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ABSTRACT

The segmentation of rock grains on images depicting bulk rock materials is considered. The rocks’ material
images are transformed by selected texture operators, to obtain a set of features describing them. The first
order features, second-order features, run-length matrix, grey tone difference matrix, and Laws’ energies are
used for this purpose. The features are classified using k-nearest neighbours, support vector machines, and
artificial neural networks classifiers. The results show that the border of rocks grains can be determined with
above 75% accuracy. The multi-texture approach was also investigated, leading to an increase in accuracy
to over 79% for the early-fusion of features. Attempts were made to reduce feature space dimensionality by
manually picking features as well as by the use of principal component analysis. The outcomes showed a
significant decrease in accuracy. The obtained results have been visually compared with the ground truth. The
compliance observed can be considered to be satisfactory.
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INTRODUCTION

Despite great efforts, modern civilisation is still
based on the efficiency of the extraction and processing
of raw materials. Energy production, civil engineering,
industrial manufacturing and high-tech equipment
production are just a few examples of sectors
whose existence would not be possible without them.
However, before raw materials can be transformed
into valuable goods, several technological processes
have to be applied. Many of them are sensitive to
rock grain size distribution and properties (Hulthén
and Evertsson, 2009; Tessier et al., 2007). This
influences the effectiveness of the enrichment process,
machinery wear and often it is crucial for specific
applications (e.g. aggregates used in civil engineering).
The rock size distribution is also sometimes regulated
by legal requirements, as in the fossil fuel industry.
The standard methods, commonly used in the raw
material industry, are labour and time-consuming.
Moreover, it has already been shown that using
computer-aided sorting systems is beneficial (Latała
and Wojnar, 2001). Therefore, attempts are being
made to develop methods and technologies enabling
the determination of, at least, rock grain sizes in
an automated, fast and cost-effective way. Computer
vision is one of the most promising approaches being
studied. However, before computer vision methods
can be successfully and reliably used in an industrial
environment, several problems have to be solved.

The most basic is the appropriate segmentation of
grain borders and interiors. Once this has been
completed, the rock grains can be counted, their shape
parameters calculated, and the distribution of grain
sizes designated.

It turns out, that the task of rock delineation is
not straightforward, as rocks have a complex structure,
are composed of multicoloured minerals, have internal
edges, etc. The perfect method for the segmentation
of the rock grain interior and boundary should be able
to discriminate between the rock edges without being
misled by the rock grain’s internal structure. Such a
method has not been proposed to date. In addition,
other difficulties arise during the determination of rock
grain sizes as the image is a 2D view of a 3D shape
where the projection of the rock grains usually overlap.

There are few main pathways in which computer
vision and image processing are used in rock
characterisation. First of all, researchers focus on
the internal structure and properties of the rock
material. The optical or scanning electron microscope
images are used for the identification of minerals
and the internal structure of rock material. The
analysis of features of mineral grains contained in
the rock material is helpful in the determination
of geological processes which shaped the properties
of the rock material (Ailleres et al., 1995). It is
also helpful in the description of the origins of a
material sample (Mertens and Elsen, 2006). Image
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processing of micro-images of minerals is also used
in its composition assessment (Alpana and Mohapatra,
2015; 2016; Lu et al., 2009; Lumbreras and Serrat,
1996; Mlynarczuk et al., 2014). The methods applied
for image processing and analysis range from simple
thresholding (Ailleres et al., 1995; Haines et al.,
2015; Wang, 2008), through morphological operations
(Lumbreras and Serrat, 1996; Mertens and Elsen,
2006; Mlynarczuk et al., 2014; Wang, 2008; Outal
and Beucher, 2009), to texture analysis and statistical
methods (Alpana and Mohapatra, 2015; 2016). The
most commonly used approach for grain segmentation
is the watershed algorithm.

One of the most promising though difficult
applications of computer vision in rock
characterisation is the determination of rock grain
sizes and shapes. There are some aspects which form
the scope of research: the individual grain shape and
size detection, the investigations on correspondence
between image based and traditionally measured
grain sizes and the classification of rock material and
segmentation of bulk raw materials (e.g. on a conveyor
belt). The rock segmentation in the assessment of
individual grain sizes and shapes is usually simplified
by an image acquisition technique. Pictures are taken
in a way that ensures high contrast between the stones
and the background. The material is placed so that
adjacent stones do not touch each other. There are a
few methods mentioned in the literature to meet these
requirements. A special stand with artificial lighting
was used to photograph rocks placed separately on a
white background (Kwan et al., 1999; Mora et al.,
1998). The lighting was designed to minimise the
shadow cast by the rocks. There were also examples
of rocks imaged one by one on a special stand (Al-
Thyabat and Miles, 2006). The other option here was
to use a backlight to the rock particles (Al-Thyabat and
Miles, 2006; Zhang et al., 2013). The modification of
this method, by usage of a flat scanner, was reported by
Igathinathane et al. (2012); Igathinathane and Ulusoy
(2016).

The standard approach used for grain size
determination is performed by sieving the sample
taken from the bulk material through a set of screens.
The material granulometry is characterised by the sizes
of the net in the screens. There were attempts to
find the relationship between the image analysis and
standard method results (Zhang et al., 2013).

The problem was also investigated by Outal et al.
(2008). A map function was proposed for transforming
the histogram obtained from image analysis into a
histogram corresponding to the results of the sieve
analysis. A comparison of the obtained results with the
results of the actual sieve analysis showed satisfactory

compliance, provided that the buckets adopted for
determining the histograms were large enough. In
engineering practice, this is not a significant limitation.
In the Outal et al. (2009) the power function is
determined for transforming area size distribution
obtained from image analysis into the 3D distribution
determined by sieve analysis. Regardless of the good
results presented in the above papers, one should
be aware that there are many potential sources of
errors. The improper delineation, insufficient image
resolution, particle overlapping, etc., can influence the
final result of the estimation of grain sizes in the image
(Thurley, 2013). The shape characteristics of rock
materials were investigated by Wang (2006), where 18
classes of grain shapes were proposed. Other methods
include Ferret and equivalent diameter as a parameter
which corresponds well with the results obtained by
sieving (Al-Thyabat and Miles, 2006).

