
Image Anal Stereol 2019;38:227-235 doi:10.5566/ias.2095
Original Research Paper

EXTENDED ALGORITHM TO CONSTRUCT A QUADTREE FROM
FREEMAN CHAIN CODE IN FOUR DIRECTIONS

ANDREJ NERATB, DAMJAN STRNAD, EVA ZUPANČIČ AND BORUT ŽALIK

University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, SI-2000
Maribor, Slovenia
e-mail: andrej.nerat@um.si, damjan.strnad@um.si, eva.zupancic@um.si, borut.zalik@um.si
(Received January 4, 2019; revised July 12, 2019; accepted July 18, 2019)

ABSTRACT

This paper introduces improvements to the algorithm that was proposed in 2001 by Chen and Chen. The
algorithm constructs a quadtree directly from Freeman chain code in four directions. We have improved the
algorithm in two ways: Firstly, a time efficient solution using the space filling Z-order curve is proposed
for a self-intersection case that was not considered by Chen and Chen. Secondly, the algorithm is expanded
to handle geometric objects containing holes. The computational efficiency of the extended algorithm was
confirmed by the experiments.

Keywords: chain code, quadtree, chain code to quadtree conversion, space filling curve, Z-order curve.

INTRODUCTION

An efficient and unambiguous representation of
geometric objects has attracted a lot of interest
in the past. A spatial enumeration, a constructive
solid geometry, and a boundary representation were
identified as the most important representation
methods (Mortensen, 1985; Mäntylä, 1987; Hoffmann,
1989). Due to their different properties, conversion
algorithms between them were identified as extremely
important (Anand and Knott, 1991; Krishnan et al.,
1996). The problem in 2D is considerably less
demanding, especially if already rasterized geometric
objects are considered. In this case, a geometric object
is embedded in a raster space and represented either
with a quadtree or with a chain code. The quadtree,
introduced by Finkel and Bentley (1974), supports the
spatial enumeration representation by dividing the 2D
rasterized space recursively into four equally sized
regions/quadrants (see Fig. 1). The quadrants that are
not fully occupied by the object, are subdivided further.

The chain code, on the other hand, represents the
rasterized geometric object by a set of instructions,
which describe the walk-about along the rasterized
objects’s boundary. The chain code was introduced by
Freeman (1961). He employed 4- or 8-connectivity
to generate the so-called Freeman chain code in
four (F4) or eight (F8) directions. Later, the vertex
chain code (Bribiesca, 1999), three-orthogonal chain
code (Sánchez-Cruz and Rodrı́guez-Dagnino, 2005),
Unsigned Manhattan chain code (Žalik et al., 2016b),
slope chain code (Bribiesca and Bribiesca-Contreras,
2014) and extended slope chain code (Bribiesca et al.,
2019) were presented, too. Chain codes were also
developed for 3D (Sánchez-Cruz et al., 2014; Lemus
et al., 2014). However, Freeman’s chain code remains
the most frequently used, as it is the most intuitive.
The F4 encoding scheme, for example, consists of 4
symbols, i.e., F4= {i | i = 0,1,2,3}, where i× 90o

denotes the angle of the next movement in the counter-
clockwise direction with respect to the positive

= grey node

= black node

= white node

Figure 1. Raster image and its quadtree representation.

227



NERAT A ET AL: A quadtree from Freeman chain code

x-axis. The object from the Fig. 1, where its
boundary is represented with F4 chain code, is
shown in Fig. 2. The obtained chain code is
00330000332330000033000332222222333322221111
2222111111110011, where the starting position is
determined with the blue marker. Although chain
codes already represent concise description of the
geometric objects, they can be compressed further
(Žalik et al., 2016a; 2018).

