
Image Anal Stereol 2020;39:129-145 doi: 10.5566/ias.2113
Original Research Paper

STUDY OF CLASSIFICATION OF BREAST LESIONS USING TEXTURE
GLCM FEATURES OBTAINED FROM THE RAW ULTRASOUND SIGNAL

MARIUSZ NIENIEWSKI� ,1 AND LESZEK J CHMIELEWSKI2

1Faculty of Mathematics and Informatics, University of Lodz, ul. Banacha 22, 90-238 Lodz, Poland, 2Institute
of Information Technology, Warsaw University of Life Sciences - SGGW, ul. Nowoursynowska 159, 02-776
Warsaw, Poland
e-mail: mariusz.nieniewski@wmii.uni.lodz.pl, leszek_chmielewski@sggw.edu.pl
(Received January 27, 2019; revised January 2, 2020; accepted June 10, 2020)

ABSTRACT

Most of the methods of classification of breast lesions in ultrasound (US) images have been tested on B-mode
images from the commercial equipment. The new possibility of further analysis of this problem showed up
with the availability of a public database containing original raw radio frequency (RF) signals. In particular, it
appeared that the original texture might contain diagnostic information which could be modified in the typical
image processing and which is more difficult to perceive than the details of lesion shape/contour. In this paper
a detailed analysis of the lesion texture is conducted by means of the decision trees and logistic regression.
The decision trees turned out useful mainly for selecting texture features to be employed in the stepwise
logistic regression. The RF signals database of 200 breast lesions was used for testing the performance of
the benign vs malignant lesion classifier. The Gray Level Cooccurrence Matrix (GLCM) was calculated with
the vertical/horizontal offset of up to five pixels. For each of these matrices six features were calculated
resulting in a total of 210 features. Using these features a sufficient number of decision trees were generated
to calculate pseudo-Receiver Operating Characteristics (ROCs). The outcome of this process is a collection
of generated trees for which the employed features are known. These features were then used for generating
generalized linear model by means of stepwise logistic regression. The analyzed regression models included
the coefficients of up-to-the second degree terms. The texture features were further completed by a single
shape feature, that is tumor circularity. The automatic procedure for finding the exact mask of a lesion is
also provided for the conditions when the acoustic shadowing makes it impossible to obtain the entire contour
reliably and a half-contour has to be used. The selected logistic regression models gave ROCs with the Area
Under Curve (AUC) of up to 0.83 and the 95 % confidence region (0.63 0.96). Analyzing classification results
one comes to the conclusion that the tumor circularity, which is the most informative among shape/contour
features, is not essential against the background of textural features. The reported study shows that a relatively
straightforward procedure can be employed to obtain benign vs malignant classifier comparable with that
originally used for the database of the raw RF signals and based on the more complicated segmentation of the
parameter maps of homodyned K distribution.

Keywords: breast lesion classification, quantitative ultrasound, feature selection, texture analysis, stepwise
logistic regression.

INTRODUCTION

Breast cancer is the second leading cause of
death for women all over the world. Up to recent
times the most effective modality for detecting and
diagnosing breast cancer has been mammography.
However, mammography has its drawbacks, such as
involvement of unnecessary biopsies due to false
positive diagnosis, and health risk intensification both
for patient and radiologist due to the use of radiation.
The two problems that can be solved by using US
images are: cancer detection and cancer classification.
In the latter case the location and possibly the shape
of the lesion have been obtained by some method and
the task is to classify the lesion as benign or malignant.
An extensive review of available methods for detection
and classification of breast lesions in US images is

presented by Cheng et al. (2010) and more recently by
Menon et al. (2016). In the following mainly the most
recent developments will be reviewed.

Harver et al. (2009) made use of features
connected with lesion margin, that is margin
brightness, margin sharpness, angular variation, as
well as patient’s age. Their classifier was based on
logistic regression. Lee et al. (2009) described the
shape of a lesion by means of a 1-D periodic signal and
discrete periodized wavelet transform. Subsequently
six morphometric features and 16 high octave energy
features were calculated, and various combinations of
the features were evaluated from the point of view of
the efficacy of lesion classification.

Alvarenga et al. (2012) employed texture and
morphological features for differentiation between
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benign and malignant lesions. Subsequently they
applied the linear discriminant analysis to sets
consisting of up to five features. Their results were
obtained on a proprietary basis so direct comparison
with other databases is impossible. Minavathi et
al. (2012) performed detection, segmentation, and
classification of lesions into spiculated and non-
spiculated categories. Spiculations were detected by
measuring the angle of curvature at each pixel of
the mass boundary. The lesions were classified in
accordance with measures defined for spiculations,
elliptical approximation of the shape of the mass,
and for acoustic shadowing caused by the mass.
Zakeri et al. (2012) considered six features for
classification of breast lesions: eccentricity, solidity,
area difference of convex hull and rectangular box,
area difference of mass and rectangular box, cross-
correlation between rectangular box and its left-side
(right-side) neighboring region.

Walach et al. (2013) based the segmentation
of lesions on Maximally Stable Extreme Regions
technique combined with posterior patches analysis.
For each candidate from the segmentation step,
a set of descriptors were calculated. The Support
Vector Machine classifier was then used to distinguish
between benign and malignant lesions. The method
was tested on images collected from different
acquisition devices. Moon et al. (2013) presented
another approach which seems closer to what
radiologists are doing. They segmented the images
and calculated shape and texture features, 38 features
altogether. Next they used the multinomial regression
to obtain six BIRAD descriptive categories: shape,
orientation, margins, lesion boundary, echo pattern,
and posterior acoustic features. The quantified BIRAD
findings were then used to determine the malignancy
score for a lesion.

Nemat et al. (2018) investigated 21 shape-
based features, 810 contour-based features and 24
texture features. They used the Bayesian extension
of logistic regression with Automatic Relevance
Detection Mechanism for rejection of irrelevant
features. The obtained results were very good for a
proprietary database.

The RF signals were also a subject of intensive
investigation. The early paper by Lizzi et al.
(1997) employed spectrum analysis of RF echo data
to derive such features as attenuation, integrated
backscatter, and sets of spectral parameters in order
to assess tissue type. The authors analyzed probability
density functions for each of these parameters for
statistically homogeneous tissue structures such as
prostate and liver. The papers by Alacam et al.
(2003; 2004) developed the Fractional Differencing

Autoregressive Moving Average (FARMA) model for
RF signal. The FARMA model was used jointly
with morphological features extracted from suspected
areas for differentiating between benign and malignant
lesions.

Granchi et al. (2015) proposed a hyper-spectral
analysis method in which the spectral signal was
decomposed into 16 sub-bands. The method used an
automatic training procedure for which the coefficients
of the decomposition were collected from selected
areas in order to form clusters characterizing specific
abnormalities. Having obtained the clusters one could
classify any suspicious areas. The method was used for
differentiating between infiltrating ductal carcinomas
and fibroadenomas in breast tissue.

