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ABSTRACT

This paper discusses the geometrical properties of a radiolarian skeletal structure, namely, that of genus
Didymocyrtis. We characterized the evolution of skeletal structures and analyzed the structures using geometry.
We defined two ratios in order to quantify the geometrical properties of Didymocyrtis and verified that the two
ratios changed with their phylogenic evolution. We also used the 3D skeletal data of a specimen of species
D. tetrathalamus, which were obtained through micro X-ray CT. The cortical shell obtained in the 3D data
was projected onto a spherical surface, and we determined the centers of the pores. Our analysis revealed that
the number of pores is approximately 200 and their distribution is not regular. We also determined that the
column-like parts of the skeleton, which connect the inner and upper parts of the specimen, do not lie on a
plane and their intervals are not equal.
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INTRODUCTION

Radiolarians are a type of marine plankton having
siliceous skeletons. Their fossils have been used as
geological indexes for exploring the Earth’s history.
Studies of radiolarians are based on their skeletal
structures because their soft parts dissolved before
the earliest taphonomic processes, leaving only their
hard parts. Therefore, extracting useful information
from the skeletal structure is the main subject of such
studies. Paleontologists do not use geometrical terms,
so they describe the structures qualitatively. In order
to discuss the structures quantitatively, the structures
must be considered geometrically, but such approaches
are not popular at present.

Recently, a method using micro X-ray CT to obtain
three-dimensional (3D) skeletal data of radiolarians
has been developed (Ishida et al., 2015; Wagner et
al., 2015). However, the main object of the data
acquisition by paleontologists is to observe the skeletal
structures of the specimens in detail. This is because
the target of research on radiolarians is to describe the
structural similarities and differences from previously
found species. Furthermore, no quantitative method for
treating the data has yet been established.

There are three main difficulties in the quantitative
analysis of radiolarian skeletons. Firstly, most of their
shapes are not convex. Therefore, our knowledge
of convex geometry cannot be applied directly to
their shapes. Secondly, radiolarians are so small

that they can only be observed using microscopes.
Therefore, observation was always limited to confined
angles until the introduction of the micro X-ray CT
method (Matsuoka et al., 2012; Yoshino et al., 2015).
Lastly, although the skeletal structures have many
pores, a general method for analyzing the pores has
not been developed. In the case of spherical skeletons,
there have been some studies on the geometrical
analysis of pore arrangements (Yoshino et al., 2014),
but the methods of those studies do not extend to other
shapes.

In the present paper, we discuss the skeletal
structures of genus Didymocyrtis quantitatively by
introducing a geometrical method. We intend to show
through this paper that the proposed geometrical
approach is effective for describing the skeletal
structures of radiolarians. This paper consists of three
parts: Firstly, we describe the genus of the radiolarians
which we focused on. Secondly, we introduce some
geometrical definitions in order to discuss the skeletal
structures of some species which belong to that genus.
Finally, we present the results of some geometrical
analyses.

GENUS DIDYMOCYRTIS

In this study, we focused on images of the genus
Didymocyrtis for 2D analysis and a specific specimen
of the radiolarian species Didymocyrtis tetrathalamus
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(Haeckel) for 3D analysis. For 3D analysis, we used
only data from one specimen because we did not have
data of the other species which belong to the same
genus.

There are two main reasons for choosing the
genus Didymocyrtis: One is based on a paleontological
point of view. The fossils of the genus are frequently
observed in a wide area of the Earth and for a
long period of geological time. This means that
the genus is very popular among paleontological
researchers. The phylogeny of the genus has been
researched in detail (Riedel and Sanfilippo, 1971;
Goll, 1972; Kellogg, 1980; Sanfilippo and Riedel,
1980; Suzuki and Aita, 2012; Xiao et al., 2018).
There are approximately ten species of Didymocyrtis
in the fossil record. The first species of the genus
appeared approximately 20.0 Ma. Only one species,
D. tetrathalamus, remains presently. Fig. 1 shows a
photographic image of a living specimen (Matsuoka,
2017). The other reason is related to geometrical
aspects. Its shape is not convex, so its concave shape
poses a good challenge. We do not have effective
methods for analyzing concave shapes, because we
cannot apply the theorems of convex geometry to
them.

Fig. 1. Photomicrographic image of living
Didymocyrtis tetrathalamus. The bar represents
0.1 mm.