Since the properties of both representations differ,
conversion methods from the chain codes to the
quadtrees have been proposed (the conversion from
the quadtree to the chain code is also known (Shih
and Wong, 2001)). Most approaches work in two
phases (Samet, 1980; Webber, 1984; Mark and Abel,
1985; Lattanzi and Shaffer, 1991), although, Chen
and Chen (2001) proposed a more efficient one-phase
method, which constructs a quadtree directly from
F4 chain code by inserting only valid nodes into
the quadtree. The method works only for the objects
without holes. Unfortunately, the transformation used
to convert the original chain code into its coarser (i.e.,
lower resolution) forms may produce self-intersecting
chain codes, which are not handled properly by the
original method. The self-intersection, as considered
by Chen and Chen, is not the self-intersection as
understood in general, but rather the self-touching
(see Fig. 3). It may appear during the chain code
transformation from the finer to the coarser resolution
levels. Chen and Chen considered only the case shown
in Fig. 3a (let us name it Type A), but the possibility
from Fig. 3b (Type B) remains unresolved. The aim of
this work is to upgrade the Chen and Chen method for
handling both self-intersection cases and to extend it to
cope also with geometric objects containing holes.

Figure 2. Object represented with the F4 chain code.

a) b)

Figure 3. The self-intersecting chain code of Type A
(a) and Type B (b) with marked points of contacts.

The paper is organised as follows. Section
“Materials and methods” first provides a
comprehensive overview of previous methods with
the emphasis on the method proposed by Chen and
Chen (2001). The scenarios, in which self-intersection
chain codes may appear, are then addressed, and an
adequate solution is proposed. Finally, the improved
method is extended to the objects containing holes.
Section “Results” provides experimental results, while
Section “Discussion” concludes the paper.

MATERIALS AND METHODS

BACKGROUND

Two-phase approaches (Samet, 1980; Webber,
1984; Mark and Abel, 1985; Lattanzi and Shaffer,
1991) build firstly an initial quadtree as follows: The
chain code is used to determine the black nodes in
the quadtree leaves. The inner grey quadtreee nodes
are then generated from the leaves towards the root.
In the second phase, the missing descendants of the
grey nodes are added, and coloured in regard to the
neighbouring nodes. Finally, the quadtree is pruned by
eliminating the descendants of the same colour.

The single phase method, introduced by Chen and
Chen (2001), constructs the quadtree directly. The
method is introduced briefly in the continuation. Let
Q denote the quadtree and QNi a set of quadtree
nodes, constructed upon the chain code CCi at the i-
th resolution level, i = 0,1,2, . . . ,M. CCM is the input
Freeman chain code in four directions (F4). Q contains
the root, the leaf nodes (i.e., the black nodes), and the
inner nodes (i.e., the grey nodes). A set of inner nodes
QINn determines the path from the root to the black
node n ∈ QNi. The method constructs the quadtree
by adding sets of black and grey nodes starting at
level M towards the root. A set of rules collected in
a lookup table is used to transform the current chain
code CCi into its coarser representation CCi−1. The
terms current grid, coarser grid, and coarser grid points
are used during this transformation (see Fig. 4). For
building the quadtree, Chen and Chen (2001) defined
the following functions:

228



Image Anal Stereol 2019;38:227-235

Figure 4. Current grid, coarser grid (in thick lines) and
coarser grid points (black circles).

– SELECTSTARTINGPOINT; the selection of a
starting point in the current chain code should
assure that the starting point lies on the coarser
grid point. Unfortunately, this cannot be achieved
in all cases by traversing the input chain code and
moving the starting point accordingly. Because of
this, three ways of adjusting the starting point were
suggested:

· The simplest situation arises when the first
chain code symbol from CCi moves to the grid
point of the coarser representation (Fig. 5a).
In this case the starting point is moved to the
coarser grid point, and the first chain code
symbol is moved to the end of the chain code
CCi;

· If the first chain code symbol moves to the
centre of the coarser grid cell (Fig. 5b), the
starting point becomes the coarser grid point at
the right side of the chain code CCi in regards
to the chain code orientation. The current chain
code CCi is modified as follows: the chain code
symbol moving from the coarser start point to
the previous starting point is prepended, while
the opposite chain code symbol is appended to
the chain code (see arrows in red in Fig. 5b).

· The most demanding situation occurs when the
first chain code symbol starts in the centre of the
coarser grid (Fig. 5c). In this case the starting
point is moved to the edge and the first chain
code symbol is moved to the end of the chain
code. After that the next symbol in the chain
code satisfies the first or the second case.

a) b)

c)

Figure 5. Determining the starting point of the coarser
chain code.

