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ABSTRACT

The estimation of the grain size in granular materials is usually performed by 2D observations. Unfolding the
grain size distribution from apparent 2D sizes is commonly referred as the corpuscle problem. For spherical
particles, the distribution of the apparent size can be related to that of the actual size thanks to the Wicksell’s
equation. The Saltikov method, which is based on Wicksell’s equation, is the most widely used method
for resolving corpuscle problems. This method is recursive and works on the finite histogram of the grain
size. In this paper, we propose an algorithm based on a minimizing procedure to numerically solve the
Wicksell’s equation, assuming a parametric model for the distribution (e.g. lognormal distribution). This
algorithm is applied on real material and the results are compared to those found using Saltikov or Saltikov-
based stereology techniques. A criterion is proposed for choosing the number of bins in the Saltikov method.
The accuracy of the proposed algorithm, depending on the sample size, is studied.

Keywords: microstructure, minimization, probability density function, Saltikov, stereology.

INTRODUCTION

THE CORPUSCLE PROBLEM

When one attempts to characterize the grain size
distribution of a given granular material, such as metals
or ceramics, it is common to perform observation
at microscopic scale thanks to optical or electron
microscopy. Still, this observation gives informations
in 2D sections, and grains appear as surfaces instead
of polyhedra. In this case, the 2D apparent equivalent
radius of a given grain (denoted r bellow) is usually
computed depending on its apparent area (S):

r =

√
S
π
. (1)

If the microstructure is equiaxed, each grain can
be considered as almost spherical. Under this
approximation, it is clear that its apparent radius is
always smaller than its real radius. Let R be the radius
of a spherical grain cut at random latitude; then, the
probability of finding an apparent radius comprised in
between r1 and r2 is:

P(r1 < r < r2) =
1
R

(√
R2− r2

1−
√

R2− r2
2

)
. (2)

If the grains size distribution is not monodisperse
(different possible values for R), evaluating the

distribution of R from the distribution of r is
not straightforward. This introduces the so-called
corpuscle problem. Saltikov1 (1967) has proposed an
algorithm to evaluate the distribution of R, knowing
that of r. This algorithm uses the finite histogram
(finite number of classes for r) to recursively evaluate
the classes of R thanks to Eq. 2, starting from the upper
values of R. It is worth mentioning that some authors
use R as the upper limits of the bins (e.g., Saltikov,
1967; Sahagian and Proussevitch, 1998), whereas
others use R as the centers of the bins (e.g., Higgins,
2000; Lopez-Sanchez and Llana-Fúnez, 2016).

Under certain circumstances, it is more convenient
to characterize the grain size population using
a parametric Probability Density Function (PDF)
than using finite histograms. Indeed, parametric
descriptions help to compare two distinct populations;
in addition, they can be useful for random generation
(see for instance DREAM.3D (Groeber and Jackson,
2014) or NEPER (Quey et al., 2011) softwares).
Rhines and Patterson (1982) have reported that in
many recrystallized polycrystalline materials, the grain
volume follows a lognormal distribution; thus, the
equivalent grain radii follow a lognormal distribution
too. Lopez-Sanchez and Llana-Fúnez (2016) have
proposed the so-called two-step method, which
consists in fitting a parametric distribution on the
histograms given by the Saltikov method; the previous
authors have used the lognormal distribution as the

1Sometimes misspelled “Saltykov” in the literature.
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underlying distribution. However, the Saltikov method
depends on the number of classes (or bins) of the
histogram; thus, the results may be user-dependent. In
addition, using a finite number of classes necessarily
lessens the actual distribution of r since it reduces a
possibly large amount of radius values into a restricted
series of class–frequency pair values. For instance,
Lopez-Sanchez and Llana-Fúnez (2016) have reported
that the two-step method was efficient for comparative
purposes with only 10 to 20 classes.

In a previous work (Depriester and Kubler, 2019),
the present authors have numerically generated 3D
radical-Voronoı̈ tessellations (Okabe et al., 2009)
based on random packs of spheres whose radii follow
lognormal distributions. Then, they have characterized
the 2D sections in order to evaluate the ability of
the two-step method to unfold the 3D distribution. A
discrepancy between the results from the latter method
and the theoretical distributions has been shown. Thus,
they have proposed a set of correction coefficients
to find the real parameters related to the lognormal
distribution, namely the three-step method. For the
sake of understanding, this set is detailed in Appendix.
Depriester and Kubler have used experimental data
(2D orientation map of uranium dioxide) in order to
assess the three-step method. They have shown that
assuming a lognormal distribution for the 3D grain size
of the uranium dioxide was a reasonable assumption.