The skeleton of Didymocyrtis consists of two
parts: an almost spherical shell in the center and a
combination of spheroid-like shells which is made
up of mainly the outer parts (Anderson et al., 1986;
Sugiyama and Anderson, 1998). These two parts are
connected by radially extending column-like parts
which seem to be located almost in a plane. We refer to
the inner spherical part as a medullary shell, the outer
concave part as a cortical shell, and the column-like
parts as radial bars. There is another part outside of
the cortical shell called the extracapsulum (Anderson

et al., 1986; Sugiyama and Anderson, 1998); however,
we did not consider this part, because it cannot be
discussed using geometrical considerations.

We considered the STL data of the skeletal
structure of D. tetrathalamus acquired using a micro
X-ray CT. Fig. 2a shows a snapshot of a 3D image of
the data. The acquisition of the data used essentially
the same method as Ishida et al. (2015). The width
of the specimen is approximately 1× 10−4 m. Fig. 2b
shows the same 3D data as Fig. 2a from a different
viewpoint which obscures most of the cortical shell
in order to display the medullary shell and its
connections. As mentioned above, the medullary and
the cortical shells are connected by radial bars.

a b

Fig. 2. Image of 3D data with the definition of the
coordinates: a) view from (0,0,10); b) view from
(10,0,0).

ANALYSIS

We carried out two types of analyses: two-
dimensional and 3D. The former analysis focused on
two-dimensional images and examined the phylogenic
sequence of the species. The latter analysis focused on
3D data of a specimen and examined its structure in
detail. The 3D data is available on MorphoSource1.
Throughout the discussion of the analyses, we will
present the advantages of introducing a geometrical
viewpoint to the research of radiolarian skeletal
structures.

We approximated the shape of the cortical shell
as two connected spheroids. Fig. 3 illustrates the two
spheroids in 3D space which are identical in shape
to the cortical shell. We defined the coordinates such
that the axis of rotational symmetry is in agreement
with the x-axis and the y- and z-axes lie in the plane
of mirror symmetry. As a result, the centers of the
spheroids are located on the x-axis and their distances

1https://www.morphosource.org/Detail/Mediaetail/Show/media id/45653
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Fig. 3. Ideal shape of a cortical shell and definitions of
the coordinates and the parameters.

from the origin are equal. Then the equation of one of
our spheroids is(

x− xc
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= 1, (1)

where xc, a, and b are positive parameters which
characterize its shape. The centers of the two spheroids
are described as (±xc,0,0), where xc denotes the
distance of the centers of spheroids from the origin,
the ideal center of the shape. The denominators of
the second and third terms on the left-hand side,
denoted by b, are identical because this gives the ideal
axisymmetric shape for the approximation of the real
cortical shell. We call a and b polar and equatorial
radii, respectively.

To focus on the shape of cortical shells, we
considered two non-dimensional parameters. The first
is referred to as the aspect ratio, defined as a/b.
The aspect ratio determines the shape of a spheroid.
A spheroid is spherical in the case of a/b = 1 and
becomes oblate as a/b decreases. The other parameter
is referred to as the distance-diameter ratio, defined
as xc/a. This ratio is the distance of between the
two spheroids normalized by the polar diameter of a
spheroid. The two spheroids are more distant from
each other as the value increases. By introducing two
non-dimensional parameters to our analysis, we can
characterize the cortical shells quantitatively.

We considered the two ratios of eight species
which belong to the target genus by using the images
in Fig. 4.6d of Suzuki and Aita (2012). According
to Suzuki and Aita (2012) and Xiao et al. (2018),
the phylogenetic evolution of the genus can be
summarized by the representative two-dimensional
images of the eight species. We obtained measures for
xc, a, and b from the images and thereby obtained
values of the ratios of interest for each image. These

ratios were measured by Anderson et al. (1986) only
in the case of D. tetrathalamus. Fig. 4 shows the
occurrences and lineage of the representative eight
species with their species names, photographs, circles
approximating their medullary shells, and ellipses
approximating their cortical shells. We determined
the two ratios based on the ellipses. We could not
approximate the cortical shell of D. tubaria, because
the shape of the shell was far from being connected
spheroids.