– FETCHFOURINPUTPATTERN and
ADJUSTINPUTPATTERN; There are two ways
of transforming four chain code symbols into
their coarser representation (see Fig. 6). When
the sequence terminates in a coarser grid point
(Fig. 6a), the algorithm proceeds with the next
four CCi symbols. However, if the sequence of
the four chain code symbols finishes in the next
cell of the coarser grid, the remaining part of the
previous operation should be adjusted (the red part
of sequence in Fig. 6b).

a)

b)

Figure 6. The sequence of four chain code symbols may
stop in the grid point of the coarser representation (a)
or in the neighbouring cell of the coarser grid (b).

– TABLELOOKUP; the next four chain code symbols
are used as a key into a lookup table. The
coarser representation of the considered chain
code sequence (Fig. 6 shown in green) and the
possible adjustment code for the unused part of the
sequence (Fig. 6b in red) are obtained. Finally, the
extracted black nodes (marked in grey in Fig. 6)
are obtained using their Morton order and they are
added to QNi.

– GENERATEQTNODE; after the black leaf nodes
are added to QNi, the paths of grey nodes from the
root to these nodes are formed. The paths obtained
in the previous steps are skipped.

– CANCELLATION; the algorithm requires non self-
intersecting chain code to work correctly. Because
the reduction of chain code CCi into its coarser
representation CCi−1 can yield the so-called self-
intersecting parts, the cleanup of the obtained
chain code has to be performed at each iteration.
The method, described by Chen and Chen (2001)
considers only Type A of F4 chain code self-
intersection, i.e., the sequences 02, 20, 13, and
31 (see Fig. 3), which can be solved easily by
removing such pairs. However, as demonstrated
in the next section, the self-intersections can also
take another form, which cannot be detected by a
simple comparison of the neighbouring chain code
symbols.

229



NERAT A ET AL: A quadtree from Freeman chain code

a) b)

c) d)

Figure 7. Building a quad tree from chain code.

In Fig. 7 the quadtree building process from the
chain code is shown. The initial object is shown in
Fig. 7a, where the starting position is identified with
the blue marker. After the first iteration, the coarser
chain code is formed, as shown in Fig. 7b. In Fig. 7c
it can be seen that the starting point had to be adjusted
as it was not laying on the grid point of the coarser
chain code. The self-intersecting parts appeared, too
(the red arrows in Fig. 7c). When the last black nodes
are generated (Fig. 7d), the chain code contains only
Type A self-intersections that are removed and, after
this, the algorithm finishes.

SOLUTION FOR SELF-INTERSECTION
OF TYPE B

Function CANCELLATION removes pairs of the
chain code symbols that negate themselves and,
therefore, do not generate any quadtree nodes.
This is definitely a step in the right direction,
but the process of the resolution reduction may
also produce another type of chain code self-
intersection. Let us consider the geometric object
shown in Fig. 8. The initial chain code is
2222112112112112112110003303303303300110110
1101100033233233233233233, where the starting
position is denoted with the blue marker (see Fig. 8a).
The algorithm produces the coarser chain code
2121121121030330301011010323323323, where the
Chen and Chen approach does not detect any self-
intersection. However, as seen in Fig. 8b four self-
intersections actually exist, which were introduced

in Section “Introduction” as Type B. If the coarser
chain code is processed further, the algorithm
generates an incorrect quadtree. Unfortunately, the
self-intersections of Type B cannot be detected just
by observing the chain code symbols. Indeed, the
geometric approach should be applied, which is time
consuming if applied in a naive way (according
to Žalik et al. (2017) it works in O(n2) time, where
n is the number of chain code symbols). Even worse,
in this case it has to be done at all resolution levels.

In the continuation, a solution is proposed for
handling self-intersections of Type B. The approach
is based on the space-filling curves (Sagan, 2012;
Bader, 2012) similar to those proposed in Žalik
et al. (2017). However, instead of the Hilbert curve
used in Žalik et al. (2017), the Z-order curve (Sagan,
1994) is employed, as it is faster to compute. If two
chain code symbols have the same index on the Z-
order curve, a self-intersection appears (in Fig. 8c
these self-intersections are plotted in violet). After
that, the chain code is split into a sequence of non-
self-intersecting chain codes, as shown in Fig. 8d.
As illustrated, five independent objects are obtained
which share four common points. The algorithm for
determination of the self-intersection points (either of
Type A or Type B) works in three steps:

1. The position zi on the Z-order curve is determined
for each chain code symbol. These positions are
stored into an auxiliary array Z.