Uniyal et al. (2015) used ultrasound RF time series
analysis as a method for classification of malignant
breast lesions. Using the RF time series features and
a machine learning framework the authors generated
malignancy maps. These maps depicted the likelihood
of malignancy for regions of size 1 mm within
the suspicious lesions. The authors obtained AUC
of 0.86 using Support Vector Machines and 0.81
using Random Forests classification algorithms. The
frequency spectrum was estimated by calculating the
FFT-based periodogram of the Hamming windowed
time series. The estimated spectrum was divided into
four frequency bands, each of which was averaged
to deliver a feature. In addition to the RF time
series features the authors also used texture features
extracted from a B-mode image and spectral RF
features extracted from an US frame.

Sadeghi-Naini et al. (2017) investigated the US
spectral parametric maps in conjunction with texture
analysis techniques to differentiate between benign
and malignant breast lesions. The spectral analysis
was performed on RF data and generated parametric
maps of mid-band fit, spectral slope, spectral intercept,
spacing among scatterers, average scatterer diameter,
and average acoustic concentration. Subsequently the
authors used texture analysis to determine mean,
contrast, correlation, energy, and homogeneity features
of the parametric maps. These features were utilized to
classify benign vs malignant lesions with leave-one-
patient-out cross-validation.

A separate group of publications deal with
the open OASBUD database of raw RF US
signals (Piotrzkowska-Wróblewska et al., 2017) and
include several papers by Byra et al. (2016) -
Byra et al. (2018a) as well as an earlier paper
by Piotrzkowska-Wróblewska et al. (2014). The
advantage of this database is that it contains raw
RF signals corresponding to benign and malignant
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lesions rather than their usual version obtained by
log-compression and possibly some other auxiliary
operations, for example, related to image resizing
and hence implying interpolation, some filtering,
etc. In particular, Byra et al. (2016) made use of
statistical modeling of an US backscattered echo
envelope for tissue characterization and developed the
segmentation of homodyned K distribution parameter
maps. Regions within lesions of different scattering
properties were extracted and analyzed. Properties
of these regions improved the distinction between
benign and malignant tumors. In another paper, Byra
(2018) considered two pattern recognition techniques.
The first technique consisted in the US image eigen-
decomposition and the use of the Fisher Linear
Discriminant Analysis for differentiating between
malignant and benign lesions. The second technique
extracted the neural artistic style patterns of breast
lesions using the VGG19 neural network. Next the
Fisher Linear Discriminant Analysis was used to
differentiate between style representations obtained for
malignant and benign lesions. In another paper by Byra
et al. (2017) the authors investigated how the shape and
contour features of a lesion can improve the results of
lesion classification when the features are used jointly
with BIRADs assigned to a lesion by a radiologist. The
classification was performed by logistic regression.

In a paper on CNNs. Byra et al. (2018a) described
the transfer learning technique with the use of the
InceptionV3 and the VGG19. Both neural networks
were pre-trained on the ImageNet database and
generated features used in the SVM classifier. The
paper showed that the threshold chosen in the image
reconstruction algorithm influences the results of the
neural network with transfer learning and considered
how to improve the classification.

The aim of the current paper is the investigation
of classification of benign vs malignant breast lesions
and evaluation of the discriminating value of the
texture features calculated for the B-mode style images
obtained from the raw RF signal not modified by
any internal operations which may happen when one
takes typical images obtained from the commercial
US machines. Texture features have been successfully
used in the analysis of medical images; for example,
Pratiwi et al. (2015) worked with GLCM and
Radial Basis Neural Networks for classification of
mammograms. The additional objective of the current
paper is to find out if there is any useful extra
information in the shape/contour of the lesion in
comparison with texture features. Two approaches to
extracting information from the texture features are
considered: stepwise logistic regression and decision
trees. In fact the decision trees are not employed per

se but rather as a tool for reduction of a number
of features used by stepwise logistic regression. The
supplementary purpose of the decision trees is to gain
a feeling for what really determines the classification
outcome in the situation when there are potentially
hundreds of features, and we might end up with a
complicated black box classifier, which nobody likes.
In the context of the task of the current paper, it is
interesting to note what is written on almost the same
subject in the paper dealing with time series for the
analysis of the B-mode images (Uniyal et al., 2015).
The authors of that paper state that the performance of
B-mode texture features in breast cancer classification
was poor in their study. They also say that the B-
mode images used in their work were reconstructed
from the RF signals offline. In contrast, the B-mode
images from the commercial US machines are filtered
and optimized in terms of dynamic range and have a
higher quality compared to the B-mode images used
by Uniyal et al. (2015). The authors’ conclusion is
that the reported performance of the B-mode texture
features could potentially be improved by using the
B-mode images produced by the scanner. The same
authors also say that they performed a second kind of
analysis where the entire lesion areas were considered
as samples of unequal physical size for classification.
And in this experiment, RF time series and B-mode
and single frame RF features resulted in a higher
AUC of 0.82 compared to B-mode and RF single
frame features alone which resulted in AUC=0.68. In
our view, this latter AUC seems rather low, and the
current paper tends to improve on this. In fact, in our
experiments we achieved AUC≈ 0.83.

MATERIALS AND METHODS

DATABASE

An Open Access Series of Breast Ultrasonic Data
(OASBUD) is a set of the raw RF ultrasonic echoes
(RF signals) which were registered from 100 breast
lesions (Piotrzkowska-Wróblewska et al., 2017). In the
set of 100 lesions, 52 solid lesions are malignant and
48 are benign. In the group of malignant lesions all
lesions were histologically assessed by core needle
biopsy. In the group of benign lesions part of them
were histologically assessed, and part were observed
over a two-year period.

A more detailed information supplied by
the developers of the OASBUD database is the
following. For each lesion, two individual orthogonal
scans, called, respectively, Rf1 and Rf2, from the
pathological region were acquired using an Ultrasonix
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(a) (b) (c) (d) (e)

Fig. 1: Two examples of images from the OASBUD database. (a) Original image with a well-defined boundary.
(b) Binary mask of the lesion from (a) obtained by a radiologist together with lines marking the position of the
processing windows. (c) Smaller window used for the extraction of texture features. (d) Larger window used for
the extraction of shape/contour features. (e) Original image with posterior acoustic shadowing. (Green line shows
the contour of the mask drawn by a radiologist.)