Though the described methods of image
acquisition are almost not applicable in industrial
conditions (though the interesting solution was
proposed by Wang (1999)), the presented image
analysis forms the basis for the use of computerised
methods in mineral processing. When the problem
of rock segmentation is solved, the size and shape
determination methods can be applied. However, rock
segmentation in images depicting the bulk material is
not a trivial task. The simplest approaches concentrate
on thresholding and watershed segmentation (Guyot
et al., 2004; Kemeny et al., 2002; Siddiqui et al.,
2010). These methods are also the basis for a few
commercial software solutions (Guyot et al., 2004;
Maerz, 1998; Siddiqui et al., 2010). Unfortunately,
straight adoption of watershed leads to significant
over-segmentation. The shapes and sizes of rock
grains are barely preserved. The most sophisticated
techniques use advanced pre-processing before the
watershed algorithm is applied (Chatterjee and
Bhattacherjee, 2011; Perez et al., 2011; Zhang et al.,
2013). The pre-processing is mainly aimed at the
selection of reasonable watershed starting zones. The
obtained results are significantly better than those
from previous attempts. Particularly, Perez et al.
(2011) and Zhang et al. (2013) achieved reasonably
good segmentation. However, the problems with
appropriate grain edge detection as well as over-
segmentation are still present. The reported research
result is also based on a small set of analysed images.
Some researchers concentrated on rock material
characterisation (e.g. detecting the ore type) without
segmenting every single grain (Ko and Shang, 2011).

The interesting research on the determination of
appropriate markers for the watershed algorithm for
rock grain delineation problem was presented in the
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(Outal and Beucher, 2009) and (Outal, 2006). The
key concept is to find the method for marking each
of the rock grain in the image. After the set of
markers is established, the application of one of the
segmentation algorithms could lead to proper grains
boundary identifications. The proposed method uses
a modifiation of   ultimate   opening morphological
transformation. The method has been completely
developed and described. Its application to rock
material images allows for good grain delineation.

Some other research used texture analysis – grey-
level co-occurrence matrix or wavelets (Murtagh et al.,
2005; Perez et al., 2011). The use of images obtained
using laser scanning was also considered (Thurley,
2013). However, even using such technology does not
resolve all the problems which are encountered with
the conventional approach - e.g., the images obtained
from laser scanning still need segmentation. Though
the improvements were clearly visible, the problem
is still far from being solved. Therefore, undertaking
research related to segmentation is fully justified.

This work concentrates on the segmentation of
rock grains in bulk material. The application of
texture feature maps, previously used in medical image
analysis (Obuchowicz et al., 2018), were proposed.
The features use simple first order statistics as well as
multiscale, differential ones. A similar approach was
also exploited for fault detection in metallic images
by Cord et al. (2010). The selected classifiers were
applied for differentiation between grain edges and
grain interiors. The ground truth was prepared as a
set of images manually segmented by experts. The
‘Materials and Methods’ section describes in detail
the image database, the texture operators applied
for feature calculation and proposed classification
methods. In the ‘Results’ section results are presented
and their importance is discussed in the ‘Discussion’
section. The ‘Conclusions’ section summarises the
paper.

MATERIALS AND METHODS

The grains presented in the images are segmented
by a classifier, which bases the decision on
information derived from texture information. Several
classification techniques are considered. Their details
are presented in the ‘Classification’ section. The
descriptive information used to train the classifier is
derived from texture operators, which are implemented
in such a way to return a value for each pixel in the
image, instead of one value per image, as it is used in
standard applications. The ‘Texture operators’ section
presents the necessary details. Passing the image

through the classifier, one achieves a segmentation
map whose quality is evaluated. Finally, the details
concerning data acquisition for the experiments are
given in the ‘Image acquisition’ section.

TEXTURE OPERATORS

Texture operators perform a calculation using
information conveyed in the distribution of image
intensities supported by their spatial information.
A wide variety of approaches exist which derive
features from image texture. In this research, the
first order features, FOF, second-order features, COM,
run-length matrix, RLM, grey-tone difference matrix,
GTDM, and Laws’ energies provide interesting texture
feature maps for further processing. In contrast to
local binary patterns (Ojala et al., 2002) and local
phase quantisation methods which were inapplicable.
Pixel values in those maps were obtained using a
sliding window approach (with a resolution of 21 ×
21 pixels) for all methods except Laws’ energies
– whose definition applies 5 × 5 pixel kernels. In
the case of LAWS, the method definition determines
the resolution of the sliding window. For all other
techniques, the smallest possible resolution was
chosen that assures the number of sampled pixels
is sufficient in order to make the further calculation
statistically significant. Applying a smaller window
would probably make the techniques better describe
the border, yet since the parameters would be
calculated from very small number of samples, they
would be unstable.

First order features

FOF describes image content concentrating on the
knowledge derived from intensities, i, and distribution
in the image, I. As a starting point a formalised
histogram of grey-levels is calculated:

h(i) =
1

W ·H

W

∑
x=1

H

∑
y=1

{
1 I(x,y) = i
0 otherwise,

(1)

where W and H are image width and height
and (x,y) are the pixel coordinates. From this
structure the following standard statistical measures
are derived (Materka and Strzelecki, 1998): mean,
variance, skewness, kurtosis, energy, and entropy. The
visualisation of these features is presented in Fig. 1.
One can see that the main borders are visible in the
maps prepared by each feature. However, in the case
of short and less pronounced borders, the results vary.
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(a) Mean (b) Variance (c) Skewness

(d) Kurtosis (e) Energy (f) Entropy

Fig. 1. FOF: visualisation of texture feature maps.