The values of the ratios changed with the
phylogenic evolution of the species as shown in
Fig. 5. The figure demonstrates the relation between
the appearance of the species and the two ratios. In
the case of the aspect ratio, the value decreased with
evolution. The results show that the two spheroids
corresponding to the cortical shells tend to be oblate,
that is, flat. In the case of the distance-diameter ratio,
the value increased until 7.8 Ma (appearance of D.
antepenultima and D. penultima), after which it started
to decrease. Therefore, the phylogenic change of the
cortical shell shape can be summarized as the two
spheroids becoming more oblate and more distant from
each other until 7.8 Ma, after which they began to
move closer together. The evolution followed some
kind of strategy and it changed direction around 7.8
Ma. It is notable that the extracapsulum on the outside
of the cortical shell, which we did not consider in our
analysis, developed extensively from 7.8 Ma, as shown
in Fig. 4.

We numerically obtained the inertia moment
matrix and the principal axes of the 3D data in order
to introduce suitable Cartesian coordinates which
are consistent with those denoted in Fig. 3. The
coordinates were based on the obtained principal axes
as shown in Fig. 2. The inertia moment matrix of STL
3D data I was obtained from the following equation:

I =


∑

i

(
η

2
i +ζ

2
i
)

Ai ∑
i

ξiηiAi ∑
i

ξiζiAi

∑
i

ξiηiAi ∑
i

(
ζ

2
i +ξ

2
i
)

Ai ∑
i

ηiζiAi

∑
i

ξiζiAi ∑
i

ηiζiAi ∑
i

(
ξ

2
i +η

2
i
)

Ai

 ,

(2)

where (ξi,ηi,ζi) and Ai respectively denote the center and
area of the i-th triangle in terms of the original Cartesian
ξ ηζ -coordinates of the data. The summations are over all
triangles. We assumed that the density was uniform and
set its value to unity. The principal axes were obtained by
the calculation of the eigenvectors of the inertia moment
matrix. It is notable that the obtained inertia moment matrix
was not correct. This was because STL 3D data record
triangles constituting the surfaces of objects. Therefore, the
definitions of the coordinates were not based on the volume
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Fig. 4. Phylogenetic evolution of the Didymocyrtis (based on Suzuki and Aita, 2012). Spheroids in the photographs
denote the approximated shapes of the cortical shells.

but rather on the centers and the areas of the triangles which
the surface consists of. As shown in Fig. 2, the obtained
center and the principal axes are adequate to represent the
coordinates.
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Fig. 5. Sequential changes of the ratios (note that time
increases from right to left).

We defined one of the principal axes as the x-axis which
corresponds to the rotational symmetry axis of the cortical
shell and defined the other two principal axes as the y-
and z-axes according to the right-hand system. Thus, we
replaced the original axes with the new axes. Fig. 2a shows
the projection of the 3D image to the xy plane with the x-
and y-axes denoted by two arrows. We drew spheroids using
Eq. 1 with suitable parameters and made them overlap the
3D image. As a result, we found that the spheroids and the
3D image are approximately the same.

We focused on the number and the distribution of the
pores of the cortical shell. Yoshino et al. (2014) proposed a
method for determining the pore distribution of a spherical
radiolarian skeleton, so we applied this method to our 3D
data. We projected the triangles constituting the cortical
shell onto a unit sphere in order to apply the method. Note
that this means a transformation from a concave structure

to a convex one. The number of pores was conserved
in this case, but the shapes of the pores changed. This
transformation is possible except in the cases of a small
aspect ratio and a large distance-diameter ratio when two
different points on a spheroid are projected onto the same
point on a sphere.

The procedure for finding pores is summarized as
follows. Firstly, before the projection onto a spherical
surface, we deleted the triangles belonging to the medullary
shell and the connecting parts from the 3D image. In other
words, we removed all triangles within a given distance
from the origin. Secondly, we projected the vertices of the
remaining triangles onto a unit sphere and constructed the
3D image as shown in Fig. 6. Finally, we focused only
on the vertices of the triangles and approximated them by
grid points of a geodesic lattice (Sadouny et al., 1968).
Its mesh was dense enough compared to the size of the
pores to determine the centers of the pores. Finally, we used
the method of Stauffer and Aharony (2014) to count the
numbers of domains, the pores, on the lattice.

a b

Fig. 6. Projection of cortical shell triangles onto
unit sphere: a) view from (10,0,0); b) view from
(−10,0,0).