SonixTouch Research ultrasound scanner with an L15-
4 linear array transducer of center frequency 10 MHz.
It is worth noting that a usual inexpensive clinical
scanner would not give access to the RF signal. The
focusing region of each scan was always placed at
a depth of a lesion. Each image was reconstructed
using 510 RF backscatter echoes lines. Signals were
digitalized with 40 MHz sampling frequency. The
number of samples in every RF signal depended on the
chosen penetration depth. For example, for 40 MHz
sampling rate the distance between adjacent samples
was 0.0192 mm (for assumed sound speed in tissue
1540 m/s). As a result there would be 2596 samples
for 5 cm penetration depth and 1558 samples for 3
cm depth. Other settings used by the operator had no
influence on character of the raw ultrasonic echoes.

We obtained the B-mode type images by taking
the Hilbert transform of the original RF signals.
More details on this subject are given below in the
Appendix: Essential Matlab Commands. The images
have brightness in the range [0, 255]. However, the

relevant information is contained in the range [40, 80]
so that this range had its dynamics extended linearly
to the range [0, 255]. The resulting images were not
resized in any way so there was no interpolation
involved. For our purposes the database is treated as
more or less uniform collection of 200 RF signal
samples, or images, representing 104 malignant and
96 benign cases. Examples of images and windows
generated for the OASBUD database are shown in
Figs. 1 and 8. In principle the window for calculating
texture features should include the whole of a lesion,
but it should be as small as possible in order to
maintain the discriminatory power of the texture
features, and it is called a smaller window here. In our
calculations we added 20 pixels on each side of the
bounding box of the mask, as illustrated by auxiliary
lines in Fig. 1(b) and also by 1(c). Furthermore, we
assumed another slightly larger window for calculating
shape features of a lesion. The reason for the window’s
enlargment is that the database contains a rough
polygonal approximation of the lesion contour that is
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not precise enough to be used for extraction of shape
features. Obtaining a more precise contour may result
in a bigger mask of the lesion. In order to allow for this
increase it was necessary to enlarge the window. We
found out that adding 20 pixels at the top and 20 pixels
at the bottom of the smaller window was adequate for
the whole database. The width of the larger windows
was assumed for simplicity equal to the full width of
the original image in the database.

TEXTURE FEATURES

In the current paper the texture features are
obtained following definitions given in the book by
Gonzalez et al. (2009). The GLCM specifies how
many pairs of pixels in the image have a given
doublet of gray levels. Any combination of gray levels
may be assumed, and we use gray levels in the
range 0 through 255, which gives us matrices of size
256× 256. The pairs under consideration are chosen
based on the vertical and horizontal offset between
the pixels in the pair. Below, a number of different
offsets are considered, and for each offset there is an
individual GLCM. We assume that the calculations
do not make difference depending on which pixel has
which brightness; in other words, the pair of brightness
values (3,5) and (5,3) are treated the same.

For a given offset and its corresponding
GLCM, the features are calculated in the following
order: contrast, correlation, energy, homogeneity,
maximum probability, and entropy. The first four
features are calculated as described in the book by
Gonzalez et al. (2009). The last two features are
calculated for the normalized GLCM as described in
the same book (comp. Appendix: Essential Matlab
Commands).

We assume 35 possible offsets, and for each offset
there are six above mentioned features. The offsets
are ordered as shown in Table 1. It means that we
have 6×35 = 210 texture features. Having a particular
feature index (#) it is easy to identify its name and the
corresponding offset. For example for feature # 181
we are in the 31-st square in Table 1. That means we
have offset (5, 4) and the first feature in the square is
contrast.

Table 1: Texture feature ordering as a function
of the offset in the GLCM. The three numbers
in each square denote, respectively, vertical offset,
horizontal offset, and the index of a 6-tuple of
features.

5, 0 5, 1 5, 2 5, 3 5, 4 5, 5
35 34 33 32 31 30
4, 0 4, 1 4, 2 4, 3 4, 4 4, 5
24 23 22 21 20 29
3, 0 3, 1 3, 2 3, 3 3, 4 3, 5
15 14 13 12 19 28
2, 0 2, 1 2, 2 2, 3 2, 4 2, 5
8 7 6 11 18 27
1, 0 1, 1 1, 2 1, 3 1, 4 1, 5
3 2 5 10 17 26
0, 0 0, 1 0, 2 0, 3 0, 4 0, 5

1 4 9 16 25

SHAPE FEATURES

There are many possible shape/contour features.
Below we concentrate on the tumor circularity whose
value depends on whether the lesion is malignant or
benign (Zhou et al., 2015). However, the problem
is complicated by the occurrence of the posterior
acoustic shadowing, which may be observed for many
malignant lesions. Piotrzkowska-Wróblewska et al.
(2017) affirm that the RF signals in the OASBUD
database were acquired in the way to minimize the
amount of shadowing and artifacts affecting the quality
of recorded data. However, for large lesions exceeding
40 mm, it was not always possible to expose clearly the
lower edge of the lesion. Piotrzkowska-Wróblewska et
al. (2017) sidestepped the problem by delivering the
masks for all of the lesions. However, these masks
were drawn by a radiologist and contain important
information that is hard to extract automatically from
the image.

The problem of acoustic shadowing is not new
in the literature. For example, an early paper by
Drukker et al. (2003) considered the influence of the
acoustic shadowing on the detection of lesions. A more
recent paper by Padilla et al. (2013) contains several
examples of posterior acoustic shadowing in the case
of benign breast lesions. An instructive collection of
US lesion images with acoustic shadowing was also
published by Gokhale (2009). It is obvious that
the acoustic shadowing complicates classification of
lesions since we cannot assume that we will have a
reliable contour in every case.

The following considerations regarding acoustic
shadowing were inspired by the work of Zhou et
al. (2015) who made a point that the breast lesion
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segmentation and classification of US images may
be biased by shadowing. As a remedy, Zhou et al.
(2015) proposed the use of half-contour features for
classification of lesions rather than a full contour. In
particular, they analyzed the following six features:
tumor circularity, mean of the normalized radial
length, standard deviation of the normalized radial
length, area ratio, roughness index, and standard
deviation of degree. Zhou et al. (2015) showed that
among these six features, the tumor circularity and
standard deviation of degree for half-contour were
most effective for classifying lesions with or without
posterior acoustic shadowing. Following these findings
we started with the tumor circularity (denoted TC
below), which is a gross contour feature descriptor,
calculated using the equation

TC =
P2

A
, (1)

where P is the perimeter and A is the area of the lesion
half-mask. The perimeter P is measured by summing
the pixels belonging to the tumor contour, and the
area A is calculated as a number of pixels inside the
contour. Zhou et al. (2015) obtained the half-contour
by determining the leftmost and rightmost pixels of the
lesion region. Then a line was drawn connecting the
above mentioned extreme pixels and the half-contour
was defined as the upper portion of a lesion, above
the line connecting the leftmost and rightmost pixels.
We took a similar approach adding some specific steps
described in detail in the Appendix: Obtaining the
Upper Half-Mask below. The aim of these steps is
to make the whole process of half-contour generation
fully automatic and void of a manual intervention
which otherwise would be necessary in case of some
images.

