shape
of G(h, t) depends on the choice of functions θ(t) and
λ (t), but we have G(h, t) = 0 for h < D and G(h, t) = 1
for h≥ 2D.

Corollary 1. In the case of the time homogeneous
model and with a fixed grain, we get , using a
normalization factor k, D being the diameter of A′ in
the direction of vector h, and with A′2 = A′⊕ Ǎ′

G(h, t) = 0 for h < D ,

kG(h, t) =
2

(µn(A′2∪A′2h))
2 ·[

1− exp
(
−θ tµn(A′2∪A′2h)

)(
1+θ tµn(A′2∪A′2h)

)]
for h≥ D .

Since for |h| → ∞ we have G(h, t)→ 1, we obtain for
h≥ D

G(h, t) =
(2n+1µn(A′))2

(µn(A′2∪A′2h))
2 ·

1− exp
(
−θ tµn(A′2∪A′2h)

)
(1+θ tµn(A′2∪A′2h))

1− exp(−θ t2n+1µn(A′))(1+θ t2n+1µn(A′))
.

(12)

Eq. 12 can be written in a more condensed way.
We put q = exp(−θ t 2nµn(A′)) and therefore we have
p(t) = 1

2n (1−q) (q is the probability for a point to be
outside of the grains of the Boolean model with grains
A′2, generated from 0 to t). We use

K2(h) = µn(A′2∩A′2h) ,

r2(h) = K2(h)/K2(0) .

11
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We get

G(h) =0 for h < D , (13)

G(h) =
(

2
2− r2(h)

)2

·

1−q2−r2(h)(1− log(q)(2− r2(h)))
1−q2(1− log(q)

,

for h≥ D .

The limiting case is obtained for p = 1/2n (or
equivalently q = 0 and t→ ∞):

G(h) =

0 for h < D ,(
2

2−r2(h)

)2
for h≥ D .

(14)

In R, if A′ is the segment with length 1, we have
r2(h) = 1− h

2 for h≤ 2. It comes

G(h) = 0 for h < 1 ,

G(h) =
(

2
1+h/2

)2 1−q1+h/2(1− log(q)(1+h/2))
1−q2(1− log(q)

for 1 < h < 2 ,

G(h) = 1 for h≥ 2 . (15)

We get

G(1) =
16
9

1−q3/2(1− 3
2 log(q))

1−q2(1− log(q))
,

so that there is a strong influence of the volume fraction
on the shape of G(r).

For non overlapping disks with radius R in the two-
dimensional space, we have to use Equation (13) with
D = 2R and

r2(h) =
K(h)
K(0)

= arccos
(

h
4R

)
− h

4R

√
1−
(

h
4R

)2

, for h≤ 4R

r2(h) = 0 , for h≥ 4R .

For spherical grains with radius R in the three-
dimensionnal space, we have

r2(h) = 1− 3h
8R

+
h3

128R3 for h < 4R ,

r2(h) = 0 for h≥ 4R .

CONCLUSION

Intact grains of the dead leaves model provide
random packings with a volume fraction controlled by
a wise combination of the time sequence of density
θ(t) and of sizes λ (t). The strength of this approach
is to provide dense random packings, as opposite
to deterministic constructions, and to get access to
many theoretical results, such as the time evolution
of the volume fraction during the construction of the
packing, the size distribution of grains, and the pair
correlation function of centres of grains. Contrarily
to other developped approaches, like in Delarue and
Jeulin (2001) for sphere packings, or in Altendorf and
Jeulin (2011) for simulations of random fiber systems,
it does not require the implementation of complex
translations of objects controlled by external forces.
The obtained space arrangement revealed by the pair
correlation function of grains involves correlations on
sizes up to twice the maximum diameter of grains
of the model, and does not show any long range
arrangements or alignments, as could be present in
periodic or in some real media.

Using similar convex grains symmetrical with
respect to the origin, not limited to spheres, very dense
packings can be theoretically obtained, up to a full
covering of space by non-overlapping convex grains,
a particular case being spherical grains. Considering
convex cells delimited by the boundaries of grains,
tessellations of space with compact convex cells are
generated for appropriate sequences asymptotically
leading to a full covering of space. Models with
different grain size distributions are obtained by this
process. Packings with extremal volume fractions
(close to 1) involve huge ranges of sizes (the smallest
diameters of grains tending to 0), which is theoretically
feasible, but practically out of reach of computer
simulations.
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