The estimated number of pores was 195 and their
distribution was neither regular nor symmetric. The
resulting images from applying the method of Yoshino et al.
(2014) are shown in Fig. 6. No one-to-one correspondence
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or symmetry could be found. We added a black sphere inside
the original sphere in order to hide the view seen through
the pores. Figs. 6a and 6b show the views along the x-axis
from the positive and negative viewpoints, respectively. We
can observe all of the pores in these two figures because
all the pores were projected onto a spherical surface. We
added small points at the centers of the detected pores
in order to clarify the pores identified. Identification of
pores worked well, with a few exceptions. Therefore, the
estimated number of pores is an approximate value and
the exact value is greater than 196. The rotated and the
mirror images of Fig. 6a did not match Fig. 6b. Therefore,
we concluded that this skeleton structure did not have any
symmetrical properties in terms of pore distribution. This
is because symmetry requires a one-to-one correspondence
between the pores of the distribution.
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Fig. 7. Frequency distributions of Voronoi polygons.
Bar chart: the real specimen. Lines: numerical
simulations.

We carried out a spherical Voronoi tessellation using
the centers of the pores as the generators in order to
consider the distribution of the pores in more detail. We
would like to emphasize that the Voronoi tessellation was
executed after the translation from the connected spheroids
to the unit sphere. The edge numbers of the Voronoi
polygons range from four to eight. The bar chart in Fig. 7
shows the frequency distribution of the Voronoi polygons.
The mean and standard deviation were 5.938 and 1.205,
respectively. The theoretical estimation indicates that if the
distribution of generators is uniform on a spherical surface,
then most of the polygons are hexagonal except for twelve
pentagons. This is because constructing the convex hull
from generators uniformly distributed on a sphere results
in almost equilateral triangles. Thus, most of their vertices
have a degree of six: the dual polygons are hexagons. In our
case of 195 generators, the mean and standard deviation of
the frequency distribution are 5.938 and 0.240, respectively.
Therefore, the distribution of the pores is not uniform and

the deviation from an ideal uniform distribution is caused
by the shape of the two connected spheroids and/or the shell-
forming process.

We obtained the frequency distribution of the edge
number of the Voronoi polygons using the 195 generators
randomly distributed on the two connected spheroids. We
chose the same number as the number of the pores and
the same shape as the 3D data. The method for obtaining
the random points used for the generators is summarized
in the appendix. After the generation of the random points,
we carried out the same procedure as described previously.
We obtained 1,000 frequency distributions by using different
seeds for the random number generators and report only the
mean results. The solid line in Fig. 7 denotes the resulting
mean distribution, which differs from that of the original 3D
data. In this case, the mean and standard deviation of the
frequency distribution were 5.938 and 1.355, respectively.
Although the mean values were the same, the standard
deviation of the 3D data was smaller than that of the
randomly distributed generators. Therefore, the distribution
of the pores was not completely random and some weak
effect such as a repulsive one is at work among the pores.
In addition, we carried out the same simulation as for the
connected spheroids using the 195 generators randomly
distributed on a sphere as shown in Fig. 7. The mean
and standard deviation of the frequency distribution were
5.938 and 1.312, respectively. The result indicates that the
difference of the shape between the connected spheroids
and the sphere has no significant effects in the case of the
uniformly distributed random generators considered in this
study.

We approximated the radial bars using cones. This
choice was made because the bars become thicker toward
the cortical shell. In order to represent each cone, we
assigned suitable values to the positions of apexes, centers
of bases, and base radii. We set the apexes to be at the
origin, that is, at the center of the 3D data, and express the
centers of bases as (rb sinφi, rb cosφi cosθi, rb cosφi sinθi).
The parameter rb corresponds to the distance from the origin
(0 < rI < rb) and the angles of the i-th cone, θi and φi,
determine the direction of the cones, where rI is the radius
of the medullary shell. The φi’s denote the deviations of the
direction from the yz plane and the θi’s are the directions
of the cones in the yz plane. We assume that all the cones
are identical in shape. Although the outer terminals of the
cones split into three branches, we ignored the branches and
focused only on the cones.