2. Array Z is sorted in an increasing order. If
neighbouring elements with the same value (i.e.,
Z[i] = Z[i+ 1]) exist in Z, the self-intersection is
found and the chain code is split into two chain
codes CCi,1 and CCi,2.

3. Both chain codes CCi,1 and CCi,2 are checked
recursively for self-intersection.

THE ALGORITHM EXTENSION FOR
HANDLING THE OBJECTS WITH
HOLES

The Chen and Chen’s algorithm was not designed
to handle objects with holes. In the continuation,
we present our extension of their algorithm to cope
with the holes efficiently. The algorithm has two
requirements: Firstly, the holes should be oriented
differently (counterclockwise in our case) than the
outer loop, and secondly, the holes and the outer
loop should not intersect. The violation of these
requirements should be resolved before applying this
algorithm.

230



Image Anal Stereol 2019;38:227-235

a) b)

c) d)

Figure 8. The chain code (a) results in several Type B
self-intersections in its coarser representation (b); the
Z-order curve is used to find self-intersection points
(d); the self-intersected parts are split into five chain
codes (d).

The chain codes representing holes are processed
firstly. In this way, the quadtree’s black nodes are
added at the end without the need to merge or
delete already inserted nodes. For this, function

GENERATEQTNODE is upgraded to determine which
nodes should be inserted and which should be omitted
as follows:

1. The white nodes being part of the hole, are inserted
in the usual way.

2. The following cases are possible when inserting
black node n ∈ QNi:
(a) If node m∈QINn already exists and m is white,

then n is not inserted;

(b) If a white node m exists at the position where n
is to be inserted, the insertion of m is omitted.

(c) If there is a grey node m at the position where n
should be inserted, all non-existing children of
m are generated and set as black nodes.

An example is shown in Fig. 9. Firstly, the region
representing the hole is inserted into the quadtree as
a set of the white nodes (in Figs. 9c and 9b they are
plotted in green). After that the chain code symbols
representing the outer border are processed. Several
black quadtree nodes are inserted directly (Fig. 9d).
However, in the last step, the black node representing
the left lower quadrant (framed with the red colour
in Fig. 9e) should be inserted. Unfortunately, at this
position, a grey node already exists (marked with the
red colour in Fig. 9b). Such situation is considered
as a conflict. Instead of inserting one black node
representing the whole quadrant, only the missing
nodes in the subtrees are inserted and marked as the
black nodes. These nodes are plotted in violet in
Figs. 9b and 9e.

a) b)

c) d) e)

Figure 9. Building quad tree (b) from chain codes describing letter ‘b’ (a). The quadrants describing the hole
are inserted first (c), after that the chain code symbols describing the outside border are processed (d). The area
where conflict appears is framed in red (e).

231



NERAT A ET AL: A quadtree from Freeman chain code

RESULTS

The proposed improvements were tested
extensively on a large number of rasterized objects
represented by F4 chain codes. All tests were
performed on a personal computer with an Intel
i7-4790 3.36GHz processor and 8GB RAM. A
representative set of used geometric objects is shown
in Fig. 10, while the key information about them
is reported in Table 1. All objects except Spider
contain holes. The complexity of the shapes in
these objects varies from very basic, like Smiley, to
more complicated, like Dragon or Fiddlers. Several
of the shapes have long sloped sections, like the
legs in Spider, tongue in Dragon, or antennae in
Butterfly. Other shapes have sharp turns like Skunk
or Mockingbird.

An example of how the algorithm generates
coarser F4 chain codes is displayed in Fig. 11. If no
self-intersections occur when the resolution is reduced,
the number of chain code symbols is approximately
halved. In other cases, the number of chain code
symbols on the coarser level of hierarchy is smaller
(for example, from the case (e) to the case (f) and from
the case (g) to the case (h) in Fig. 11).

Table 1. Basic information about the chain codes in the
experiment.