THE WICKSELL’S EQUATION
Let f be the PDF associated to the 3D radius of

spherical particles. Let f̃ be the PDF associated to
the radii of apparent 2D circles when the particles
are cut at random latitudes. Wicksell (1925) gives the
following relationship:

f̃ (r) =
r
E

∫
∞

r

f (R)√
R2− r2

dR , (3)

where E denotes the expectation of f , that is:

E =
∫

∞

0
R f (R)dR . (4)

Bach (1958) has generalized the Wicksell’s equation
for thin sections of thickness t:

f̃ (r) =
2r

2E + t

(∫
∞

r

f (R)√
R2− r2

dR+ t f (r)
)
. (5)

The Wicksell’s equation can be considered as an
integral transform from 3D to 2D domains. The latter
author provides a general solution for Eq. 3, that is:

f (R) =
−2ER

π

∫
∞

R

d
dr

(
f̃ (r)

r

)
dr√

r2−R2
. (6)

Wiencek et al. (2005) have used the Wicksell’s
equation to unfold the graphite particle size
distribution in nodular cast iron from 2D sections.
Assuming a Weibull distribution for f , they have
used an inverse method to find the parameters for
that distribution leading to the best fit between the
empirical PDF and f̃ , with respect to the least squares
criterion. Keiding and Jensen (1972) have used the
Maximum Likelihood (ML) method (Krishnamoorthy,
2016, Chap. 1) to evaluate the size distribution of liver
cell nuclei from thin sections, thanks to Eq. 5.

AIMS OF THIS WORK
Let Ωn be a finite sample consisting of n radius

values, measured experimentally:

Ωn = (r1,r2, ...,rn) .

Then, the empirical Cumulative Density Function
(CDF) is:

Fn (r) =
1
n

n

∑
k=1

1rk≤r , (7)

where 1X is the indicator function of event X (equal
to 1 if X is true; 0 otherwise). Let rmin and rmax be
the lowest and the largest elements in Ωn, respectively.
According to the definition given in Eq. 7, it is clear
that:

Fn(r) = 0 if r < rmin ; (8a)
Fn(r) = 1 if r ≥ rmax . (8b)

Because of the way Fn is defined, it is not
differentiable. As a result, the PDF cannot be
computed without a regularization procedure, such
as linear interpolation or smoothing (Anderssen and
Jakeman, 1975). For instance, Jeppsson et al. (2011)
have used the so-called kernel density estimation to
get a continuous description of the empirical PDF. In
addition, the estimation of the expectation (E) is not
straightforward. As a consequence, Eq. 6 cannot be
easily evaluated. For their work, Keiding and Jensen
(1972) have assumed that the size distribution of liver
cell follows a mixture of three χ-distribution. Indeed,
the Bach’s transform Eq. 5 of such a mixture can be
computed analytically, allowing for ML.

The aim of this work is to provide a new
method for the resolution of the corpuscle problem,
that is solving Eq. 3. This method should not be
user-dependent and it should use the empirical CDF
as is, instead of binning it into classes. First, an
algorithm is proposed to find the optimal set of
parameters of a given parametric distribution by means
of Minimum Distance Estimation (MDE). This MDE
is computed on the transformed distribution, with
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respect to the Wicksell’s equation (Eq. 3). Then, the
proposed algorithm is applied on an experimental set,
provided by a previous work (Depriester and Kubler,
2019), investigating some well-known distributions
(monodisperse, uniform, normal, lognormal etc.).
Finally, the results are discussed. They are compared
with those given by other stereology techniques, such
as the Saltikov method, and the influence of the initial
guesses for the MDE is discussed. When applicable,
the benefit of using analytical equations is shown.
Finally, the influence of the sample size on the
accuracy of the results is studied.

MATERIAL AND METHODS

NUMERICAL INTEGRATION OF THE
WICKSELL’S EQUATION

Working on a finite number of values for the
radius, Eq. 3 becomes:

∀i = 1,2, ...,m f̃ (ri) =
ri

E

∫
∞

ri

f (R)dR√
R2− r2

i

, (9)

where (r1,r2, ...,rm) correspond to the integration
points (m increasing values).

Let F̃ be the CDF of f̃ :

F̃(r) =
∫ r

0
f̃ (x)dx . (10)

Based on Eq. 10, one can evaluate the CDF by
cumulative trapezoidal integration, that is:

F̃ (ri)≈

{
f̃ (r1)r1

2 if i = 1 ,

F̃ (ri−1)+
f̃ (ri)+ f̃ (ri−1)

2 δ ri otherwise,
(11)

with:
δ ri = ri− ri−1 ,

and assuming F̃ (0) = 0.

Because of the spatial resolution, the minimum
possible value for the measured radius is necessarily
greater than 0. In addition, the largest experimental
radius is necessarily finite. Let F̃∗ be the truncated
CDF of F̃ , taking into account the aforementioned
bounds. It comes:

F̃∗ (ri) =
F̃ (ri)− F̃ (rmin)

F̃ (rmax)− F̃ (rmin)
. (12)

Eq. 12 ensures that:

F̃∗(ri) = 0 if ri ≤ rmin ; (13a)

F̃∗(ri) = 1 if ri ≥ rmax . (13b)

MINIMUM DISTANCE ESTIMATION

Let F be a theoretical CDF and Fn an empirical
CDF computed from a sample Ωn of size n.
The Cramér–von Mises (CvM) criterion, denoted O
below2, can be used as a goodness of fit test. It is
defined as follows (Anderson and Darling, 1952):

O = n
∫

∞

0
[Fn(r)−F(r)]2 dF(r) . (14)

Let f be a parametric PDF and (θ1,θ2, ...,θz) = θ

a vector containing its z parameters. Let f̃ be the
Wicksell’s transform of f , as defined in Eq. 3. One can
define the CvM criterion depending on f and θ :

O f (θ) = n
∫

∞

0

[
Fn(r)− F̃∗ (r | θ)

]2 dF̃∗ (r | θ) (15)

where F̃∗ is the truncated CDF of f̃ , computed from
Eqs. 9, 11 and 12. Eqs. 8 and 13 lead to:

Fn (r) = F̃∗ (r) if: r < rmin or r ≥ rmax .

