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This document corresponds to the supplementary
materials of the article. It is organised as follows: i) a
video abstract, ii) the proofs of some propositions,
iii) the verification of the metric properties, iv) the
invariances of the robust to noise metrics and v) details
about the illustration section.

VIDEO ABSTRACT

A video is available as graphical abstract.

A template is selected in a 
high-contrast image.

Similar objects to the template are detected in a
low-contrast image with an Asplund metric.

Fig. 1. Cover graphic of the video abstract.

PROOF OF PROPOSITIONS 2, 3
AND 4

Noyel and Jourlin (2017) have introduced the
following proofs which correspond to the map of LIP1-
multiplicative Asplund distances.

Proof of proposition 2.

Using Eq. 14, ∀x ∈ D, ∀h ∈ Db, ∀α ∈R+, there is:

α(x)�××× b(h)≥ f (x+h)

⇔ M(1− (1−b(h)/M)α(x))≥ f (x+h), (Eq. 3)

⇔ α(x)≥ ln(1− f (x+h)/M)

ln(1−b(h)/M)
,

where (1− b(h)
M ) ∈ ]0,1[ and ln

(
1− b(h)

M

)
< 0.

With f̃ = ln(1− f/M), Eq. 14 becomes:

λb f (x) = inf{α(x),α(x)≥ ( f̃ (x+h)/b̃(h)),h ∈ Db}
=

∨
{ f̃ (x+h)/b̃(h),h ∈ Db}.

The last equality is due to the complete lattice
structure. In a similar way, Eq. 15 becomes:

µb f (x) = sup{α(x),α(x)≤ ( f̃ (x+h)/b̃(h)),h ∈ Db}
=

∧
{ f̃ (x+h)/b̃(h),h ∈ Db}.

Proof of proposition 3.

Let b= b0 ∈ (T∗)Db a flat structuring element (∀x∈
Db, b(x) = b0). Eq. 16 of λb and Eq. 17 of µb can be
simplified as follows:

λb0 f (x) = (1/b̃0)
∧
{ f̃ (x+h),h ∈ Db}, because b̃0 < 0

= (1/b̃0) ln [1− (
∨
{ f (x−h),−h ∈ Db})/M]

= (1/b̃0) ln [1− (δDb
f (x))/M].

The infimum
∧

is changed into a supremum∨
because the function f̃ : x → ln(1 − x/M) is a

continuous decreasing mapping. Similarly,

µb0 f (x) = (1/b̃0)
∨
{ f̃ (x+h),h ∈ Db}, because b̃0 < 0

= (1/b̃0) ln [1− (
∧
{ f (x+h),h ∈ Db})/M]

= (1/b̃0) ln [1− (εDb f (x))/M].

Eq. 21 of the map of Asplund distances of f ,
Asp�×××b0

f , is obtained from Eq. 18 and the previous
expressions of λb0 f and µb0 f .

1Abbreviation: LIP (Logarithmic Image Processing).
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Proof of proposition 4.
There is ∀ f ,g ∈ I, ∀x ∈ D,

λb( f ∨g)(x) =
∨
{( f̃ ∨g(x+h))/b̃(h),h ∈ Db}

=
∨
{( f̃ (x+h)∧ g̃(x+h))/b̃(h),h ∈ Db},

=
∨
{( f̃ (x+h)/b̃(h))∨ (g̃(x+h)/b̃(h)),h ∈ Db},

= [
∨

h∈Db

{ f̃ (x+h)/b̃(h)}]∨ [
∨

h∈Db

{g̃(x+h)/b̃(h)}]

= λb( f )(x)∨λb(g)(x).

The second equality is obtained because f̃ is
decreasing. The third equality is caused by b̃(h) < 0.
According to definition 4.2, λb is a dilation. In
addition,

λb(O)(x) = λb( f0)(x)

=
∧

h∈Db

{α(x),α(x)≥ (0̃(x+h)/b̃(h))}

= 0(x) = O(x).

Similarly, ∀ f ,g ∈ I, ∀x ∈ D

µb( f ∧g)(x) =
∧
{( f̃ ∧g(x+h)/b̃(h)),h ∈ Db}

=
∧
{( f̃ (x+h)∨ g̃(x+h)/b̃(h)),h ∈ Db},

= [
∧

h∈Db

{ f̃ (x+h)/b̃(h)}]∧ [
∧

h∈Db

{g̃(x+h)/b̃(h)}],

= µb( f )(x)∧µb(g)(x).

According to definition 4.1, µb is an erosion. In
addition,

µb(I)(x) = µb( fM)(x)

=
∨

h∈Db

{β (x),β (x)≤ (M̃(x+h)/b̃(h))}

=+∞(x) = I(x).