RECEIVER OPERATING
CHARACTERISTICS
There is a vast literature on ROCs. In this paper we

follow the definitions formulated by Adler and Lausen
(2009) who explained the idea in a very systematic
manner. The necessary bootstrap approach was fully
considered in a book by Efron and Tibshirani (1998).
The early application of the bootstrap to US image
analysis was given in a paper by Chen et al. (2002).
Below only some basic ideas are gathered. A sample
Z is given consisting of N observations (xi,yi), i =
1, . . . ,N. These observations are realizations of the
random variables X and Y, where X is a l-dimensional
vector of predictors, or features, and Y represents
the class membership of individual feature vectors. In
classification we want to predict the class for a given
vector of predictors X . In a 2-class problem Y ∈ {0,1}.

The performance of the classifier is assessed in terms
of the true (TPR) and false (FPR) positive rates, where
TPR is a proportion of positives that were classified
correctly, and FPR is a proportion of negatives that
were classified as positive.

The true positive rate TPR(T h) is defined by Adler
and Lausen (2009) as

TPR(T h) = P[P(Y = 1|X)≥ T h|Y = 1], (2)

where T h is some threshold. In this equation the
internal P(Y |X) is some classification rule f̂ (xi) and
gives the estimate of the probability that X belongs to
class 1. The false positive rate FPR(T h) is defined by
a similar equation

FPR(T h) = P[P(Y = 1|X)≥ T h|Y = 0] (3)

The ROC is then obtained as

ROC(.)= {(FPR(T h),TPR(T h)), T h∈ [0 1]} (4)

where the limits for the threshold can be modified if
necessary.

There are several varieties of the true and false
positive error rates, hence several definitions of the
ROC. In the following we will consider three such
varieties (Adler and Lausen, 2009):

• apparent TPR(T h) and FPR(T h),

• bootstrap estimated TPR(T h) and FPR(T h),

• 0.632 bootstrap estimated TPR(T h) and
FPR(T h).

For each pair of TPR(T h), FPR(T h) there is
a corresponding ROC curve, termed respectively
apparent, bootstrap estimated, and 0.632 bootstrap
estimated ROC. Theoretical considerations and
statistical experiments, for example in the paper by
Adler and Lausen (2009), show that the most precise
of these ROCs is the 0.632 bootstrap estimated ROC.
In the following, examples of all three ROC curves,
renamed as pseudo-ROCs, are shown in Fig. 2.

DECISION TREES
The decision trees are described in many

publications. Here we mention only a review paper
(Kotsiantis, 2013) and a book (Hastie et al., 2009).
In the case of the decision trees there is no single
parameter that could serve for thresholding, and this
threshold is the essence of ROC constructing since by
reducing the threshold we are moving up on the ROC
curve. However, a "pseudo-ROC" can be obtained by
changing appropriate element in the cost matrix used
for generating the tree. This cost matrix M has the form

M =

[
0 1

acost 0

]
. (5)

134



Image Anal Stereol 2020;39:129-145

In the equation above, zero is the cost for the correct
classification; one is the cost for classifying the benign
case as malignant; acost is the cost for classifying
malignant case as benign. In the particular case of
acost = 1 the costs of erroneous classification for
benign and malignant cases are equal.

The main idea of our approach was as follows.
A number of trees were obtained by changing the
minimum allowable number of observations per leaf,
denoted here MinLea f . We assumed this number to
be in the range from 1 through 30. Then for each
tree the acost in the cost matrix M was changed
in the range from 1 through 35. A larger MinLea f
results in a smaller tree. Then by increasing the cost
of misclassifying the malignant case we increased the
number of TP cases and hence moved upwards along
the ROC generated for a given MinLea f .

We split 200 (smaller) windows from the
OASBUD database into two sets: training set
containing 80 benign cases (class zero) and 80
malignant cases (class one), as well as testing set
of 40 cases containing 16 benign and 24 malignant
cases. This testing set was not used in connection
with decision trees but was essential at later stage for
logistic regression.

The apparent pseudo-ROCs were obtained by
changing acost, and there was a separate ROC for each
value of MinLea f . The same data, that is 160 vectors
of 210 features, were used both for tree generation and
for classifier testing. This is in accordance with the
definition of the apparent ROC.

Computations for bootstrap estimated pseudo-
ROCs were significantly more complicated. We
obtained 200 bootstrap samples each of 160 feature
vectors by sampling with replacement from the
original population of 160 feature vectors mentioned
above. Each of these bootstrap samples served as a
training set. In contrast, each respective testing set was
obtained as a collection of all the feature vectors taken
from the population of all 200 vectors that were not
included in the given training set. Next we assumed
a number of MinLea f values as described above. For
each of these, a pseudo-ROC was calculated. The
calculations ran as follows. In order to get a single
point on the pseudo-ROC we selected a value of acost
from a given range. For this acost we calculated the
TPR and FPR for each bootstrap sample. The mean
values of TPR and FPR over all bootstrap samples
were used as coordinates of a single point on the
pseudo-ROC. Repeating calculations for all values of
acost resulted in one pseudo-ROC curve.

Computations for 0.632 bootstrap estimated
pseudo-ROCs followed description given by Adler

and Lausen (2009). These computations are quite
straightforward and are not detailed here. However, it
is worth noting that the 0.632 bootstrap pseudo-ROC
takes into account the fact that in a real-life situation
some number of the feature vectors used for teaching
may be used for testing as well.

LOGISTIC REGRESSION
Logistic regression is profusely described in

several books (Hastie et al., 2009; Kleinbaum and
Klein, 2010; Bingham and Fry, 2010; McCullagh and
Nelder, 1989), and we do not enter into details here.

The logistic regression calculations were executed
in three steps. The first step was generation of a
generalized model using stepwise logistic regression
that determined which features should be included and
which should be removed from the model. Generation
of the model requires the input in the form of the
feature vectors and the desired labels for these vectors.
The label is zero or one depending on whether a
given vector represents a benign or malignant case.
The features to be processed by the stepwise regression
were pre-selected based on the information obtained
from the decision trees. In fact there is certain
flexibility in selecting the features and the best set(s)
of features were chosen by observation of the final
outcome of the classifier, which means looking for the
highest AUC.

The second step was the calculation of predicted
class labels for the above mentioned 40 testing set
feature vectors including 16 benign cases and 24
malignant cases. These testing vectors were put aside
when generating the decision trees so they did not
influence selection of features for logistic regression
in any way.

The third step consisted in actual calculation of
the pseudo-ROCs using the results from the previous
steps.

The actual calculations of all three steps of logistic
regression are illustrated in the Appendix: Essential
Matlab Commands.