Fig. 8 shows the resulting images corresponding to
three different viewpoints. We displayed the cones in blue
and the 3D data as semitransparent. Note that we included
a sphere of radius rI at the origin in order to represent
the medullary shell in the image. Furthermore, we added
the green cylinders obtained by connecting the centers
of the bases. The centers of the bases did not lie in
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the yz plane, as shown in Fig. 8a. The maximum and
minimum of the absolute values were 16.0 and 0.57 degrees,
respectively. The pattern of deviation was almost perfectly
alternating, (−,−,+,−,+,−,+,−,+,+), where each sign
denotes the direction of deviation from the yz plane of
the cone, in other words, the sign of the x-coordinate of
the center of the base. The angles between the closest
pairs of cones were not equal, as shown in Fig. 8c. The
maximum and minimum values were 46.3 degrees and 29.9
degrees, and their mean and standard deviation were 39.5
and 5.24 degrees, respectively. Thus, we concluded that the
connections (represented by the cones) were not regular.
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Fig. 8. Representation of the radial bars and the
medullary shell with a semitransparent cortical
shell: a) view from (0.63,9.98,0); b) view from
(7.23,6.85,0); c) view from (10,0,0). The numbers
are the values of angles between the closest pairs of
the cones measured in degrees.

DISCUSSION

Our approach for introducing geometry revealed new
insights into the skeletal structure of D. tetrathalamus and
the phylogeny of the genus Didymocyrtis. Therefore, we
conclude that the introduction of geometrical considerations
provides new information for the research of radiolarians.
Although we believe in the usefulness of our approach, some
problems remain, as described below.

The first problem is which geometrical properties
are useful for describing the phylogenic evolution of
Didymocyrtis. We used two ratios in this study; however,
it seems likely that there are some other properties which
could be used for the description of the evolution. This
problem is deeply related to another problem: What is
the strategy behind their evolution? This is because the

geometrical properties seem to have changed according to
evolutionary strategy.

The second problem is the physical role of the cortical
shell shape. The shape of the shell reflects its function for
the creature. Only the species belonging to this genus have
cortical shells that consist of two spheroids. This means that
such shapes are an advantage for their survival. In order to
consider the advantage, biological or physical treatment of
the shape is required.

The last problem is the phylogenic evolutionary strategy
of Didymocyrtis. Evolution of a creature can be regarded
as an optimization process. Therefore, the changes in the
geometrical properties of this genus are also the results
of the optimization; however, we could not reveal the
objectives of the optimization. We have to consider its
evolution from various viewpoints, such as fluid mechanics,
biology, and chemistry, in order to clarify the evolutionary
strategy.

Our considerations were restricted in the cortical
shells and radial bars which develop in the early stage
of growth. As mentioned above, we did not discuss
the extracapsulum, because it cannot be included within
our geometrical considerations. However, this part must
be related to the development of the cortical shell as
indicated by the identified relation between the xc/b and
the development of the extracapsulum. This result indicates
that the development of the extracapsulum also influenced
the shape of the cortical shell. Therefore, the consideration
of the cortical shells can be regarded as an indirect
consideration of the extracapsulum, and the geometrical
consideration of the extracapsulum is necessary in further
research in order to completely clarify the optimization
strategy of the skeletal structure.
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APPENDIX

Generation of a random point on the surface of
connected oblate spheroids consists of two steps: generation
of a random point on a truncated spheroid and translation of
the point onto the connected spheroids. First, we generate
a random point on the truncated spheroid. A point on the
surface of the truncated spheroid (x,y,z) is represented by
using two variables x and θ as
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x = x ,

y = a

√
1−
( x

b

)2
cosθ ,

z = a

√
1−
( x

b

)2
sinθ ,

where the ranges of x and θ are [−xc,b] and [0,2π),
respectively. The range of x is defined in order to avoid
the overlapped parts of the two spheroids. A random point
on the surface can be obtained by generating two uniform
random numbers x and θ and substituting the values into the
equations. Then, we translate the generated random point
by xc in the x-direction; in other words, we add xc to the x-
coordinate of the random point. Next, we generate a Boolean
random number in order to determine the sign of the x-
coordinate: the sign is changed if and only if this Boolean
random number is zero.

The procedure works well, as shown in Fig. 9, which
shows an example of a distribution of 5,000 random points
determined using the procedure with the semitransparent
spheroids. We chose the same shape as that of the 3D data
for the simulation. We used the parameters normalized by
a in Fig. 3, so the values of a and b were the unity and
aspect ratio, respectively. Thus, xc in the figure is xc/a and
the values of the parameters are a = 1.000, b = 0.683, and
xc = 0.498.