VERIFICATION OF THE METRIC
PROPERTIES

Noyel and Jourlin (2017) have shown that the LIP-
multiplicative Asplund distance d4×××asp is a metric in
the space of equivalence classes I4××× . In this section,
we will demonstrate that the LIP-additive Asplund
distance d4+++asp is a metric in the space of equivalence
classes F4+++M , which represents the set of functions h ∈
FM such that h = f 4+++ k for a constant k lying in
]−∞,M[.

Proof that the LIP-additive Asplund distance d4+++asp is a
metric in the space of equivalence classes F4+++M .

Let T = ]−∞,M[ be the space of real values less
than M. In order to be a metric on (F4+++M ×F4+++M)→ R+,
d4+++asp must satisfy the four following properties:

• (Positivity): ∀ f4+++ 6= g4+++ ∈ F4+++M , ∀x ∈ D, as c1 and
c2, can be expressed as c1 =

∨
x∈D { f (x)4−−− g(x)} and

c2 =
∧

x∈D { f (x)4−−− g(x)} (proof of Prop. 1), there is
always c1 > c2.

⇒ d4+++asp( f ,g) = c14−−− c2 = (c1− c2)/(1− c2/M)> 0.

We have also demonstrated that the operator 4−−− is
strictly increasing.

• (Axiom of separation): Given the two
equivalence classes f4+++ ,g4+++ ∈ F4+++M , we have the
following implication:
d4+++asp( f4+++ ,g4+++ )= 0⇒ c1 = c2 = c. In addition, according
to definition 2, we have c4+++ g≥ f ≥ c4+++ g. This implies
that c4+++ g = f and

f4+++ = g4+++ . (B.1)

Reciprocally, there is ∀ f4+++ ,g4+++ ∈ F4+++M ,
( f4+++ = g4+++ ) ⇒ (∃k ∈ T, k 4+++ g = f ). In
addition, according to definition 2, there is
c1 = inf{c, f ≤ c4+++ g} and c2 = sup{c,c4+++ g≤ f}.
This implies that c1 = c2 = k and

d4+++asp( f ,g) = 0. (B.2)

Eq. B.1 and B.2 show that:

∀ f4+++ ,g4+++ ∈ F4+++M , d4+++asp( f4+++ ,g4+++ ) = 0⇔ f4+++ = g4+++ .

• (Triangle inequality): Let us define:
d4+++asp( f4+++ ,g4+++ ) = ca

1 4−−− ca
2, d4+++asp(g

4+++ ,h4+++ ) = cb
1 4−−− cb

2
and d4+++asp( f4+++ ,h4+++ ) = cc

1 4−−− cc
2. Definition 2 gives the

following system of equations:

ca
1 = inf{ca, f4+++ ≤ ca4+++ g4+++ }

cb
1 = inf{cb,g4+++ ≤ cb4+++ h4+++ }

cc
1 = inf{cc, f4+++ ≤ cc4+++ h4+++ }

 .

This system implies that:

f4+++ ≤ ca
14+++ g4+++ ≤ ca

14+++ (cb
14+++ h4+++ ) = (ca

14+++ cb
1)4+++ h4+++

⇒ cc
1 ≤ ca

14+++ cb
1 (B.3)

where the last inequality is obtained because cc
1 is the

lowest value such that f4+++ ≤ cc4+++ h4+++ . Similarly, we
have:

ca
24+++ cb

2 ≤ cc
2. (B.4)
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From Eq. B.3 and B.4, and knowing that
a4+++ b = a+b−ab/M ≤ a+b, we deduce that:

d4+++asp( f ,h) = cc
14−−− cc

2

≤ (ca
14+++ cb

1)4−−− (ca
24+++ cb

2) = (ca
14−−− ca

2)4+++ (cb
14−−− cb

2)

≤ (ca
14−−− ca

2)4+++ (cb
14−−− cb

2)

≤ (ca
14−−− ca

2)+(cb
14−−− cb

2) = d4+++asp( f ,g)+d4+++asp(g,h).

Finally, we have: ∀ f4+++ ,g4+++ ,h4+++ ∈ F4+++M ,
d4+++asp( f4+++ ,h4+++ )≤ d4+++asp( f4+++ ,g4+++ )+d4+++asp(g

4+++ ,h4+++ ).

• (Axiom of symmetry): c1 and c2 can be
expressed as:
c1 =

∨
x∈D { f (x)4−−− g(x)} and c2 =

∧
x∈D { f (x)4−−− g(x)}.