RESULTS

RESULTS FOR DECISION TREES
The pseudo-ROC curves for exemplary values of

MinLea f = 10,18,and 30 are illustrated by the three
left-most diagrams in Fig. 2. The last diagram in Fig. 2
is of a different kind. It shows the 0.632 bootstrap
estimated ROC curves corresponding to red lines in the
three left-most diagrams, but with the inclusion of the
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Fig. 2: Pseudo-ROCs obtained for the decisions trees. Three left-most diagrams represent pseudo-ROCs for
texture features only. Black line is the apparent pseudo-ROC; blue line is the bootstrap estimated pseudo-ROC;
red line is the 0.632 bootstrap estimated pseudo-ROC. The fourth, right-most diagram shows 0.632 bootstrap
estimated pseudo-ROCs for texture features together with tumor circularity.

tumor circularity. Comparing red lines from the three
left most diagrams to the lines in the last diagram one
concludes that the influence of the tumor circularity on
the shape of the ROC is minimal. The decision trees
from Fig. 2 can be used for classification of breast
lesions. Nevertheless, their quality is rather modest
in the sense that they are distant from the upper left
corner of coordinates (0, 1) of the square visible in all
diagrams in Fig. 2. In the next section we will show
how the information obtained from the tree generation,
that is a set of features used by a tree, can be used in
developing a stepwise logistic regression model, which
gives an ROC superior to the pseudo-ROCs obtained
for the decision trees.

As an example, specifications of the features
selected by the trees generated for Minlea f = 10 and
18 and for acost = 1, for which an apparent ROC can
easily be obtained, are given in Table 2.

Table 2: Examples of the texture features used in the
generated trees.

Feature Vertical Horizontal Feature
offset offset #

Minlea f = 10,acost = 1
Contrast 5 4 181

Homogeneity 4 1 136
Homogeneity 3 0 88

Contrast 4 4 115
Contrast 0 1 1

Minlea f = 18,acost = 1
Contrast 5 4 181

Homogeneity 4 1 136
Homogeneity 3 0 88

A complete set of all the features used in decision
trees obtained for MinLea f = 10, 18, and 30 is shown
in Table 3.

RESULTS FOR LOGISTIC REGRESSION
The set of MinLea f = 10,18,30 values in Table 3

roughly covers the whole range of interesting ROCs.
12 examples of the generalized linear regression
models generated by stepwise regression are collected
in Table 4. Each row in this table represents an
individual model. The Features column specifies the
features used by the given model. Feature # 211 is
the tumor circularity. The odd rows represent models
with no tumor circularity. The subsequent even rows
represent, respectively, the same models as odd rows,
but with the addition of the tumor circularity. All the
models were generated by allowing an intercept, linear
terms, interactions, and second order terms (mixed or
squared). The starting model was of the first order.
The Regression Model column in Table 4 shows the
generated model in the shorthand notation used by
Matlab, in which the actual regression coefficients
are omitted. The optimal operating point (OP) is also
known as a Younden index in the statistical literature.
The AUC column in Table 4 specifies the Area Under
Curve, with the first entry indicating the mean value,
the second entry denoting the lower bound of the 95 %
confidence interval, and the last entry denoting the
upper bound of the same interval.

As an example, the actual regression equation for
the model defined in the first row in Table 4 is as
follows

y = 58.615−0.041377X181−273.05X136

+165.89X88 +8.1615×10−06X2
181 (6)

The calculated y value is a random variable defined as
a function of X variables. This value is subsequently
mapped into probability µ = exp(y)/(1 − exp(y))
used as a parameter for the binomial distribution, the
samples from which are the generated labels.

Further parameters obtained for the regression
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Table 3: All features obtained for three selected values of MinLea f .

MinLea f acost Feature # Remarks
10 1 181, 136, 88, 115, 1
10 2 121, 22, 136, 67, 88, 42, 33
10 3 121, 22, 136, 67, 82, 88, 33
10 4-5 121, 40, 133, 1, 82, 115, 145
10 6-35 121, 40, 133, 1
18 1 181, 136, 88
18 2 121, 136, 88
18 3 121, 136
18 4-10 121, 133
18 11-35 FPR=TPR=1
30 1 181
30 2-3 121, 136
30 4-10 121, 133
30 11-35 FPR=TPR=1

model # 1 from Table 4 are given in Table 5, which
specifies the Standard Error (SE), tStat, and pValue
for all the coefficients in four exemplary regression
models. It is typically assumed that the pValue should
be less than 0.05 for a given estimate to be reliable.
Inspection of Table 5 reveals that this condition is
satisfied for almost all the coefficients, with two
exceptions, of the models 5 and 7, in which the
pValue for one of the coefficients is approx. 0.067.
This indicates that these coefficients are on the verge
of statistical significance. The only way of improving
the pValues would be to use more images in the
teaching set, but this would reduce the number of
images available for the testing set. The models 1 and
11 have all pValues below 0.05 level. In summary, the
models specified in Table 5 are close to the boundary
of their statistical significance. The tStat values are
not discussed here, but they can be calculated from
pValues based on the fact that they both refer to the
same t distribution.

Some examples of ROC curves generated for
regression models from Table 4 are shown in Figs. 3-
6. Fig. 3 corresponds to a single ROC. For visibility
reasons the ROC curve itself is shown on the left, and
the confidence intervals are added on the right. All
other figures represent pairs of ROC curves together
with their 95% confidence intervals. The optimal
operating point is marked by a red circle. However, for
comparison purposes more important is the AUC under
the ROC, which is a single number characterizing the
whole ROC curve. The values of AUCs are specified in
Table 4 as well as in the captions of Figs. 3 - 6. The best
AUC seems to be 0.83 with 95 % confidence interval
(0.63 0.91), as shown in Fig. 5. However, the AUCs
for other figures are very similar. The conclusion is

that changing the regression model does not change
the AUC significantly.

Fig. 3: Left: ROC curve for the logistic regression
model # 1 in Table 4. Right: the same ROC curve
with 95 % confidence intervals calculated by means of
bootstrap sampling. AUC≈ 0.82. The 95 % confidence
interval (0.64 0.93).

Fig. 4: ROC with confidence intervals for the logistic
regression. Left: for model # 4 in Table 4; AUC≈ 0.80;
95 % confidence interval (0.62 0.91). Right: for model
# 8 in Table 4; AUC ≈ 0.80; 95 % confidence interval
(0.62 0.91).
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Table 4: Examples of regression models: features used by the model, symbolic model description, optimal
Operating Point (OP) on the ROC for a given model, and AUC estimates for the respective ROC.