Fig. 9. An example of 5000 random points on
connected spheroids.

REFERENCES
Anderson OR, Hemleben C, Spindler M, Lindsey JL

(1986). A comparative analysis of the morphogenesis
and morphometric diversity of mature skeletons of
living Didymocyrtis tetrathalamus tetrathalamus and
Hexalonche amphisiphon. Mar Micropaleontol 11:203–
15.

Goll RM (1972). Leg 9 Synthesis, Radiolaria. Init Repts
DSDP 9:947–1058.

Ishida N, Kishimoto N, Matsuoka A, Kimoto K, Kurihara
T, Yoshino T (2015). Three-dimensional imaging of the
Jurassic radiolarian Protunuma ? ochiensis Matsuoka:
an experimental study using high-resolution X-ray
micro-computed tomography. Volumina Jurassica
13:77–82.

Kellogg DE (1980). Character Displacement and Phyletic
Change in the Evolution of the Radiolarian Subfamily
Artiscinae. Micropaleontology 26:196–210.

Matsuoka A (2017). Catalogue of living polycystine
radiolarians in surface waters in the East China Sea
around Sesoko Island, Okinawa Prefecture, Japan.
Science reports of Niigata University. (Geology) 32:
57–90.

Matsuoka A, Yoshino T, Kishimoto N, Ishida N, Kurihara
T, Kimoto K, Matsuura S (2012). Exact number of
pore frames and their configuration in the Mesozoic
radiolarian Pantanellium, An application of X-ray
micro-CT and layered manufacturing technology to
micropaleontology. Mar Micropaleonto 88-89:36–40.

Riedel WR, Sanfilippo A (1971). Cenozoic Radiolaria from
the Western Tropical Pacific, Leg 7. Init Repts DSDP
7:1529–672.

Sadouny R, Arakawa A, Mintz Y (1968). Integration of
the Nondivergent Barotropic Vorticity Equation with
an Icosahedral-hexagonal Grid for the Sphere. Mon
Weather Rev 96:351–6.

Sanfilippo A, Riedel WR (1980). A Revised Generic
and Suprageneric Classification of the Artiscins
(Radiolaria). J Paleontol 54:1008–11.

Stauffer D, Aharony A (2014). Introduction to percolation
theory: revised second edition. Philadelphia: CRC
Press, 163–78.

Sugiyama K, Anderson OR (1998). Cytoplasmic
organization and symbiotic associations of
Didymocyrtis tetrathalamus (Haeckel) (Spumellaria,
Radiolaria). Micropaleontology 44:277–89.

Suzuki N, Aita Y (2012). The evolutionary linages of
radiolarians. In: Tanimura Y, Tuji A, eds. Microfossils:
Their Microscopic World Explored. A Book Series
from the National Museum of Nature and Science. 13.
Kanagawa: Tokai University Press, 200–5 (in Japanese).

Wagner RC, John R. Jungck JR, Van Loo D (2015).
Sub-Micrometer X-ray Tomography of Radiolarians:
Computer Modeling and Skeletonization. Microscopy
Today 23:18–21.

Xiao Y, Suzuki N, He W (2018). Low-latitudinal
standard Permian radiolarian biostratigraphy for
multiple purposes with Unitary Association, Graphic
Correlation, and Bayesian inference methods. Earth-Sci

243

https://doi.org/10.1016/0377-8398(86)90015-0
https://doi.org/10.1016/0377-8398(86)90015-0
https://doi.org/10.2973/dsdp.proc.9.124.1972
https://doi.org/10.2307/1485440
https://doi.org/10.1016/j.marmicro.2012.02.005
https://doi.org/10.2973/dsdp.proc.7.132.1971
https://doi.org/10.1175/1520-0493(1968)096%3C0351:IOTNBV%3E2.0.CO;2
https://doi.org/10.1201/9781315274386
https://doi.org/10.1201/9781315274386
https://doi.org/10.2307/1486050
https://doi.org/10.1017/S1551929515000747


YOSHINO T ET AL: Geometry of radiolarian genus Didymocyrtis

Rev 179:168–206.

Yoshino T, Kishimoto N, Matsuoka A, Ishida N, Kurihara
T, Kimoto K (2015). Polyhedron geometry of skeletons
of Mesozoic radiolarian Pantanellium. Revue de
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