Second order features

COM was introduced by Haralick et al. (1973),
where the authors described the grey tone co-
occurrence matrix which keeps information on the
distribution of pixel intensities and also their spatial
relation. The matrix size corresponds to the total
number of intensities and each entry stores the number
of occurrences of pair of pixels in a distance d
which intensities index the matrix (d = 1 in presented
experiments). In order to remove a rotation invariance,
it is suggested that matrices should be prepared
for each angle from 0, 45, 90, and 135 degrees.
Additionally, 14 features derived from the grey-
tone co-occurrence matrix were used, their detailed
description is given by Haralick et al. (1973), while
Fig. 2 presents the outputs. Here, however, the maps
are different, as the main borders which delineate
big objects are clearly visible, while the distinction
of weaker borders differs depending on the feature.
Moreover, due to the lower computational cost, the
grey-scale range was changed to 64 intensity levels.

Grey-tone difference matrix

Another approach for texture description, aimed at
creating such metrics that confirm the way humans see
a texture, was successfully designed as the features of
a grey-tone difference matrix (GTDM) by Amadasun
and King (1989). For a grey-scale image, the absolute
differences between pairs of grey-level values and the
average intensity of its neighbourhood (Īx,y) are stored

in a matrix:

s(i) =
W

∑
x=1

H

∑
y=1

|I(x,y)− Īx,y|, (2)

which is then used to derive the following texture
descriptors: coarseness, contrast, business, complexity,
and strength. Fig. 3 presents visualisation of the
computed features. Similarly, as previously mentioned,
the delineation of weak borders differs and becomes
blurred.

Run length matrix

There was also an idea to describe texture based on
the information concentrated in the sequences of pixels
with the same pixel intensities (runs). It was observed
that long runs are characteristic for coarse textures,
while short runs correspond to images of good
quality. The original paper about RLM introduced 5
features (Galloway, 1975), but this method was later
significantly developed (Tang, 1998). Generally, the
run length matrix describes the relationship between
the pixel intensities and the lengths of sequences of
similar values, thus counting the number of occurrence
of run-length for the considered intensities. Usually,
for calculation purposes, the number of intensities is
quantised (to 32 colours in the presented experiments)
and runs up to some value are distinguished (10 pixels
in the presented case). Additionally, directions for 0
and 90 degrees were applied in the computation to
diminish the rotation influence. The exemplary texture
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(a) Energy (b) Contrast (c) Correlation

(d) Variance (e) Homogeneity (f) Sum Average

(g) Sum Variance (h) Sum Entropy (i) Entropy

(j) Difference Variance (k) Difference Entropy (l) Information Measure of Correlation I

(m) Information Measure of Correlation
II

(n) Maximal Correlation Coefficient

Fig. 2. COM: visualisation of texture feature maps.
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(a) Coarseness (b) Contrast (c) Business

(d) Complexity (e) Strength

Fig. 3. GTDM: visualisation of texture feature maps.

feature maps obtained for each feature are presented in
Fig. 4. When compared to others visually, they seem
less informative due to their low resolution and noise.

Laws’ energies

Laws’ energy maps are texture descriptors derived
from very local information transformed with small
convolution kernels (Laws, 1980). The local windows
measure the amount of variation concentrating on
some repeatable qualities in the image, e.g. levels,
spots, edges, ripples, and waves. These qualities are
defined as a 5-element vector, and two of them should
be multiplied to obtain a kernel. In the presented work
all possible combinations of two kernels (25 features)
were considered.

CLASSIFICATION

Each of the introduced techniques enables the
description of a pixel with a vector of features.
Therefore, it is a straightforward idea to use this
knowledge to build a classification model. Since it is
difficult to state which approach from the machine
learning domain would give the best performance, it
was decided to verify the classification accuracy for
k-nearest neighbours, kNN (Murphy, 2013), support
vector machines, SVM (Burges, 1998), and artificial
feed-forward neural networks, ANN (Gurney, 1997).

The kNN method assumes that a verified feature
vector belongs to the class which is represented
by the majority of vectors found in the closest

neighbourhood. Parameter k defines the number of
vectors considered in voting and this should be odd
number when the two-class problem is addressed.
Since the optimal number of neighbours is task
dependent, it is not possible to choose freely. In
the presented experiments, the optimal value of this
parameter was searched for in the range [1, · · · ,25].
Next, when searching for the nearest neighbouring
feature vectors, various metrics could be applied.
In the presented experiments the following metrics
where verified: city block, Chebychev, correlation,
cosine, hamming, Jaccard, Euclidean, Mahalanobis,
Minkowski, and spearman.

In the case of SVM, training data is used to
calculate a hyperplane which divides the hyper-
space into two regions assuring that feature vectors
belonging to one class occupy only one region.
Additionally, attention is paid to ensure that there is
as big a margin as possible around the hyperplane to
ensure that new data supplied in testing is found on the
proper side of the class-dividing hyperplane. In order
to ensure the finding of such a linear hyperplane the
data is moved to a higher dimension or when this is
not sufficient a kernel trick is applied, which roughly
speaking changes the linear kernel function into a
radial-basis function, RBF, or any function supplied
by the user. The appropriate function depends on the
data and should be selected for each experiment. In
the presented experiments when the linear kernel was
applied, a c parameter influencing the margin should
be selected and this was searched for in the range
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(a) Short run emphasis (b) Long run emphasis (c) Grey level non-uniformity

(d) Low-grey level run emphasis (e) Run percentage (f) High grey level run emphasis

(g) Short run low grey level run emphasis (h) Short run high grey level run
emphasis

(i) Long run low grey level run emphasis

(j) Long run high grey level run emphasis (k) Run length non-uniformity

Fig. 4. RLM: visualisation of texture feature maps.
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[2−5, · · · ,25]. When applying RBF except for the c
parameter (which was searched for in the same range
as the linear kernel) the γ parameter, defining the
function shape, should also be determined and its value
was searched for in the range [2−5, · · · ,25].