Model index Feature # Regression model Optimal OP AUC
FPR TPR Min Mean Max

1 181, 136, 88 1+ x1 + x2 + x3 + x2
1 0.3750 0.9167 0.8229 0.6437 0.9286

2 181, 136, 88, 211 1+ x1 + x2 + x3 + x4 + x2
1 0.3750 0.8333 0.8125 0.6229 0.9149

3 181, 136 1+ x1 + x2 + x2
1 0.3125 0.8333 0.7969 0.6184 0.9063

4 181, 136, 211 1+ x1 + x3 + x2
1 0.1875 0.7083 0.7969 0.6241 0.9071

5 181, 20, 88 1+ x1 ∗ x2 + x2
2 0.2500 0.8333 0.8307 0.6339 0.9396

6 181, 20, 88, 211 1+ x1 + x4 + x2
1 0.1875 0.7083 0.7969 0.6315 0.9093

7 181, 20 1+ x1 ∗ x2 + x2
2 0.2500 0.8333 0.8307 0.6549 0.9336

8 181, 20, 211 1+ x1 + x3 + x2
1 0.1875 0.7083 0.7969 0.6196 0.9127

9 181, 20, 136 1+ x1 + x3 + x2
1 0.3125 0.8333 0.7969 0.6350 0.9141

10 181, 20, 136, 211 1+ x1 + x4 + x2
1 0.1875 0.7083 0.7969 0.6119 0.9010

11 181, 121, 136, 133 1+ x2 + x4 + x2
4 0.2500 0.8333 0.8151 0.6477 0.9211

12 181, 121, 136, 133, 211 1+ x2 + x4 + x5 + x2
4 0.1875 0.7500 0.8151 0.6309 0.9167

Table 5: Estimates of the regression coefficients, standard error SE, tStat, and pValue for these coefficients for
regression models from Table 4.

Model index Variable Estimate of coefficient SE tStat pValue
Intercept 58.615 18.365 3.1916 0.0014148
x1 -0.041377 0.015378 -2.6906 0.0071316

1 x2 -273.05 115.63 -2.3615 0.018202
x3 165.89 82.991 1.9989 0.045616
x2

1 8.1615e-06 3.4149e-06 2.39 0.01685
Intercept -261.78 110.97 -2.3591 0.018321

5 x1x2 -0.08107 0.028117 -2.8833 0.0039352
x2

2 -188.73 102.89 -1.8342 0.066625
Intercept -261.78 110.97 -2.3591 0.018321

7 x1x2 -0.08107 0.028117 -2.8833 0.0039352
x2

2 -188.73 102.89 -1.8342 0.066625
Intercept 61.581 22.969 2.681 0.0073398
x2 -0.0079267 0.0018617 -4.2577 2.0655e-05

11 x4 -0.067689 0.029635 -2.2841 0.022365
x2

4 2.4222e-05 9.7107e-06 2.4943 0.01262

Fig. 5: ROC for the logistic regression. Left: for model
# 5 in Table 4; AUC ≈ 0.83; 95 % confidence interval
(0.63 0.94). Right: for model # 6 in Table 4; AUC ≈
0.83; 95 % confidence interval (0.63 0.91).

Fig. 6: ROC for the logistic regression. Left for model
# 11 in Table 4; AUC≈ 0.82; 95 % confidence interval
(0.65 0.92). Right: for model # 12 in Table 4; AUC ≈
0.82; 95 % confidence interval (0.63 0.92).
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Fig. 7: Values of selected features in the database
as a function of image index. Blue line represents
the feature # 181; red line represents the feature
# 211 (tumor circularity) multiplied by 200; green
(rectangular) line shows the true label multiplied by
3000.

In order to get some feeling for the classification
process look at Fig. 7 which shows the values of the
contrast for vertical offset of 5 and horizontal offset of
4 (feature # 181) as well as tumor circularity (feature
# 211) for all the images in the OASBUD database.
For the purposes of the creation of this image, the
hundred Rf1 scan plane images are sorted into 48
benign images followed by 52 malignant images.
Subsequently, the hundred Rf2 scan plane images are
sorted into 48 benign images followed by 52 malignant
images. The green line in Fig. 7 represents the true
labels of all the images in the database and forms a
rectangular wave with upper and lower levels of one
and zero. The selected contrast (feature # 181) and the
tumor circularity (feature # 211) look like very noisy
rescaled versions of the original rectangular wave.

As an example, Fig. 8 and Table 6 jointly illustrate
the classification results for the regression model # 1
in Table 4. The first row of images in Fig. 8 shows
two examples of benign lesion followed by three
examples of malignant lesion taken from Rf1 scans of
the database. The second row shows two examples of
benign lesion followed by three examples of malignant
lesion taken from Rf2 scans of the database. The
images in Fig. 8 represent one quarter of the 40
images used in the testing set. All data needed for
identification of images are given in Table 6. The
windows containing the lesions have highly varying
dimensions; however, in order to have a more regular
figure we resized the images to the same height.
This simplifies the figure, but may be misleading
when one wants to compare malignant and benign
cases. The reader might check the original sizes of
images by looking into the database. Table 6 shows

the results of classification of the images from Fig. 8
for several values of the threshold T h. Table 6 actually
demonstrates how by decreasing the threshold T h
introduced in Eqs. 2 and 3 we tend to increase
the number of positive classifications and reduce the
number of negative classifications, so in a sense it is a
graphical illustration of the ROC.

Table 6: Lesion labels obtained from the model # 1
in Table 4 for the images in Fig 8. One denotes

malignant, and zero denotes benign label.

Image Rf True Threshold T h
index label 0.1 0.3 0.5 0.7 0.9

53 Rf1 0 1 1 0 0 0
41 Rf1 0 1 1 1 1 0
96 Rf1 1 1 1 1 1 0
92 Rf1 1 1 1 1 1 1
65 Rf1 1 1 1 1 1 1
45 Rf2 0 1 1 1 1 0
43 Rf2 0 1 1 1 1 0
81 Rf2 1 1 1 1 0 0
60 Rf2 1 1 1 0 0 0
77 RF2 1 0 0 0 0 0

DISCUSSION

It can be seen from Fig. 2 that the decision trees
do not give as good results as might be desired.
No matter how we change the MinLea f parameter,
the 0.632 bootstrap estimated ROC curve is distant
from the ideal corner point of coordinates (0, 1).
Furthermore, the inclusion of the most significant
lesion shape parameter, that is tumor circularity, does
not significantly improve the ROC curve. However,
Zhou et al. (2015) indicated that this is the shape
parameter that carries most of the information. The
second best parameter is the standard deviation of
degree. The definition of the standard deviation of
degree given in (Zhou et al., 2015) is based on the
knowledge of the relationship between, say, the sth
contour pixel and the (s− k)th and (s+ k)th pixels.
However, their paper does not specify the k, and our
experiments did not give any convincing value, which
would have a strong discriminative power. In any case,
the corresponding wave for the deviation of degree
similar to those in Fig. 7 seemed too noisy to be of
much use.