Object No. of F4 No. of Width Height
symbols holes

Ballet 16712 1 1647 2170
Buddha 11366 1 1997 2401
Butterfly 64448 126 2401 1651
Camel 20156 9 2401 1645
Cats 22238 5 2265 2401
Cupid 25160 4 2298 2287
Detective 14128 2 1581 2401
Dragon 26334 2 2319 2400
Fiddlers 27050 25 2401 1351
Frog 20646 4 2401 1934
Girl on bike 50752 52 2129 2289
Mockingbird 17800 4 2401 1966
Reindeer 19864 4 1902 1903
Rooster 32894 8 2083 2401
Skunk 23960 3 2419 2401
Smiley 16210 3 2401 2401
Spider 23900 0 2401 2358
Wolf 22058 1 2401 2401

Ballet Buddha Butterfly Camel Cats Cupid

Detective Dragon Fiddlers Frog Girl on bike Mockingbird

Reindeer Rooster Skunk Smiley Spider Wolf

Figure 10. A representative set of rasterized geometric objects.

232



Image Anal Stereol 2019;38:227-235

The number of Type A and Type B self-
intersections that occur during the quadtree
construction is given in Table 2.

a) b) c)

d) e) f)

g) h) i)

Figure 11. Results of the algorithm, where the length of
F4 symbols reduces as follows: 26336 (a), 13072 (b),
6436 (c), 3142 (d), 1456 (e), 582 (f), 198 (g), 72 (h),
26 (i).

Figure 12. Quadtree construction times for the object
Girl on bike.

Finally, the efficiency of the F4 to quadtree
conversion algorithm is considered. As explained,
Chen and Chen’s approach did not consider the self-
intersections of Type B, and, therefore, the improved
approach could not be compared with their approach.
Since Chen and Chen compared their algorithm to the
two-phase approach according to Samet (1980), we
also used the Samet’s approach as a reference. As this
approach does not work with the objects containing
holes, only outside borders were used. Each object

was scaled by factors 1, 2, 4, and 8 in order to
analyse the trend of execution times as the object’s
size increased. The results are shown in Table 3. A
graphical comparison of spent CPU time for the object
Girl on bike is given in Fig. 12.

Table 2. Frequency of self-intersections.

Chain code Depth Type A Type B

Ballet 12 114 31
Buddha 12 36 0
Butterfly 12 695 89
Camel 12 126 18
Cats 12 93 11
Cupid 12 142 22
Detective 12 39 4
Dragon 12 170 54
Fiddlers 12 242 25
Frog 12 77 9
Girl on bike 12 646 117
Mockingbird 12 78 17
Reindeer 11 110 24
Rooster 12 305 77
Skunk 12 61 14
Smiley 12 6 0
Spider 12 153 59
Wolf 12 28 5

DISCUSSION

An improved solution for forming quadtrees
from chain code representation of rasterized objects
was presented in this paper. The original algorithm
presented in Chen and Chen (2001) was extended
by resolving the problem with a non-considered
type of self-intersections that led to an incorrect
quadtree. Such self-intersections cannot be detected
by comparing the neighbouring symbols of the
chain code, and require comparison of the pixels’
coordinates. For the sake of efficiency, the space-filling
Z-order curve was used for this purpose. Additionally,
an extension of the method to handle the objects with
holes was developed.

The experiments have shown that the self-
intersections of Type A are more frequent in general.
However, although the self-intersections of Type B are
less frequent, they cannot be neglected for the safe
execution of the algorithm, since they occur at least
once in around 80–90% of test cases. It was determined
that their occurrence is least likely with geometrically
simple shapes (e.g., circle, ellipse, square, etc.) as
shown with the object “Smiley”. The likelihood of
occurrence increases with complexity of the shape and

233



NERAT A ET AL: A quadtree from Freeman chain code

Table 3. Quadtree construction times [ms] for different scale factors of chain codes.