Another approach for data classification is
presented by ANN method. Here the whole system is
constructed with perceptrons/neurons. The perceptron
is a mathematical function which calculates an answer
on the basis of input data. The high quality reasoning
of the network is due to the neuron connections
into layers. In the case of fully-connected artificial
neural networks, all answers from one layer become
the inputs for all the neurons in the second layer.
There are weights associated with each input, and
their values are optimised in the training process
which is realised with a back-propagation method.
There are several methods which can be applied in
this step, we have decided to use the Levenberg-
Marquardt back-propagation method. In order to fit
this classification to the problem architecture can be
changed, this means that the number of layers and the
number of perceptrons per layer can be chosen. All the
layers which are between the data layer, whose length
corresponds to the feature vector, and the output layer,
whose number of answers is related to the count of
distinguished classes, are named hidden layers. In the
presented experiments from 1 to 3 hidden layers were
used, and each layer has 5 or 10 neurons.

IMAGE ACQUISITION

The images used in the research show the
rock material gathered from the coal waste dump
“Rymer”, Poland. The material mainly consisted of
gangue (clay slate), which is a typical mineral matter
accompanying coal deposits. During sample gathering,
special attention was paid to ensure uniformity and
representativeness. Image acquisition was performed
using a Nikon D80 digital camera. The material was
placed in a metal box (370× 320× 100 mm) and the
surface of the rock material was formed so that it was
as flat as possible. Pictures were taken in ambient light
conditions. Finally, 32 pictures with 484× 648 pixels
resolution were obtained. As the gangue is grey, it was
decided that all images should be converted into HSV
(hue, saturation, value) colour space and only use the
value channel for further processing. Slight differences
in illumination were eliminated by filtering the images
with a Gaussian filter with a standard deviation of σ =
30. The result was then subtracted from the original
image. For all these images, manual annotation is
supported.

RESULTS

This research concentrates on several experiments
which show the applicability of image texture features
for rock body segmentation. Firstly, a comparison
is made of the classification performance of feature
vectors obtained for each texture operator: first-order
features, FOF, second-order features, COM, run-length
matrix, RLM, grey-tone difference matrix, GTDM,
and Laws’ energies, LAWS. In this experiment
not only is the data description method evaluated,
but the best classification method is also evaluated
whilst considering a wide range of parameters. Next,
whether it is possible to improve results selecting
features manually is evaluated. Data reduction with
principal component analysis, PCA, is also exploited
to shorten the feature vector and derive the most
descriptive information. Finally, the fusion of features
is considered. To better understand the results, a visual
inspection of the achieved segmentation is given.

All experiments were prepared in the Matlab
2016b environment and run using Windows 10 on
a computer with an Intel® i7 processor and 32GB
of RAM. The implementation of textural features
used existing codes to calculate COM features and
the authors implemented methods for all the other
features. For classification purposes the kNN and ANN
methods from the Statistics and Machine Learning
Toolbox™ were applied, while for SVM the libSVM
library (Chang and Lin, 2011) was exploited.

In the experiments, the dataset was divided into
four equal parts. The data from the first three parts
were used for training using three-fold cross-validation
regime. The data from the fourth part was used as
a validation set. Since the classification is based on
features calculated per pixel, a large amount of data
was accessible (ca. 3 · 107). However, this data was
highly imbalanced (10:1), therefore it was decided
to randomly sample the class with a larger number
of representatives (rock interior) to select the same
number of samples that characterised the second class
(rock border). The accuracy of classification was
calculated as a correct classification ratio which is the
ratio between correctly detected borders and interiors
to all the considered samples. The results are described
by the average accuracy and the standard deviation.
The results are given separately for the training and
validation sets.

TEXTURE DESCRIPTIVE STRENGTH
EVALUATION

In the presented approach, the image segmentation
is a result of the classification of each image pixel
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Fig. 5. Data flow in experiments concentrating on separate analysis of textural features.

Table 1. The best result of classification between the rock border and interior for each considered texture
description method when the kNN classifier was applied.

Method Feature No k Metric Acc+Std: Training Acc+Std: Validation

COM 14 25 Chebychev 0.7454 ± 0.0067 0.7500 ± 0.0011
COMH 14 25 Chebychev 0.7367±0.0064 0.7457±0.0009
FOF 6 25 City block 0.7410±0.0057 0.7437±0.0014
FOFH 6 25 City block 0.7293±0.0067 0.7323±0.0051
GTDM 5 25 City block 0.7396±0.0042 0.7402±0.0011
GT DMH 5 25 Euclidean/Minkowski 0.7250±0.0113 0.7278±0.0029
LAWS 25 25 Chebychev 0.7471±0.0054 0.7503±0.0016
RLM 11 25 City block 0.7348±0.0067 0.7391±0.0009
RLMH 11 25 City block 0.7271±0.0054 0.7379±0.0011

into the rock border or rock interior class. Therefore,
the accuracy achieved during the classification process
also reflects the quality of the segmentation. Firstly,
we have evaluated the performance of the considered
approaches for texture description and the influence
of the classification methodology on the outcome.
Tables 1, 2, and 3 present the best classification scores
while Fig. 5 depicts the data flow schema.