The Asplund metric becomes

d4+++asp( f ,g) = c14−−− c2

=
∨
x∈D

{ f (x)4−−− g(x)}4−−−
∧
x∈D

{ f (x)4−−− g(x)}

=
∨
x∈D

{ f (x)4−−− g(x)}4−−−
∧
x∈D

{4−−− (g(x)4−−− f (x))}

=
∨
x∈D

{ f (x)4−−− g(x)}4+++
∨
x∈D

{g(x)4−−− f (x)}

=
∨
x∈D

{g(x)4−−− f (x)}4+++
∨
x∈D

{ f (x)4−−− g(x)}

= d4+++asp(g, f )

Therefore ∀ f4+++ ,g4+++ ∈ F4+++M , d4+++asp( f4+++ ,g4+++ ) =

d4+++asp(g
4+++ , f4+++ ).

INVARIANCES OF THE ROBUST
TO NOISE METRICS

In this section, firstly, we will prove the invariance
under LIP-multiplication by a scalar of the LIP-
multiplicative Asplund metric with tolerance d4×××asp,p.
Secondly, we will prove the invariance under LIP-
addition of a constant of the LIP-additive Asplund
metric with tolerance d4+++asp,p.

Proof of the invariance under LIP-multiplication by a
scalar of the LIP-multiplicative Asplund metric with
tolerance d4+++asp,p, property 6.

Given a real β > 0, according to definition 6, the
metric: d4×××asp,p( f ,β 4××× g) is equal to ln(λ ′

β
/µ ′

β
). The

factors λ ′
β

and µ ′
β

depend of the contrast function

γ4×××( f ,β4××× g). Using Eq. 12 and 3, the contrast function

γ4×××( f ,β4××× g) can be expressed as:

γ
4×××
( f ,β4××× g) =

ln(1− f/M)

ln(1−β4××× g/M)
=

ln(1− f/M)

ln(1−g/M)β

=
ln(1− f/M)

β ln(1−g/M)
= (1/β )γ4

×××

( f ,g).

The factor λ ′
β

is therefore equal to:

λ
′
β
= inf{α,∀x,γ4×××( f|D\D′ ,β4××× g|D\D′ )

(x)≤ α}

= inf{α,∀x,(1/β )γ4
×××

( f|D\D′ ,g|D\D′ )
(x)≤ α}

= (1/β ) inf{α,∀x,γ4×××( f|D\D′ ,g|D\D′ )
(x)≤ α}

= (1/β )λ ′

= λ
′/β .

Similarly, we have µ ′
β
= µ ′/β .

The metric with tolerance d4×××asp,p( f ,β4××× g) becomes:
d4×××asp,p( f ,β 4××× g) = ln(λ ′

β
/µ ′

β
) = ln [(λ ′/β )/(µ ′/β )]

= ln(λ ′/µ ′) = d4×××asp,p( f ,g).
Similarly, we have d4×××asp,p(β4××× f ,g) = d4×××asp,p( f ,g).

Proof of the invariance under LIP-addition of a
constant of the LIP-additive Asplund metric with
tolerance d4+++asp,p, property 7.

Given k ∈ ]−∞,M[ and according to definition 10,
the metric: d4+++asp,p( f ,k4+++ g) is equal to c′1,k4−−− c′2,k. The
constants c′1,k and c′2,k depend of the contrast function
γ4+++( f ,k4+++ g). Using Eq. 30 and 2, the contrast function

γ4+++( f ,k4+++ g) can be expressed as:

γ
4+++
( f ,k4+++ g) = f 4−−− (k4+++ g) = ( f 4−−− g)4−−− k = γ

4+++
( f ,g)4−−− k.

The factor c′1,k is therefore equal to:

c′1,k = inf{c,∀x,γ4+++( f|D\D′ ,(g|D\D′ )4+++ k)(x)≤ c}

= inf{c,∀x,(γ4+++( f|D\D′ ,g|D\D′ )
(x)4−−− k)≤ c}

= inf{c,∀x,γ4+++( f|D\D′ ,g|D\D′ )4+++ k(x)≤ c}4−−− k

= c′14−−− k.

Similarly, we have c′2,k = c′24−−− k.
The metric with tolerance d4+++asp,p( f ,k4+++ g) becomes:
d4+++asp,p( f ,k4+++ g) = c′1,k4−−− c′2,k = (c′14−−− k)4−−− (c′24−−− k) =
c′14−−− c′2 = d4+++asp,p( f ,g).
Similarly, we have d4+++asp,p(k4+++ f ,g) = d4+++asp,p( f ,g).
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DETAILS OF THE ILLUSTRATION
SECTION

Remark 1 (Segmentation details of Fig. 10). The h-
minima have a height greater than the 1.6th percentile
of the map. Only the minima with an area less than the
probe area and with a circular shape are kept.
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