Object Modified Chen and Chen approach Two-step approach
1 2 4 8 1 2 4 8

Ballet 3.093 3.966 5.871 9.541 3.332 7.162 17.181 42.588
Buddha 2.035 2.669 3.899 6.386 2.746 4.935 10.282 23.624
Butterfly 3.138 4.034 5.937 9.514 3.826 7.574 15.536 34.331
Camel 3.706 4.895 7.065 11.718 4.237 8.941 20.516 55.592
Cats 3.947 5.340 7.371 12.101 4.382 9.561 24.663 63.152
Cupid 4.305 5.703 8.277 13.570 4.915 10.537 24.929 74.018
Detective 2.181 2.895 4.220 6.896 2.499 5.755 11.227 26.814
Dragon 5.359 6.996 9.989 16.111 5.733 12.586 38.416 90.256
Fiddlers 3.387 4.457 6.696 10.980 4.123 8.421 22.143 57.883
Frog 3.551 4.612 6.751 11.113 4.042 9.323 20.154 56.229
Girl on bike 3.102 4.119 5.977 10.135 3.760 7.551 19.143 43.756
Mockingbird 3.061 4.003 5.822 9.255 3.705 7.688 16.537 44.963
Reindeer 3.457 4.609 6.685 11.070 3.967 8.451 18.955 53.784
Rooster 2.447 3.223 4.745 7.779 2.806 6.035 12.814 31.142
Skunk 2.658 3.482 5.148 8.165 3.044 6.502 14.683 36.235
Smiley 1.903 2.470 3.568 5.935 2.246 4.673 10.008 21.758
Spider 4.948 6.383 9.319 15.168 5.454 11.987 33.133 84.351
Wolf 1.910 2.477 3.621 6.094 2.344 5.065 10.560 22.558

they are almost unavoidable with objects that have long
sloped sections (e.g., tongue in the object “Dragon” as
shown in Fig. 11).

While the shape of the geometric object
should, intuitively, indicate whether Type B self-
intersection appears during the construction process,
the experiments did not confirm this hypothesis.
Actually, the shape of the considered geometric
object is not the only factor where Type B self-
intersections could or could not appear. For example,
object Buddha, which shape can be considered
as geometrically demanding, does not contain any
Type B self-intersections during the quadtree building
process according to the results from Table 2.
However, Type B self-intersections appeared when
Buddha was translated by a few pixels. This feature
was also confirmed also with other objects where
the number of Type B self-intersections depends on
the objects’ positions. As a rule, however, Type B
self-intersection occurs in objects with long slanted
sections like legs on the objects Ballet, Camel,
Reindeer, or antennae on the Butterfly. Other good
indicators about the possibility that Type B self-
intersection may occur are also concave shapes like
on the relatively simple object Wolf. Except for the
basic convex objects (i.e., circles, ellipses, rectangles),
there is no guarantee that at some position Type B
self-intersections cannot occur at some position.

Despite the added step of searching for self-
intersections on each level of quadtree construction,
this solution is still considerably more efficient than
the two-step approach. While the experiments did

show that a large number of self-intersections can
adversely affect the runtime, with large objects this
effect diminishes and the efficiency of our approach
is evident as shown in Fig. 12. Table 3 shows that, for
all other objects, the trends are similar.

Our implementation of the algorithm,
together with testing F4 chain codes, can
be downloaded from https://gemma.feri.um.si/
chain-code-to-quadtree-conversion/.

ACKNOWLEDGEMENTS

This work was supported by the Slovenian Research
Agency under Grants J2-8176 and P2-0041. In
addition, this work was financed in part by the
European Union from the European Fund for Regional
Development and the Ministry of Education, Science
and Sport of the Republic of Slovenia under the Grant
C3330-17-529005.

REFERENCES

Anand S, Knott K (1991). An algorithm for converting the
boundary representation of a CAD model to its octree
representation. Comput Ind Eng 21:343–7.

Bader M (2012). Space-filling curves: an introduction with
applications in scientific computing. Berlin: Springer.

Bribiesca E (1999). A new chain code. Pattern Recogn
32:235–51.

Bribiesca E, Bribiesca-Contreras F, Ángel Carrillo-Bermejo,
Bribiesca-Correa G, Hevia-Montiel N (2019). A chain

234

https://gemma.feri.um.si/chain-code-to-quadtree-conversion/
https://gemma.feri.um.si/chain-code-to-quadtree-conversion/
https://doi.org/10.1016/0360-8352(91)90114-L
https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1016/S0031-3203(98)00132-0


Image Anal Stereol 2019;38:227-235

code for representing high definition contour shapes. J
Vis Commun Image R 61:93–104.

Bribiesca E, Bribiesca-Contreras G (2014). 2d tree object
representation via the slope chain code. Pattern Recogn
47:3242–53.