The features calculated by the mentioned methods
have various ranges, while classifiers work better
when all features are in the same range. Initially, the
normalization scaled the data to occupy a given range.
When preparing the texture feature map visualisation,
it was observed that the rock borders are more
visible when the histogram equalisation follows the
range normalisation (histogram stretching in the case
of an image). Therefore, for both methods of data
preparation kNN was applied (the subscript H denotes
data where only range normalisation was applied).
Observing the outcomes of the experiments, one could
notice that increasing the value of the k parameter
improves the classification accuracy. In the presented
experiments, several metrics have been used. They

have a small impact on the outcomes as the differences
for the same number of voting neighbours are in the
third decimal place. The results gathered in Tab. 1
show the best performance for each method. For the
training and validation sets, a very similar outcome
shows the stability of the results. This conclusion
is additionally supported by low values of recorded
standard deviations of the results in the training set.
LAWS texture descriptors have the highest accuracy of
75.03% and are closely followed by COM descriptors
with 75.00%. Additionally, these good results are also
confirmed by the corresponding value of the area
under the receiver operating curve (AUC) presented in
Fig. 6 for the best outcomes reported for each texture
descriptor. In every cases, the additional application
of histogram equalisation improves the classification
score by 1 point. Therefore, in further experiments,
only this data preparation method is used.
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notice that increasing the value of the k parameter
improves the classification accuracy. In the presented
experiments, several metrics have been used. They

have a small impact on the outcomes as the differences
for the same number of voting neighbours are in the
third decimal place. The results gathered in Tab. 1
show the best performance for each method. For the
training and validation sets, a very similar outcome
shows the stability of the results. This conclusion
is additionally supported by low values of recorded
standard deviations of the results in the training set.
LAWS texture descriptors have the highest accuracy of
75.03% and are closely followed by COM descriptors
with 75.00%. Additionally, these good results are also
confirmed by the corresponding value of the area
under the receiver operating curve (AUC) presented in
Fig. 6 for the best outcomes reported for each texture
descriptor. In every cases, the additional application
of histogram equalisation improves the classification
score by 1 point. Therefore, in further experiments,
only this data preparation method is used.
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Table 2. The best correct classification ratio for methods based on texture features classified with linear SVM.
Method Features No c Acc+Std: Training Acc+Std: Validation

COM 14 22 0.7569±0.0066 0.7618±0.0002
FOF 6 2−2 0.7474±0.0059 0.7521±0.0001
GTDM 5 23 0.7426±0.0092 0.7502±0.0005
LAWS 25 2−3 0.7604±0.0018 0.7622±0.0015
RLM 11 2−1 0.7444±0.0061 0.7516±0.0003
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Fig. 6. Receiver operating curve for the best scores
recorded for each texture operator with kNN classifier.

Table 2 gathers classification accuracy obtained for
the linear SVM approach. Here, the highest correct
classification ratio has a level of 76%, and again LAWS
features, followed by COM features are better than the
others. As in the previous case, the AUC corresponds
to the results of Fig. 7. Similarly to the previous case,
for each texture descriptor, different settings of the
classifier returned the best score. However, none of the
compared approaches have shown significantly better
outcomes than the others. In the case of RBF-SVM
only worse results were achieved, therefore they are
not presented.

The performance for ANN classifier is given in
Tab. 3 while the receiver operating curve is depicted
in Fig. 8. For all texture descriptors except for
LAWS, two hidden layers with ten elements gave
superior results. It is interesting to observe, that the
texture descriptor with the longest feature vector of
25 elements needed only one hidden layer, while the
methods described by five or six features achieved
better performance when two hidden layers were
constructed. Moreover, the smallest network exploited
to work with LAWS features gave the best accuracy
(77%) of classification. Yet again, COM performance
is very similar.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

Tr
ue

po
si

tiv
e

ra
te

COM (AUC=0.8245)
FOF (AUC=0.8181)

GTDM (AUC=0.8141)
LAWS (AUC=0.8288)
RLM (AUC=0.8122)

Fig. 7. Receiver operating curve for the best scores
recorded for each texture operator with SVM classifier.
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Fig. 8. Receiver operating curve for the best scores
recorded for each texture operator with ANN classifier.

When one looks through the features, the similarity
between the presented texture feature maps (see
Figs. 1-4) can be observed. It is also visible that
the borders are much pronounced on some texture
feature maps. The visual similarity should correspond
to a similar feature description, also when the outline
is clearly visible in the data it should be easier for
the classifier to detect it. Thus having these facts
in mind, a manual selection of distinctive features
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Table 3. The best results of classification recorded for each texture description method when ANN classifier
was used. Three evaluation approaches are compared here including: all features generated with the methods,
manually selected features, and PCA application.

Method Hidden Neurons Features Dimensions Acc + Std
layers Training Validation

All 14 0.7668±0.0069 0.7695±0.0009
COM 2 10 Selected 10 0.7496±0.0094 0.7575±0.0006

PCA 5 0.7569±0.0058 0.7606±0.0005

All 6 0.7570±0.0070 0.7580±0.0013
FOF 2 10 Selected 5 0.7492±0.0079 0.7540±0.0006

PCA 5 0.7562±0.0065 0.7576±0.0011

All 5 0.7528±0.0062 0.7546±0.0012
GTDM 2 10 Selected 4 0.7423±0.0047 0.7448±0.0014

PCA 4 0.7492±0.0056 0.7526±0.0018

All 25 0.7666±0.0053 0.7707±0.0004
LAWS 1 10 Selected 10 0.7401±0.0142 0.7459±0.0024

PCA 8 0.7664±0.0035 0.7674±0.0043

All 11 0.7544±0.0061 0.7576±0.0002
RLM 2 10 Selected 6 0.7522±0.0060 0.7552±0.0002