In each pair of odd and even regression models in
Table 4 both models have the same features except
that the even model has an extra tumor circularity
feature. Comparing their mean AUCs we observe that
the addition of the tumor circularity either does not
change the AUC or reduces it slightly. Similar general
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53 41 96 92 65

45 43 81 60 77

Fig. 8: Examples of windows used for classification to be considered jointly with their classification results in
Table 6. The first row refers to images from the Rf1 scans in the database, and the second row refers to Rf2. All
windows are resized to the same height exclusively for the purposes of creating this figure; in fact they are highly
disparate. The numbers above the images are indices of images in the OASBUD database.

tendency occurs for the upper and lower bounds of the
confidence intervals with few minor exceptions. The
obvious conclusion is that the tumor circularity is in
fact redundant.

Comparing regression models # 1 and 3 in Table 4
we see the reduction of the mean AUC from approx.
0.82 to 0.80. Similar reduction is observed when
comparing models # 2 and 4. It means that in this case
the use of the extra feature proved beneficial.

Comparing regression models # 5 and 7 we do not
see any change in the mean AUC. Similar observation
is valid for models # 6 and 8. However, comparing
models # 5 and 6, or 7 and 8, we observe that the
addition of the tumor circularity reduces the maximum
pValue, which goes down from approx. 0.0666 to
0.0239. This means that by adding tumor circularity
we get a more predictable model.

Comparing regression models # 7 and 9 we
observe that the addition of the extra feature # 136
reduces the mean AUC. However, the regression model

# 9 does not use the feature # 20 so it really is a 2-
feature model. Comparing regression models # 8 and
10 we do not observe any change in the mean AUC.
The regression model # 8 removes one feature, and
model # 10 removes two features.

Comparing regression models # 3 and 11 we
conclude that addition of extra feature # 121 and
# 133 increases the mean AUC. However, model # 11
removes the features # 181 (contrast at offset (5, 4))
and # 136 (homogeneity at offset (4, 1)).

It worthwhile to observe that limiting the models
to the first and second powers of the variables was
established by the experimentation. Extending the
models to the third power did not improve the AUCs.

The overall conclusion from reviewing Table 4
is that using stepwise generalized linear model we
obtain the model which is best in some sense. The
initial selection of the features for stepwise logistic
regression was based on the inspection of the generated
decision trees. But there are several decision trees
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obtained with various apparent ROCs. A good starting
point is to select the features maintained by a single
tree or several of them. In each case, the overwhelming
number of features are rejected by the decision trees,
and it does not make sense to consider them for the
generation of regression model. It was observed that
the selection of the features for a model is not critical
and we get similar AUCs for several ROCs. When
choosing the best model in Table 4 we have four best
options which are bolded in this table and give AUC up
to 0.83 with the 95 % confidence region (0.65 0.93).

The main steps in the evaluation of the classifier
were model generation using the teaching set and
subsequent testing the performance of the classifier by
means of the testing set. The two sets were completely
disjoint and selection of features could not bias the
classification results. Trying to optimize both steps
requires striking a balance between the usage of
the feature vectors for building the model and for
calculating the ROCs for the testing set. The assumed
split into 160 vectors for teaching vs 40 for testing is
an example of such a balance. As shown in Table 4
the obtained regression models are statistically reliable
since the pValues in most cases do not exceed 0.05. At
the same time lower boundary of 95 % confidence for
most of the points on the ROC curve in Figs. 3 - 6
lies above the (0, 0) - (1, 1) diagonal in the presented
diagrams. This means that we obtain results certainly
above the random classification line represented by a
(0, 0) - (1, 1) diagonal. Obviously, it would be desirable
to have a bigger database so one could obtain smoother
ROCs.

Further experiments with decision trees and
stepwise logistic regression models showed that
including all the six shape/contour features mentioned
in the Shape Features section together with texture
features resulted in a systematical rejection of most
of the shape features leaving only texture features and
tumor circularity in the model. In other words, the said
shape/contour features turned out to be statistically
insignificant when compared with the texture features
and tumor circularity obtained from the raw RF signal.

An attempt was also made to use the
Least Absolute Shrinkage and Selection Operator
(LASSO), which returns fitted least-squares regression
coefficients for linear models for feature vectors
collected in a matrix X and desired labels collected
in a vector Y. The features generated via GLCM are
highly redundant, and one would hope that LASSO
would identify and reject redundant features. The
experiments conducted in Matlab confirmed this
supposition. However, carrying the computation for
features # 145,... , # 211, that is taking the last column
and the top row in Table 1 we obtained LASSO

results after 774 secs. And adding the fifth column and
second row in Table 1 stretched this time to several
hours. Taking into account all of the texture features
seemed unrealistic. In this situation we undertook
experimentation with generalized linear model and
stepwise regression as described above.

The current paper obviously is somewhat parallel
to papers using deep learning for classification of
breast lesions (Byra et al., 2018a). It is not clear which
approach will turn out the best in the future. However,
the method proposed in the current paper tries to
explain the mechanism of classification in the possibly
simplest way. The obtained results indicate that in
fact two - three features can explain the classification.
The deep learning with its multiplicity of features
and thousands of teaching samples and thousands
of weights which have to be adjusted seems to be
excessively complicated. The ultimate comparison of
various classifiers should be done by means of testing
statistical hypotheses. In principle, this could be done
but requires a larger number of samples (images).
Currently available small medical databases allow one
to build workable models but are insufficient for testing
hypotheses that would compare performance of these
models.

CONCLUSION

Comparison of the presented results of breast
lesion classification with those obtained for raw
US signals by means of maps of parameters of
the homodyned K distribution (Byra et al., 2016)
indicates that both approaches give similar ROCs.
Hence, the advantage of using GLCM-generated
features is that this approach is significantly simpler,
more homogeneous, and can be easily adjusted
to a particular equipment or operating conditions.
Inspection of Table 3 reveals that for various values
of MinLea f and acost, a relatively small number
of features are selected when the decision tree is
generated for texture features obtained from the
GLCM.

Using stepwise logistic regression models with
features automatically pre-selected via the process of
generating decision trees based on GLCM texture
features and tumor circularity significantly improves
the breast lesion classifier performance. For example,
the three optimal operating points in Table 4 have
coordinates (0.25, 0.83), and one point has coordinates
(0.38, 0.92). These points are closer to the upper left
corner (0, 1) of the square in right most diagram in
Fig. 2, which shows the 0.632 bootstrap estimated
pseudo-ROCs for the decision trees.
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The other conclusion concerns the shape/contour
features. The use of the shape/contour features of the
lesion in addition to texture features proved to be of
little effect when using stepwise logistic regression
models. Experiments showed that similar observation
is valid for the decision trees as well. This conclusion
is conditioned on employing the upper half-mask of
the lesion rather than full mask. The use of full mask
involves indirect use of extra information related to the
area of the acoustic shadow, which is difficult to obtain
automatically and may require the help of a medical
specialist; and this is not recommended since it would
go against the purpose of our endeavor, which is to
alleviate the work of the specialist and not create extra
workload.