Hence, Eq. 15 becomes:

O f (θ) = n
∫ rmax

rmin

[
Fn(r)− F̃∗ (r | θ)

]2 dF̃∗ (r | θ) .

(16)
Eq. 16 can be evaluated using the trapezoidal
integration. Thus, for a given PDF f , one can find the
optimal set of parameters θopt leading to the least value
of O f (θ). That is:

θopt = Argmin
θ

(
O f (θ)

)
.

This method is usually known as the Minimum
Distance Estimation (MDE). The corresponding
algorithm is illustrated in Fig. 1.

For a given PDF f , the present algorithm requires
to initialize the set of parameters (θ0 in Fig. 1). This
value is usually referred as the “initial guess” in the
literature. Its influence on the accuracy of the method
is discussed further throughout this paper.

One may note that ML could also be used here.
Nevertheless, MDE is known to be more robust against
outliers (Woodward et al., 1984).

2Usually denoted nω2 in the literature.
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θ0fΩn

θ ← θ0

f̃ Eq. 9

F̃ Eq. 11

F̃∗ Eq. 12

O Eq. 16

rmin,rmax

FnEq. 7

Is O
minimal?

θopt← θ

Update θ

Yes

No

Fig. 1. Schematic representation of the MDE: assuming a parametric PDF f , the algorithm aims to find the best
set of related parameters (θopt), compared to experimental data (Ωn), with respect to the CvM criterion (O). θ0
denotes the initial set of parameters to be used. The way θ is updated depends on the minimizing procedure.

CRITICAL VALUES FOR THE CVM TEST

At a given significance level α , one can evaluate
whether the null hypothesis should be rejected or
not with respect to the CvM criterion. Let κ be
the critical value of α at which the null hypothesis
should be rejected; Csorgo and Faraway (1996) have
built a correspondence between the CvM criterion and
κ , depending on the sample size (n). Those tabular
data are partially summed up in the “supplementary
material” section of the online version of the journal.
Thus, based on the CvM criterion, κ can be estimated
thanks to the aforementioned data, assuming that:

–O follows a linear interpolation as function of
log(n), where log denotes the natural logarithm;

–κ follows a linear interpolation as function of O .

IMPLEMENTATION

All the methods detailed in the previous sections
have been implemented in MATLAB R©. Improper
integrals (see Eqs. 4 and 9) were computed using the
built-in integral command whereas the trapezoidal

integrations in Eqs. 11 and 16 were computed using the
cumtrapz and trapz commands, respectively. The
latter were performed using m = 1000 equally spaced
integration points between rmin and rmax.

The MDE was performed using the fminsearch
command. This command uses the simplex method
(Lagarias et al., 1998) to perform minimization. It
is efficient when the investigated space is small (low
value of z) and if the cost function has no local
minima (Nelder and Mead, 1965).

MATERIAL

Uranium dioxide (UO2), introduced in a previous
paper (Depriester and Kubler, 2019), has been used
as a test material. Its microstructure was imaged by
Electron Backscattered Diffraction (EBSD) mapping
and the EBSD data were processed to reconstruct the
grains using of misorientation threshold of 5◦. Grains
cropped by the region of interest were removed from
the data, resulting into n = 4264 individual grains.
Fig. 2 illustrates the final dataset.
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Fig. 2. Reconstructed grains in UO2: the colour indicates the corresponding equivalent radius (µm) (Depriester
and Kubler, 2019).
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Fig. 3. Histogram of equivalent radii, computed from
the area of 2D apparent grains of UO2. The red solid
curve illustrates the empirical CDF.

Based on their area, their apparent equivalent radii
were computed with respect to Eq. 1. Fig. 3 gives the
2D histogram of the apparent radii.

In addition, the empirical CDF, computed from
Eq. 7, is plotted in this figure. One may notice the
threshold effect due to the resolution of the EBSD data.
Indeed, the step size was 2 µm; thus, the minimum area
was 4 µm2. As a result, the equivalent radius, as defined
in Eq. 1, was always larger than 1.128 µm. It is worth
mentioning that the quality of the original EBSD data
allows to consider all grains, even if some of them
contain only one pixel. Indeed, the frequency at lower
values in Fig. 3 appear reasonably correct ; in other
cases, a minimal size may be introduced.