PCA 7 0.7523±0.0064 0.7561±0.0006

was performed: for the FOF texture operator the
mean was removed as its border presentation was the
weakest one; for COM the variance, sum average,
sum variance, and information measure of correlation I
were neglected; for GTDM the coarseness seems
to convey less valuable information; for LAWS the
number of applied masks was reduced to 10 out of
the initial 25; for RLM the short run emphasis, long
run emphasis, short-run low grey level run emphasis,
short-run high grey level run emphasis, and long run
high grey level run emphasis were omitted. Then the
classification performance for those selected features
for the best from previously presented classification
methods (ANN) was evaluated and the results are
presented in the rows named Selected in Tab. 3.
The manual selection of valid parameters proved to
worsen the correct classification ratio. Yet it was only
based on the visual inspection of the texture feature
maps. On the other hand, the dimension reduction
can be obtained by application of PCA which aims
to find those orthogonal directions, where the data is
characterised by high variability. Choosing directions
of the highest variability and simultaneously removing
those modes of low variation enables the reduction
of the data dimensionality whilst keeping a similar
amount of information. In the presented research
PCA was applied before ANN classifier. It assumed
the use of those directions which constitute at least
99% of the information included in the original
data. The outcomes achieved for this approach are
gathered in Tab. 3 in rows annotated as PCA. Here

again, a deterioration of classification performance
is noticeable when compared to the results obtained
for all features. Feature dimension reduction with
PCA also did not improve the results. However, it
noted better performance when compared to manually
selected features. In the case of LAWS and COM,
PCA reduced the number of modes achieving higher
accuracy.

The distinction between the rock border and
interior, when described by various texture operators
seems to have similar accuracy with the exception of
the applied classifier. Moreover, the best performing
methods depend on the applied classification
technique. However, LAWS and COM texture
operators show very similar performance, and with
such small discrepancies, it is difficult to decide which
is better.

MULTI-TEXTURE APPROACH
The description of image content derived by

the texture operator varies between the techniques
considered in this work. The experiments presented
in the previous section, showed that it is possible
to distinguish between the rock interior and border,
however, a considerable amount of false positives is
noticeable. Yet, a major number of false positives
are located near the borders, making the border
line thicker than in manual annotation. While the
minority reflects very local edges on the rock surface.
Both of those cases do not constitute a problem, as
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Fig. 9. Data flow in early- and late-fusion.

Table 4. The table gathers results recorded in the experiments with a multi-texture approach. It compares the
performance of early- and late-fusion feature analysis and the influence of feature reduction with PCA (brackets
enclose the number of selected features).

Approach Classifier Parameters Acc+Std
Training Validation

Early-fusion ANN 1 layer, 10 neurons 0.7901±0.0094 0.7919±0.0051

Late-fusion
ANN 2 layers, 10 neurons 0.7727±0.0046 0.7742±0.0004
kNN 25, any metric 0.7324±0.0089 0.7379±0.0048
SVM 2−2 0.7604±0.0018 0.7611±0.0000

they could be easily removed if necessary in post-
processing using simple skeletonisation or a best-fit
(Piorkowski, 2017) approach. Yet, in order to limit
the importance of post-processing, the number of
false positives should be diminished. Therefore, a
classifier based on a combination of all the presented
texture operators approaches is presented. In this
experiment, two methods for feature combination are
taken into account: early- and late-fusion. In the case
of the early-fusion approach, 61 features derived for
texture analysis approach presented in the previous
experiment are considered all together and constitute
one feature vector fed for a classifier as depicted at the
top of Fig. 9. For late-fusion, a cascade of classifiers is
applied. In the first stage the best classifier for each
texture operator described in the previous section is
applied (see details in Tab. 3) and then the responses
(probabilities to belonging to one of the two classes)

constitute a feature vector fed to the second stage as
presented in the bottom of Fig. 9.

Table 4 gathers the outcomes obtained for the
multi-texture approach. The best performance was
recorded for the early-fusion approach and reached
79%, this score is also achieved by the AUC presented
in Fig. 10. In this approach, other classifiers were
not considered, since their weaker performance in an
individual texture operator would be repeated in this
case too. On the other hand, when the late-fusion
method was evaluated, a slight improvement over
individual approach is visible and reaches from 73%
for kNN classifier to 77% for ANN.
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(Piorkowski, 2017) approach. Yet, in order to limit
the importance of post-processing, the number of
false positives should be diminished. Therefore, a
classifier based on a combination of all the presented
texture operators approaches is presented. In this
experiment, two methods for feature combination are
taken into account: early- and late-fusion. In the case
of the early-fusion approach, 61 features derived for
texture analysis approach presented in the previous
experiment are considered all together and constitute
one feature vector fed for a classifier as depicted at the
top of Fig. 9. For late-fusion, a cascade of classifiers is
applied. In the first stage the best classifier for each
texture operator described in the previous section is
applied (see details in Tab. 3) and then the responses
(probabilities to belonging to one of the two classes)

constitute a feature vector fed to the second stage as
presented in the bottom of Fig. 9.

Table 4 gathers the outcomes obtained for the
multi-texture approach. The best performance was
recorded for the early-fusion approach and reached
79%, this score is also achieved by the AUC presented
in Fig. 10. In this approach, other classifiers were
not considered, since their weaker performance in an
individual texture operator would be repeated in this
case too. On the other hand, when the late-fusion
method was evaluated, a slight improvement over
individual approach is visible and reaches from 73%
for kNN classifier to 77% for ANN.
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Fig. 10. Receiver operating curve for the best score -
Early fusion with ANN.