Chen Z, Chen IP (2001). A simple recursive method for
converting a chain code into a quadtree with a lookup
table. Image Vision Comput 19:413–26.

Finkel RA, Bentley JL (1974). Quad trees: a data structure
for retrieval on composite keys. Acta Inform 4:1–9.

Freeman H (1961). On the encoding of arbitrary geometric
configurations. IRE T Electr Comput EC-10:260–8.

Hoffmann CM (1989). Geometric and solid modeling: An
introduction. San Francisco: Morgan Kaufmann.

Krishnan R, Das A, Gurumoorthy B (1996). Octree
encoding of B-rep based objects. Comput Graph
20:107–14.

Lattanzi M, Shaffer C (1991). An optimal boundary to
quadtree conversion algorithm. CVGIP Imag Understan
53:303–12.

Lemus E, Bribiesca E, Garduño E (2014). Representation
of enclosing surfaces from simple voxelized objects by
means of a chain code. Pattern Recogn 47:1721–30.

Mäntylä M (1987). An introduction to solid modeling. New
York: Computer Science Press.

Mark D, Abel D (1985). Linear quadtrees from vector
representations of polygons. IEEE T Pattern Anal
7:344–9.

Mortensen ME (1985). Geometric modeling. New York:
John Wiley & Sons.

Sagan H (1994). Lebesgue’s space-filling curve. New York:
Springer, 69–83.

Sagan H (2012). Space-filling curves. New York: Springer.

Samet H (1980). Region representation: quadtree from chain
codes. Commun ACM 23:163–70.

Shih FY, Wong WT (2001). An adaptive algorithm for
conversion from quadtree to chain codes. Pattern
Recogn 34:631–9.

Sánchez-Cruz H, López-Valdez HH, Cuevas FJ (2014). A
new relative chain code in 3D. Pattern Recogn 47:769–
88.

Sánchez-Cruz H, Rodrı́guez-Dagnino RM (2005).
Compressing bilevel images by means of a three-
bit chain code. Opt Eng 44:1–8.

Webber R (1984). Analysis of quadtree algorithms. PhD
Thesis. College Park, MD: University of Maryland.

Žalik B, Mongus D, Žalik KR, Lukač N (2016). Chain code
compression using string transformation techniques.
Digit Signal Process 53:1–10.

Žalik B, Mongus D, Liu YK, Lukač N (2016). Unsigned
Manhattan chain code. J Vis Commun Image R 38:186–
94.

Žalik B, Mongus D, Lukač N, Žalik KR (2018). Efficient
chain code compression with interpolative coding.
Inform Sciences 439/440:39–49.

Žalik B, Mongus D, Žalik KR, Lukač N (2017). Boolean
operations on rasterized shapes represented by chain
codes using space filling curves. J Vis Commun Image
R 49:420–32.

235

https://doi.org/10.1016/j.jvcir.2019.03.015
https://doi.org/10.1016/j.patcog.2014.04.010
https://doi.org/10.1016/S0262-8856(00)00080-9
https://doi.org/10.1007/BF00288933
https://doi.org/10.1109/TEC.1961.5219197
https://doi.org/10.1016/0097-8493(95)00069-0
https://doi.org/10.1016/1049-9660(91)90018-K
https://doi.org/10.1016/j.patcog.2013.11.002
https://doi.org/10.1109/TPAMI.1985.4767664
https://doi.org/10.1007/978-1-4612-0871-6
https://doi.org/10.1007/978-1-4612-0871-6
https://doi.org/10.1145/358826.358836
https://doi.org/10.1016/S0031-3203(00)00008-X
https://doi.org/10.1016/j.patcog.2013.08.010
https://doi.org/10.1016/j.patcog.2013.08.010
https://doi.org/10.1117/1.2052793
https://doi.org/10.1016/j.dsp.2016.03.002
https://doi.org/10.1016/j.jvcir.2016.03.001
https://doi.org/10.1016/j.jvcir.2016.03.001
https://doi.org/10.1016/j.ins.2018.01.045
https://doi.org/10.1016/j.jvcir.2017.10.003

	Introduction
	Materials and methods
	Background
	Solution for self-intersection of Type_B 
	The algorithm extension for handling the objects with holes

	Results
	Discussion
	Acknowledgements