The following parametric distributions are
investigated: monodisperse, uniform, positive normal,
lognormal, Gamma, Weibull and Rayleigh. All those
distributions and their related parameters are detailed
in Table 1.

The Rayleigh distribution is a special case of the
Weibull distribution (with k = 2). Wicksell (1925)
has shown that its transform (Eq. 3) keeps the
Rayleigh distribution unchanged (i.e., its PDF is
an eigenfunction with eigenvalue 1). The Wicksell’s
transforms of monodisperse and uniform distributions
can be computed analytically (see Eqs. 22 and 24
in Appendix, respectively). The benefit of using the
analytical equations is detailed bellow.

RESULTS

Results from the MDEs performed on the
aforementioned distributions and based on the
experimental data are summed up in Table 2. This table
gives the optimal parameters (denoted θopt above) with
each investigated type of distributions.

Fig. 4 illustrates the corresponding truncated CDFs
(F̃∗).

For the sake of comparison, the empirical CDF
is also given. Insets in Fig. 4 help to visualize the
differences between the different CDFs. It appears
that the monodisperse and uniform distributions lead
to large discrepancies. Conversely, the consistency
appears to be good with the other investigated
distributions since they are hard to distinguish. This
result is consistent with the corresponding values
of the CvM criterion given in Table 2. Indeed,
it appears that the normal distribution results in
good correlation (O = 0.0935) compared to the
monodisperse and uniform distributions (O = 73.5 and
2.51, respectively).

Since MDE using the Rayleigh distribution can
be considered as a constrained MDE using the
Weibull distribution (with k = 2), the corresponding
CvM criterion (O = 0.202) is larger than that of
the (unconstrained) Weibull distribution (O = 0.123).
Nevertheless, the Weibull distribution found here is
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Table 1. List of parametric Probability functions investigated in this work to unfold the distribution given in Fig. 3.

Name Parameter(s) PDF

Monodisperse Unique radius: E f mono (R |E) = δ (R−E)

Uniform Lower bound: Rmin f uni (R |Rmin,Rmax) =

{
1

Rmax−Rmin
if Rmin ≤ R≤ Rmax

0 otherwise
Upper bound: Rmax

Positive normal Mode: Rm f N + (R |Rm,σ) = 1
σ(1−Φ0)

φ
(R−Rm

σ

)
Shape parameter: σ with: φ (x) = 1√

2π
exp
(
−x2

2

)
and Φ0 =

1
2

[
1+ erf

(
−Rm
σ
√

2

)]
Lognormal Location: µ f logN (R |µ,σ) = 1

Rσ
√

2π
exp
(
− (lnR−µ)2

2σ2

)
Shape: σ

Gamma Scale: θ f γ (R |k,θ) = 1
Γ (k)θ k Rk−1 exp

(
−R

θ

)
Shape: k with: Γ (z) =

∫
∞

0 xz−1 exp(−x)dx

Weibull Scale: λ f W (R |λ ,k) = k
λ

(R
λ

)k−1 exp
(
−
(R

λ

)k
)

Shape: k

Rayleigh Mode: Rm f R (R |Rm) =
R

σ2 exp
(
−R2

2σ2

)

Table 2. Optimal parameters resulting from MDEs and corresponding CvM criterion values, depending on the
parametric distribution used for MDE (see Table 1).

Distribution Parameters CvM test Crit. significance Mode

θopt O κ Rm

Monodisperse E = 5.695 73.5 > 0.999 5.695

Uniform Rmin = 1.073 2.51 > 0.999 N/A
Rmax = 8.250

Normal Rm = 3.876 0.094 0.370 3.876
σ = 2.816

Lognormal µ = 1.519 0.853 0.992 3.803
σ = 0.428

Gamma k = 4.724 0.350 0.901 3.822
θ = 1.026

Weibull λ = 5.203 0.123 0.511 3.833
k = 2.106

Rayleigh Rm = 3.612 0.202 0.730 3.612
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Fig. 4. Results from fitting by MDE using the standard distributions: transformed CDFs, as compared to the
empirical CDF (thick black curve). Insets give details of the gaps near the tails and the median values of the
distributions.

close to a Rayleigh distribution because k is close to
2 (k = 2.106).

Table 2 also gives the results from MDEs in
terms of critical values for the significance level (κ).
Thus, using the normal distribution results in κ around
0.370, whereas that of the lognormal distribution is
close to 1. This result is inconsistent with the usual
hypothesis that R follows a lognormal distribution in
recrystallized material (Rhines and Patterson, 1982).
Indeed, sintering usually results in sufficient grain
growth for considering that the manufactured material
is fully recrystallized and that its grain size distribution
follows a lognormal rule (Readey and Readey, 1986).
The values for κ found here are quite high, even for
the normal distribution. This result may be surprising
considering the apparent good fits in Fig. 4. As a
reminder, we have here n = 4264. For such large
sample, the CvM criterion is somehow severe. Other
parametric distributions could eventually lead to lower
significance levels.

For the sake of comparison, the PDFs found for
each investigated parametric distribution (see Table 1)
are shown in Fig. 5. Since the monodisperse and the
uniform distributions can be considered as irrelevant,
they are not plotted in Fig. 5.