It is interesting to observe, that ANN classifier
using all features to build the model gives the
best outcome, significantly improving the accuracy.
While some feature maps when analysed visually
seemed similar, in reality, there were some slight
differences, that could be used by ANN to achieve
better performance. This finding is also supported by
the worse performance of classifiers trained with a
reduced number of features.

VISUAL INSPECTION

Visual inspection is another approach to check
segmentation accuracy using the best approach
presented in the previous section. Fig. 11 presents
some examples, where the original image is the
background for inpainted contours obtained from
manually prepared masks and those resulting
from image segmentation. The red colour denotes
pixels which were classified as borders, while blue
corresponds to borders drawn manually. When the
manual segmentation overlaps with the automatic one
a white colour is applied.

It can be observed, that the segmentation is
satisfactory and the automatic segmentation (red
colour) overlaps the manual annotation (blue colour)
in most regions of the examples shown. The proposed
segmentation very well outlines the bodies of large
stones, however, the small ones are recognised as
borders. This is the result of applying texture features
as a description method. Because in order to compute
a feature, a region of 21 × 21 pixel resolution is
considered, therefore one cannot assume that the
automatic segmentation will not suffer from such a
feature derivation approach. There is also another
problem which can be seen in the visualisation. There
are regions where the border was detected in the

middle of the rock body. This is due to a small
collapses in the rock surface, which generate local
borders. Sometimes, when stones of a similar colour
are placed near to each other, such a border may not be
recognised correctly too.

Though the presented results do not solve the
segmentation problem, they do show that most of
the large rocks borders have been properly identified.
It has to be noted, that the distinction between
individual rocks, with similar colour properties is
sometimes difficult even for an expert. While the
determination of sharp contours seems to not be
possible using the proposed textural approach, the
obtained results can have a practical application. First
of all, the method enables for the determination
of large grain content in the total material. Such
information is useful from a practical point of view.
In many technological processes in the raw material
industry, the biggest grains have to be ground. A priori
assessment of the amount of material that is supposed
to be ground enables the assessment of associated costs
and machinery wear. Secondly, the presented images
show that the segmentation obtained forms a good
basis for grain sizes determination. Finally, the results
justify the application of texture methods for rock grain
segmentation, despite the aforementioned limitation of
its resolution.

DISCUSSION

There is not an abundance of research that
considers rock material segmentation in the literature.
The computer scientists focus on the usage of textural
features for the determination of rock type (Lobos
et al., 2016; Perez et al., 2011; Tessier et al.,
2007). Perez et al. (2011) is a good representation
of this approach and is a further development of the
idea presented by Tessier et al. (2007). The rock
grains depicted in the images are segmented using
morphological operations along with a watershed
algorithm. The textural features, along with the colour
ones, are used for discriminating the rocks having
different grind-ability. The determination of rock size
grade is less common. The typical approach is based
on a material sieved through a set of screens. The
screen mesh sizes get progressively smaller. The
screens allow only material of particle sizes smaller
than their mesh size to pass through. Therefore,
the material is divided into a set of fractions of
granularity determined by consecutive mesh sizes.
This procedure is usually used in the raw material
processing industry for particle size distribution
determination. Each fraction is photographed and
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Fig. 11. Visualisation of segmentation results in six different images. The red colour shows pixels classified as
rock border. The blue colour depicts manual annotations. The white colour indicates overlap between automatic
segmentation and manual segmentation.

used as an input for features extraction and machine
learning algorithms. Some authors define as much as
12 different fractions (Murtagh et al., 2005), while
others use just 2 or 3 (Aldrich et al., 2010; Kistner
et al., 2013). The comprehensive list of pieces of work
addressing this topic was presented by Yaghoobi et al.
(2019). The approach though interesting and obtaining
moderately good results, appears to be difficult in
practical application. The run-of-mine, ROM, usually
contains the whole spectrum of grades mixed together.
A ROM composed of a narrow fraction of grain
sizes is virtually impossible. Therefore, an approach
neglecting the grain boundary seems to be applicable
only in selected, special cases. On the other hand,
the determination of grain boundary is universal.
Although, the application of texture based methods is
barely present in the literature.

Comparison between texture and other methods
of determination of grain boundary shows that
the latter performs better in the case of small
grain border detection, while frequently erroneously
detecting boundaries inside the bigger rock grains. The
presented work showed that in most cases the texture
operator method is resistant to that situation. However,
it tends to neglect fine grains, which could be improved
with a higher resolution of input data. This problem
results from the resolution of the window which is
used to calculate the texture features. Because at least
21 × 21 pixel resolution is necessary, that makes it
difficult to discriminate rocks that are smaller that this
size.

It must be mentioned, that many authors
present results visually (e.g. (Wang, 2008; Thurley,
2013)), causing the comparison to be less precise.
Nevertheless, it seems that the proposed method is
slightly better at precise grain borders delineation than
the others presented in the literature.

Having said that, the one exception has to be
pointed out. (Outal, 2006) presented comprehensive
research analysing various approaches using the
morphological transformations (e.g. computation of
geodesic maps). The best solution uses the modified
ultimate opening transformation. The transformation
is modified in that sense, that the associated function
(called granulometric function) is constructed to
recover the critical disk (Outal and Beucher, 2009)
contained in each rock fragment. The disks are
computed for successive structural element size k.
The parameter also corresponds to the value of
granulometric function. In conclusion, the author
proposes the use of local maximum values of
granulometric function as the markers for the
watershed algorithm. The presented applications on
real rocks images show the potential of the method.
However, it has to be noticed, the process of
constructing the markers is not simple. In spite of
the usage of only a limited set of morphological
operators (erosion, dilation, ultimate opening, etc.) the
algorithm is sophisticated and the appropriate choice
of two parameters is necessary. The maximum size of
the grain should also be known (the stop condition
for ultimate opening computation). The presented
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algorithm performs reasonably well in most situations.
However, there is a risk of identifying the internal
structure of a bigger rock texture being the finest
grain class. The approach also may have problems
with closely placed rock fragments of very similar
surface textures (e.g. two flat fragments of the same
rock placed one on another). Therefore, the texture-
based methods should be at least used as a support
for the morphological procedure. The big advantage of
the algorithm is its resistance to the edges appearing
inside the rock grains, which are not their edges.
This approach can successfully characterise the bulk
material, assessing, for example, a number of fine
grains.