More future-oriented projects should aim at
automatic detection and segmentation of the lesion
more independent of the medical specialist.
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APPENDIX: OBTAINING THE
UPPER HALF-MASK

The process of obtaining the upper half-mask and
contour of a lesion includes the following steps:

1. Generation of a larger window containing the
lesion and the corresponding contour as shown in
Fig. 1(d). The motivation for the enlargement of the
window is given in Database subsection.

2. Speckle removal in the larger window. There
are many possibilities of speckle filtering. In the
current paper one variant, that of nonlinear anisotropic
diffusion was assumed following Nieniewski and
Zajączkowski (2014) because of the availability of the
software. All the parameters required were assumed
as in their paper. The number of diffusion iterations
was set to five. In fact, this number should be large
enough to filter out the speckles and small enough
not to filter out the lesion spicules (or minispicules).
This is a tough requirement, but one can argue that
any reasonable iteration number would do if used
consistently.

3. Generation of a precise lesion contour. This step
was executed by means of the Matlab command:
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g= activecontour(f,mask,300,′Chan-Vese′, ...
′Smoothingfactor′,3)
where g is the generated lesion contour; f is the image
obtained from the anisotropic diffusion; and mask is
the mask provided by the medical expert, 300 is the
maximum number of iterations, ′Chan-Vese′ is the
selected active contour method, and parameter 3 is the
smoothing factor.

4. Automatic correction of the contour obtained in
step 3. In almost all the cases the result from the step
3 is a single closed contour. It may happen, however,
that the contour splits into a large contour and 1 - 2
small ones. The correction of the contour consists
in removing those small parasitic contours. In fact,
there were two such cases for the specified number
of diffusion iterations and assumed active contour
parameters.

5. Generation of the upper half-contour of the
lesion. In principle, this step consisted in finding the
leftmost and rightmost pixels on the contour obtained
in step 4. In continuation we removed these extreme
pixels and their closest neighbors in order to effectively
break the contour into two parts. Subsequently we
did morphological reconstruction of the upper-half in
order to get rid of the lower part. Finally we completed
the upper-half contour by means of the Bresenham
algorithm generating a straight line between the end
points of the upper half-contour.

6. Generating the mask of the upper-half of
the lesion and cleaning the mask. The mask was
generated by the morphological filling of the upper
half-contour. An example of the mask obtained for
images in Figs. 1(a)-(d) is shown on the left side
of Fig. 9. It can be observed that this mask has a
tiny "peninsula" at its low right corner. In some cases
this "peninsula" can be significantly larger. Such a
mask extension arises whenever the Bresenham line
happens to be locally parallel to the mask boundary.
In order to get rid of the "peninsula" we performed
a sequence of morphological operations: imerode by
3×3 structuring element, bwareaopen with threshold
20 for removing all small spurious objects, and
imdilate by 3×3 structuring element. This sequence
of operations gave satisfactory masks for all the images
in the OASBUD database. The result of cleaning the
mask on the left side of Fig. 9 is shown on the right
side of this figure.

Fig. 9: Cleaning the lesion upper-half mask. Left:
Original upper-half mask. Right: The same mask with
removed "peninsula" in the lower right corner of the
mask.

APPENDIX: ESSENTIAL MATLAB
COMMANDS

Several Matlab commands employed by the
authors are described below because their use is by
no means obvious and involves specification of various
options.

1. The command for obtaining B-mode images is:
envelope_image= 20∗log10(abs(hilbert(rf)))
It generates the envelope_image B-style image from
the RF signal rf given in the database.

2. The command for calculating the GLCM is:
[GLCM] = graycomatrix(f,′NumLevels′,256, ...
′offset′, [0 1],′Symmetric′,true)
where f is the input image (window), and GLCM is
the Gray-Level Cooccurrence Matrix as defined in
the book by Gonzalez et al. (2009). The set number
of gray levels in the GLCM is 256. The exemplary
offset is one pixel in one direction. The option
Symmetric,true specifies that the function does not
make difference depending on which pixel has which
brightness. The first four features are calculated by
means of the function graycoprops, as described in
the book by Gonzalez et al. (2009). The last two
features are calculated for the normalized GLCM,
following the same book.

3. The command for tree generation is:
t1= fitctree(d,g,′Prune′,′on′, ...
′SplitCriterion′,′gdi′,′MinLeaf′,aleaf, ...
′Cost′, [0 1;acost 0])
where t1 is a data structure containing the tree, d
contains feature vectors, g contains desired labels. The
split criterion gdi is a Gini diversity index; MinLeaf
denotes minimum number of observations admitted for
a leaf (aleaf). The parameter Cost stands for a cost
matrix, which is coded in accordance with Eq. 5.
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4. The command for generating the regression
model is:
mdl= stepwiseglm...
(TR_SET,Y,′linear′,′upper′,′poly222′, ...
′Distribution′,′binomial′,′link′,′logit′, ...
′Verbose′,2),
where mdl is a data structure containing the generated
linear model, TR_SET is the training set of 160 feature
vectors (comp. Materials and Methods section), and
Y is a vector of their desired labels. The parameter
linear is a starting model for the stepwise regression;
poly222 is a specification of the upper model, in this
case with three parameters, each of which can be of
up to the second degree; binomial is a distribution of
the classifier response variable (label); logit is a link
function; and parameter Verbose of value 2 specifies
what has to be printed out.

5. The command for predicting labels on the
testing set is:
ypred= predict(mdl,TT_SET2)
in which ypred is a vector of the thresholds in the
range (0, 1) indicating the probability of a success for

a given test vector when sampling from a Bernoulli
distribution. The mdl denotes the generalized linear
model, and TT_SET2 is the set of 40 test feature vectors
(comp. Materials and Methods section).

6. The command for obtaining the ROC is:
[X,Y,T,AUC,OPTROCPT] = perfcurve(YTEST, ...
ypred,′1′,′NBOOT′,1000,′XVals′,′All′)
In this command, X,Y denote coordinates of the points
on the ROC curves; T is a vector of thresholds
corresponding to the calculated X,Y points; AUC is the
area under ROC curve; OPTROCPT are the coordinates
of the optimal working point on the ROC curve. The
YTEST denotes the vector of true class labels of the
feature vectors in the testing set; and ypred denotes
their predicted class labels. The l is a label for positive
class. The 95 % confidence regions for points on the
ROC curve are obtained by specifying the parameter
NBOOT which means that the bootstrap with 1000
samples has to be used for vertical averaging. The
parameter Xvals with value All indicates that all
values of ypred have to be used.
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