In this figure, it appears that all the plotted PDFs
reach their maximum value around the same location
(mode Rm). Indeed, as summed up in Table 2, the

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

R (µm)

PD
F

Normal
Lognormal

Gamma
Weibull
Rayleigh

Fig. 5. Representation of the PDFs using the
parameters given in Table 2 (the monodisperse and the
uniform distributions are not represented here).

modes of the normal, lognormal, Gamma and Weibull
distributions are equal to around 3.80 µm, Still, the
corresponding PDFs are quite different from each
other, specially in terms of dispersion (distribution
spreads). In Fig. 5, it is also clear that the Weibull and
the Rayleigh distributions are almost superimposed;
this result is related to the fact that the k parameter of
the former distribution is close to 2.

It is worth mentioning that, at first, attempts
to perform MDEs using the Kolmogorov–Smirnov
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(KS) criterion (Wolstenholme, 2017, Ch. 4) as a
distance estimator (denoted O here) have been made.
However, the MDE fails to converge in this case
because of the small gap between the empirical and
the transformed CDFs at lower radii, as evidenced by
the left-hand inset in Fig. 4. Indeed, this gap appears
to be almost irreducible. In essence, the KS test only
uses a particular value of the gap (maximum absolute
difference between the empirical and the theoretical
CDFs) whereas the CvM criterion, as defined in
Eq. 14, is integrated over the whole domain, resulting
in a much more stable criterion.

DISCUSSION

In this section, the following investigations are
made:

–comparison with other stereology techniques;

–effect of the initial guess on the results from MDE;

–influence of using analytical Wicksell’s transforms
instead of using numerical integration;

–influence of the sample size on the accuracy of the
results from MDE.

COMPARISON WITH OTHER
STEREOLOGY METHODS

The results from MDE can be compared with
those from other stereology techniques, namely the
Saltikov method (Saltikov, 1967), the two-step method
(Lopez-Sanchez and Llana-Fúnez, 2016) and the three-
step method (Depriester and Kubler, 2019). Fig. 6
schematically illustrates the workflow to be used in
order to utilize those techniques.

In order to compare the results from MDE to
those from the Saltikov method, the latter has been
applied on the example dataset Ωn. Since there is no
general rule about the number of bins to be used in
the Saltikov method (denoted N hereafter), the latter
has been applied with 10 to 30 bins. In each case,
the CvM test (O), as defined in Eq. 16, has been
computed. It is worth reminding that the Saltikov
method gives the unfolded radius distribution; thus,
it must be refolded before computing the CvM test.
Eq. 27 allows for refolding a finite histogram thanks
to the Wicksell’s equation (see Appendix). Fig. 7
illustrates the evolution of O as a function of N.

Thus, it is clear that the best correlation is reached
when using 14 bins (with O = 7.80). This value lies

10 15 20 25 30

8

8.5

9

9.5

N

C
vM

te
st

Fig. 7. CvM test Eq. 16 when using the CDFs given
by the Saltikov method, as a function of the number of
bins used for this method.

Ωn

Saltikov

Two-step

Three-step

2D histogram

MDE f

CDF (Fn)

3D histogram (µ2s,σ2s) (µ3s,σ3s) θopt

Lognormal parameters

Fig. 6. Schematic representation of the investigated stereology techniques: the Saltikov method gives the unfolded
3D histogram, whereas the two-step method uses this latter to evaluate the lognormal parameters; the three-step
method aims to increase the accuracy of the two-step method.
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Fig. 8. Histogram of the unfolded 3D radius
distribution given by the Saltikov method using 14 bins
(the first one is not visible) and optimal PDF given by
MDE (red solid curve)

within the conventional range, between 10 to 20, for
N (Lopez-Sanchez and Llana-Fúnez, 2016). Still, this
result may depend on the sample and no general rule
may be raised. Fig. 8 shows the resulting histogram
from the Saltikov method.

As a comparison, the results from MDE (using
normal distribution) has been plotted as well.
It appears that the histogram generated by the
Saltikov method is slightly shifted toward larger
radii, compared to that of the present algorithm.
For instance, the Saltikov method results in a null
frequency for R < 1.68µm. This lower cut-off has
no physical relevance, considering the manufacturing
means of the investigated material (sintering).

Based on the previous results, the two-step method
(Lopez-Sanchez and Llana-Fúnez, 2016) has been
applied using 14 bins on the studied sample. The
resulting parameters for the lognormal distribution are
given in Table 3.

Table 3. CvM test given by the Saltikov method
(Saltikov, 1967), the two-step method (Lopez-Sanchez
and Llana-Fúnez, 2016) and three-step method
(Depriester and Kubler, 2019) and corresponding
lognormal parameters (when applicable).

CvM test µ σ

MDE (w/ lognormal dist.) 0.853 1.519 0.428
Saltikov method 7.80 N/A N/A
Two-step method 39.3 1.630 0.507
Three-step method 3.98 1.612 0.356
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Fig. 9. Result of MDE performed using the lognormal
distribution, compared to that obtained thanks to the
two-step method (Lopez-Sanchez and Llana-Fúnez,
2016) and the three-step method (Depriester and
Kubler, 2019).