An important topic that must also be addressed
is the issue of correspondence between the results of
determining the grain size based on the registration of
the top layer of rock material and the values obtained
as a result of sieve analysis. As it was presented
in Outal et al. (2008), the obtained grain surface
distributions, presented in the form of a histogram,
differ from the analogous histograms regarding
volume obtained from the sieve analysis. However,
a function transforming the areas distribution in the
volume distributions can be elaborated. Outal et al.
(2008) proposed using a linear relationship to calculate
the values determined by the size of the image and the
sizes determined based on the sieve analysis. The grain
size, determined based on the image, is represented
by a disk that can be entered in the outlined grain. In
the case of sieve analysis, this corresponds to a grain
that can pass through a sieve with a specified mesh
size. Analysis of the results of comparing the results
of the sieve analysis and the use of image-based size
histogram mapping indicates that satisfactory results
can be obtained if the histograms do not divide the size
range into too many ranges. The greater the number
of histogram intervals, the greater deviations can be
observed. It should be noted, however, that in practice
only the coarse division into such compartments is
used. For such a case, the use of the mapping proposed
in Outal et al. (2008) seems sufficient.

The knowledge of the sizes of raw material grains
is utilised in many different ways during excavation
and processing. The applicability of the presented
results differs depending on which part of processing
is considered. The proposed method seems to be
well suited to the determination of big rock grains
among finer bulk material. This is useful during a
few stages of raw material production. First of all,
the big grains often require crushing immediately
after excavation (e.g. by blasting). Normalising upper
grain size at the beginning of the process is important
for effective transportation and further enhancement.

Secondly, the rock material is often separated by
screening. As the parts of sieving screens become
worn out, oversized particles can remain in sieved
material. This can be detected by the presented
approach. Finally, the method can be used as a part of
quality monitoring for processes, where uniform or at
least upper limited granularity is essential. Aggregate
production is an example of this. For each presented
potential application, the achieved accuracy of the
method is sufficient. However, the method has to
be developed further to be applicable for fine grain
content determination or application for the precise
determination of particle size distribution.

The presented work shows that, in general, the
approach can lead to interesting results. The achieved
accuracy is good enough for practical applications in
selected areas. However, the problem of grain size
determination using texture features is far from being
solved and the method requires improvement.

CONCLUSIONS

The work describes research addressing the
problem of the automatic segmentation of grains which
applies the image analysis approach. The proposed
method derives descriptive information calculating
the texture features for images representing grains.
In contrast to the standard application of texture
operators, the feature values are computed for each
image pixel and not for the whole image. The
experiments evaluate the descriptive properties of
first-order features, second-order features, grey-tone
difference matrix, run-length matrix, and Laws’
energies and do not mention local binary patterns and
local phase quantisation methods which proved to be
too weak for this comparison. The segmentation is
achieved by the classification of each pixel to one
of two considered classes: grain border and interior.
Additionally, the experiments tried to answer the
question which from machine learning methods would
be the most beneficial for this purposes. Therefore,
the k-nearest neighbour, support vector machine, and
artificial neural networks were evaluated as classifiers.

The segmentation evaluation was realised in three
steps. Firstly, feature vectors derived using a single
texture operator were evaluated with the application of
all the mentioned classifiers. This enabled information
about which classifier is the most beneficial and
what its optimal hyperparameter settings are to be
obtained. All the experiments performed revealed
that ANN classifier is most promising and reaches
more than 75% correct classification ratio for all
the mentioned methods, while achieving around 77%
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for COM and LAWS methods. Secondly, whether
combining information derived from all texture
operators can improve the classification accuracy
and as a consequence make the segmentation more
precise was tested. Two solutions for data flow
were considered: early- and late-fusion. Here both
approaches improved the classification accuracy, but
the best results were obtained for the early-fusion
of 79%. Additionally, the authors verified in the
experiments of the first and second step, that manual
feature selection or data dimension reduction with
PCA is inapplicable. Finally, visual inspection proved
that the bodies of grains are nicely segmented, while
the borders are rather thick and ragged. Yet, the
borders follow manual annotations and thus represent
satisfactory segmentation.

One of the most significant problems encountered
during the research was the lack of a sufficiently large,
high-quality database of rock grain images. Therefore,
planned future work will include the preparation of
such a database at the very first stage. Though it
is not strictly a scientific activity, a well-established
ground truth is crucial for future scientific work. The
presented research shows, that it is possible to obtain
good grain segmentation, yet there is still some room
for improvement. This can be achieved in two ways.
On one hand, the authors plan in further research
(when a larger data set is available) to address semantic
segmentation as a method of segmentation. On the
other hand, methods improving current results in
the post-processing stage should be addressed, which
concentrate on border thinning and the automatic
closing of the delineated contours. There is also
research planned in which textural and colour features
will be jointly tested for rocks border delineation.
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ABBREVIATIONS

The following abbreviations are used in this
manuscript:

ANN artificial neural network
AUC area under ROC
COM second-order features
FOF first order features
GTDM grey tone difference matrix
HSV hue, saturation, value (colour space)
kNN k-nearest neighbour
LAWS Laws’ energies
PCA principal component analysis
RLM run length matrix
ROC receiver operating curve
ROM run of mine
SVM support vector machine
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