As a comparison, Fig. 9 shows the resulting PDF,
to be compared with that given by MDE.

It appears that the MDE results in a sharper
distribution, as evidenced by lower value of σ in
Table 3. On the opposite, the modes are almost equal in
each case. Indeed, the present work leads to the modal
value Rm = 3.80µm whereas the two-step method
leads to Rm = 3.95µm. This result is in accordance
with the hypothesis that the mode is the key value
in the corpuscle problem, as stated before. According
to Table 3, the two-step method results in a larger
CvM criterion than the Saltikov method. This may
be because the fit is not good between the lognormal
distribution and the histogram during the two-step
process.

Once the two-step method has been applied, its
results can be adjusted according to the three-step
method (Depriester and Kubler, 2019), as illustrated
in Fig. 6. Further details of this method are given in
Appendix. The previous values for µ and σ , once
adjusted with respect to Eqs. 19 and 21, are given
in Table 3. Fig. 9 illustrates the corresponding CDF,
to be compared with that given by MDE. It appears
that the three-step method slightly overestimates both
the modal value and sharpness of the lognormal
distribution. According to Fig. 9, the PDF found
using MDE seems to be comprised in between those
found using the two-step and three-step methods. As
evidenced by the low value of the CvM test, as given
in Table 3, it is clear that the three-step method gives
accurate results, close to the optimal ones given by
MDE.
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INITIAL GUESS FOR THE MDE
The aforementioned MDEs were performed with

different initial guesses (denoted θ0 in Fig. 1). In
each case, they lead to almost the same results. As an
example, Table 4 gives the results of MDEs performed
with the normal distribution, depending on the initial
guess.

Table 4. Results from MDE using the normal
distribution and corresponding computation times
(CPU), depending on the initial guess (θ0).

θ0 θopt CPU (s)

Rm σ Rm σ

1.0 0.1 3.876018 2.815846 121.1
10. 0.1 3.876088 2.815800 116.6
10. 10. 3.876057 2.815831 134.2
1.0 10. 3.876082 2.815809 120.5
3.876 2.816 3.876077 2.815807 48.7

Thus, the algorithm proposed in this paper appears
to be stable and the simplex method is very efficient
here. Table 4 also gives the computation time in each
case. It appears that the initial guess only influences the
number of minimization iterations before converging.
As a conclusion, the initial guess may be arbitrary
chosen if the computational time is not a matter of
choice.

ON THE USE OF ANALYTICAL
EQUATIONS
It is worth mentioning that the computational

times required by the MDE (e.g., those given
in Table 4) are due to a large extent to the improper
integrals Eqs. 4 and 9. Indeed, when applicable, the
analytical resolution of the Wicksell’s equation (Eqs.
22 and 24 for monodisperse and uniform distributions,
respectively) leads to very fast MDEs. For instance,
Table 5 gives the results from MDEs using the
uniform distribution with numerical resolution of
the Wicksell’s transform, as detailed above, to be
compared with that using the analytical equation
Eq. 24.

Table 5. Results from MDE using the uniform
distribution and corresponding computation times
(CPU), depending on the resolution method.

Resolution
method

Rmin Rmax CvM test CPU (s)

Numerical 1.121 8.253 2.5067 102.93
Analytical 1.089 8.250 2.5071 0.0497

It appears that both the methods are consistent
with each other because they lead to almost the
same values for the optimal parameters and the CvM
criterion. Nevertheless, using the analytical equations
is more than 2000 times faster than using the numerical
integration.

INFLUENCE OF THE SAMPLE SIZE
It has been shown before that the normal

distribution leads to the best fit with respect to the
CvM criterion; thus, only this distribution will be used
hereafter. The sample used here is composed of 4264
grains. Hence, this dataset has been randomly down-
sampled in order to investigate the influence of the
sample size (denoted n above) on the accuracy of the
results. For each investigated value of n, 100 different
random samplings have been done, from which the
MDEs have been performed. As a result, 100 values
of Rm, 100 values of σ and 100 values of κ have been
found for each value of n. In each case, the mean values
and the standard deviations of those sets have been
computed.

Fig. 10 shows the results from MDEs (mean values
of Rm, σ and κ , and their related standard deviations
as well) as functions of n.
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Fig. 10. Optimal parameters for normal distribution
and resulting values for κ , depending on the sample
size (n): evolutions of the mean values as functions of
n; error bars give the standard deviations (±1 std).

It appears that the mean values of Rm and σ are
almost constant when n > 1000. In addition, when n >
1000, their standard deviations are small, compared to
the mean values. Indeed, the corresponding coefficient
of variations (ratio of the standard deviations to the
means) are lower than 7 % in this case. Hence, it can be
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concluded that at least 1000 radius values are required
to get sufficient accuracy. This number is the same as
that required for the Saltikov method (Lopez-Sanchez
and Llana-Fúnez, 2016).

Surprisingly, κ appears to be slightly increasing
with n; nevertheless, the corresponding standard
deviations are almost constant (around 0.126). As a
conclusion, sample size larger than 1000 does not
result in a significant increase in accuracy for a given
PDF. However, it is clear that the larger sample is, the
better one can estimate whether the investigated PDF
is a good candidate or not.

CONCLUSION

In this work, the Wicksell’s equation has been used
to evaluate the grain size distribution in a polycrystal
from 2D sections. The proposed algorithm is made on
the assumption that the grain radii R follow one of the
standard distribution functions (e.g normal, lognormal
etc.). Then, MDEs are performed on the transformed
distributions in order to evaluate the corresponding
distribution’s parameters. The CvM criterion is used
as a goodness of fit test.

The proposed algorithm has been applied on a
given material (uranium dioxide, imaged by EBSD).
It has been shown that the normal distribution
has led to the best results, among all investigated
distribution functions. The use of the CvM criterion
together with the simplex optimization technique
results in a very stable MDE. The results from
MDE have been compared with those from other
stereology techniques (Saltikov, two-step and three-
step methods). A criterion, based on the CvM test, is
proposed to choose the best number of bins for the
Saltikov method. The following statements have been
made:

–the proposed algorithm results in a distribution
with larger frequencies at lower radii than the
Saltikov method;

–the best accuracy (lowest value of the CvM
criterion) was reached when using 14 bins for the
Saltikov method on the test material (although this
value may be sample-dependent);

–since the two-step method is based on the Saltikov
method, it results in a decrease of accuracy (greater
value of the CvM criterion), compared to the
Saltikov method alone;

–the three-step method, as proposed by Depriester
and Kubler (2019), helps to improve the accuracy
of the two-step method;

–in all cases (including MDE using different
distributions), the modal values of the unfolded
distributions were almost the same.

The last statement implies that the proposed algorithm
gives very accurate estimation of the mode of the
unfolded distribution, compared to its other parameters
(e.g., dispersion).

Finally, the influence of the sample size (number of
radius values from 2D section) has been investigated.
It has been stated that at least 1000 values are required
to obtain the PDF parameters with good accuracy.
Larger samples may help to determine whether the
investigated PDF is a good candidate or not. The values
of κ , estimated from the CvM criterion, may be used
with caution because of possible large values, specially
for large samples.

Since this method uses the empirical CDF as
is (no binning), it may be more accurate than any
Saltikov-based technique. In addition, the proposed
method is purely deterministic (not user-dependent)
and may work on various standard distributions. Still,
it requires to make some assumptions about the
potential parametric distributions to be used.

As a further work, the proposed algorithm could
be applied on input data generated from a known
3D distribution (e.g., using random generation of 3D
aggregates, then slicing); thus, its results could be
compared to the actual 3D distribution. Comparison
could also be made between MDE and ML in terms
of accuracy and robustness.

DATA AVAILABILITY

Datasets and MATLAB R© routines related to this
article can be found at https://doi.org/10.24433/CO.
7108475.v2, hosted at Code Ocean (Depriester, 2019).

APPENDIX: THE THREE STEP
METHOD

This section briefly describes the method proposed
in (Depriester and Kubler, 2019) to evaluate the
distribution of 3D equivalent radius R, based on 2D
sections, namely the three-step method.

When performing radical Voronoı̈ tessellation
(Okabe et al., 2009) from a random pack of spheres,
one can define the equivalent radius of each Voronoı̈
cell depending on its volume V :

Rcell =
3

√
3V
4π

.
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If the sphere radii follow a lognormal distribution (see
Table 1) with shape parameter σ sph and expectation
Esph, Depriester and Kubler (2019) have shown that
the resulting distribution of Rcell can be approximated
with a lognormal distribution too. Let σ and E be
the corresponding shape parameter and expectation,
respectively. For 0 ≤ σ sph ≤ 0.9, the aforementioned
authors have shown that the following relationships
apply:

E
Esph = 0.1123

(
σ

sph
)2
−0.013σ

sph +1.1587 ;

(17a)

σ = 0.7166σ
sph +0.0228 . (17b)

Depriester and Kubler have made 2D sections from the
aforementioned tessellation, then they have applied the
two-step method (Lopez-Sanchez and Llana-Fúnez,
2016) on the resulting size distribution in order to
evaluate its ability to unfold the distributions. Let
σ2s and E2s be respectively the resulting shape
parameter and expectation given by the two-step
method. Depriester and Kubler have reported the
following approximations:

E2s

Esph = 0.2225
(

σ
sph
)2

+0.1749σ
sph +1.1505 ;

(18a)

σ
2s = 1.0184σ

sph +0.0341 . (18b)

Thus, Eqs. 17b and 18b lead to:

σ = 0.7037σ
2s−0.0012 (19)

whereas Eqs. 17a, 18a and 18b lead to:

E
E2s =

0.5047
(
σ2s
)2−0.0939σ2s +5.404

(σ2s)2 +0.7323σ2s +5.337
. (20)

This equation applies for σ2s ∈ [0.034,0.951],
according to Eqs. 17b and 18b. In this range, Eq. 20
can be approximated as follows:

E
E2s ≈ 0.0363

(
σ

2s)3−0.0680
(
σ

2s)2

−0.1582σ
2s +1.0127 , (21)

with relative error below 1.1×10−4.

For lognormal distribution, it is worth reminding
that the expectation can be computed from the location
and scale parameters with (Krishnamoorthy, 2016,
Ch. 22):

E = exp
(

µ +
σ2

2

)
.

APPENDIX: ANALYTICAL
WICKSELL’S TRANSFORMS

MONODISPERSE DISTRIBUTION

In the case of monodisperse distribution (see
Table 1), the Wicksell’s equation (Eq. 3) becomes:

f̃ mono (r |E) =

{
r
E
∫

∞

r
δ (R−E)√

R2−r2
dR if r < E

0 if r ≥ E
.

Thanks to the properties of the Dirac function, it
comes:

f̃ mono (r |E) =
r
E

1√
E2− r2

if r < E .

Thus, the corresponding CDF is:

F̃mono (r |E) =


∫ r

0 f̃ mono(x)dx if r < E∫ E
0 f̃ mono(x)dx
+
∫ r

E f̃ mono(x)dx if r ≥ E

=

{
1−
√

E2−r2

E if r < E
1 if r ≥ E

. (22)

This equation is consistent with Eq. 2 since:

P(r1 < r < r2) = F̃mono (r2)− F̃mono (r1) .

UNIFORM DISTRIBUTION

In the case of uniform distribution (see Table 1),
the Wicksell’s equation (Eq. 3) becomes:

f̃ uni (r |Rmin,Rmax)=



r
E(Rmax−Rmin)

·∫ Rmax
Rmin

dR√
R2−r2

if r ≤ Rmin

r
E(Rmax−Rmin)

·∫ Rmax
r

dR√
R2−r2

if Rmin ≤ r,

r ≤ Rmax

0 if r ≥ Rmax

.

(23)
By substitution, it can be demonstrated that:∫ dR√

R2− r2
= log

(
R+

√
R2− r2

)
+C .

In addition, it is clear that:

E =
Rmax +Rmin

2
.

Thus, Eq. 23 can be rewritten:
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f̃ uni (r |Rmin,Rmax) =


2r

R2
max−R2

min
log
(

Rmax+
√

R2
max−r2

Rmin+
√

R2
min−r2

)
if r ≤ Rmin

2r
R2

max−R2
min

log
(

Rmax+
√

R2
max−r2

r

)
if Rmin ≤ r ≤ Rmax

0 if r ≥ Rmax

.

The corresponding CDF Eq. 10 can be evaluated
using a symbolic computation software, such as

Wolfram Mathematica R© (Wolfram Research, Inc.,
2015). Indeed, the latter gives:

F̃uni (r |Rmin,Rmax) =


1−

γ(r)+r2 log
(

Rmin+
√

R2
min−r2

)
−Rmin

√
R2

min−r2

R2
max−R2

min
if r ≤ Rmin

1− γ(r)+r2 log(r)
R2

max−R2
min

if Rmin ≤ r ≤ Rmax

1 if r ≥ Rmax

(24)

with:

γ(r)=Rmax

√
R2

max− r2−r2 log
(

Rmax +
√

R2
max− r2

)
.

FINITE HISTOGRAM
This section proposes a procedure to compute

the Wicksell’s transform of a finite histogram. This
procedure is used to refold the distribution given by
the Saltikov method before computing the CvM test.

Given an histogram consisting of N classes, it is
assumed that within each class k, the distribution is
homogeneous between the corresponding lower bound
(Rk

min) and upper bound (Rk
max). In other words, the

corresponding PDF is:

f hist (R |bins) =
N

∑
k=1

Freqk. f uni

(
R
∣∣∣Rk

min,R
k
max

)
where Freqk is the relative frequency of the k-th class.
Thus, the Wicksell’s transform Eq. 3 of f hist is:

f̃ hist (r |bins) =
r
E

N

∑
k=1

Freqk. f̃ k(r) (25)

with:

f̃ k(r) =
∫

∞

r

f uni
(
R
∣∣Rk

min,R
k
max
)

√
R2− r2

dR

=
Ek

r
f̃ uni

(
r
∣∣∣Rk

min,R
k
max

)
(26)

where f̃ uni is the Wicksell’s transform of the uniform
distribution, as defined in Eq. 23, and Ek the mid-point
of the k-th class:

Ek =
Rk

min +Rk
max

2
.

Eqs. 25 and 26 give:

f̃ hist (r |bins) =
1
E

N

∑
k=1

Freqk.Ek. f̃ uni

(
r
∣∣∣Rk

min,R
k
max

)
.

Here, the expectation is:

E =
N

∑
k=1

Freqk.Ek .

Finally, the corresponding CDF is:

F̃hist (r |bins) =
1
E

N

∑
k=1

Freqk.Ek.F̃uni

(
r
∣∣∣Rk

min,R
k
max

)
(27)

where F̃uni is given in Eq. 24.
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