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ABSTRACT

In this paper, we propose a new image decolorization method based on image clustering and weight
optimization. First, we smooth the color image and cluster it into several classes and get the class centers.
Each center can represent a distinctive color in the image. Then the class centers are sorted according to
their brightness measured by Euclidean norm. By assuming that the decolorized grayscale image is a linear
combination of the three channels of the color image, we propose an optimization problem by forcing the
sorted class centers to correspond to specified grayscale values satisfying uniform distribution. Numerically,
the problem is solved by quadratic programming. Experiments on two popular data sets demonstrate that the
proposed method is competitive with the state-of-the-art decolorization method.

Keywords: Clustering, contrast, decolorization, optimization, smoothing.

INTRODUCTION

Image decolorization, also known as color-to-
gray, aims to convert a color image into a grayscale
one. It is widely used in single-channel image and
video processing, digital printing, and photography.
Decolorization maps 3D color space into 1D space,
such that the information loss is inevitable. Hence the
main focus of decoloration is preserving the salient
features such as edges and contrast.

The existing decolorization methods can be
roughly categorized into global and local methods.
Local methods treat the pixels with the same color
differently in order to enhance local chrominance
edges. Bala and Eschbach (2004) enhanced the
color edges by adding high-frequency components of
chromaticity to the lightness channel. Neumann et al.
(2007) introduced an efficient gradient-based color
to gray transformation algorithm based on Coloroid
color space. Smith et al. (2008) proposed a two-
step decolorization method that combines a global
mapping based on perceived lightness with local
chromatic contrast enhancement. Gooch et al. (2005)
proposed to minimize the differences between the
chrominance and luminance values of pixel pairs.
Jin et al. (2014) proposed a variational approach by
maximizing variance. These local methods are good at
enhancing local contrast; however, the disadvantage is
that they may occasionally distort the appearance of
constant color regions Kim et al. (2009).

Global methods apply a constant mapping function
on all the image pixels such that pixels of the same
color are mapped into the same grayscale value.

Rasche et al. (2005) used a linear color mapping
function to obtain the optimal conversion by imposing
constraints on different color pixel pairs. Grundland
and Dodgson (2007) proposed a parametric piecewise
linear mapping algorithm for image decolorization by
adjusting the grayscale value with the chrominance.
Kim et al. (2009) proposed a non-linear global
mapping function for decolorization and estimated
the parameters by minimizing the color differences.
Lu et al. (2012a) employed a bimodal energy
function to raise a more flexible contrast preserving
constraint. Then Lu et al. (2012b) proposed a real-time
decolorization algorithm by imposing constraints on
weights based on the model in Lu et al. (2012a). The
limitation of global methods is that they cannot fully
capture the details in a globally unified manner, which
may lead to local contrast loss.

Many methods use both global and local
information. Lu et al. (2014) improved their model
in Lu et al. (2012a) by introducing local and non-
local constraints. Du et al. (2015) proposed a saliency-
guided decolorization method using region-based
optimization, in which the saliency combines both
the local and global features of the images. Wang
et al. (2018) proposed a global mapping to achieve
a fast computation on color order, and then a local
decolorization algorithm is designed on the basis
of the global linear mapping so that both color
and spatial information are preserved. Zhao et al.
(2018) proposed a new multimodal contrast-preserving
measure with a multimodal Gaussian distribution to
relax the constraint of color contrast, which preserves
both the local color contrast and the non-local color
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contrast. Ji et al. (2016) introduced a new band-
pass filter for color-to-gray conversion. Liu et al.
(2015; 2019; 2017a;b) proposed several effective
methods for image decolorization. Liu et al. (2015)
proposed a gradient correlation similarity measure-
based decolorization model (GcsDecolor). Liu et al.
(2017a) proposed a semiparametric decolorization
method (SPDecolor) by decomposing the first-order
and the two-order color space. Liu et al. (2019)
presented a weighted projection maximum function
to model the decolorization procedure. Liu et al.
(2017b) introduced the Log-Euclidean metric for
decolorization.

Recently, deep learning was introduced to
image decolorization. Hou et al. (2017) proposed a
convolutional neural network for image decolorization
with a perceptual loss. Zhang and Liu (2018)
proposed a contrast preserving image decolorization
method based on convolutional neural network which
combining global features and local semantic features.
Liu and Zhang (2019) designed a new convolutional
neural network framework combining both local
features and exposure features of the color image.
Liu and Leung (2018) proposed a variable augmented
neural network for decolorization.

Clustering of the color image is included in
some methods Lau et al. (2012); Du et al. (2015).
Lau et al. (2012) proposed to cluster the image
and then construct a graph based on each segment
for decolorization. The method is semi-local because
it operates on clusters, modifying local contrasts
between clusters. Du et al. (2015) proposed to use
the clustered superpixels to define region contrast
saliency in their decolorization energy. It contributes
to the region contrast preserving in the decolorization
process. Experimentally, these methods work well on
some test images. However, the overall performance
on large datasets is still limited.

In this paper, we propose a novel smoothing and
clustering guided decolorization method to reduce

contrast loss in the global method. As is known, we
cannot assign different gray values for different colors
if the number of different colors is larger than the
number of all the gray values. However, there are
usually not many distinctive colors in a specific image
since many pixels have similar colors. This observation
motivates us to assign distinctive gray values for only
distinctive colors. Our method has three steps. Firstly,
the color image is smoothed by L0 smoothing method
such that the colors are largely reduced. Then the
smoothed image is segmented into several regions by
using a revised fast fuzzy C-means method. The class
centers represent distinctive colors, which are sorted
according to their Euclidean norm. Then we form
an optimization problem by requiring that the class
centers are mapped into grayscale values satisfying
uniform distribution. The parametric linear mapping is
adopted for color-to-gray conversion. Experiments and
comparisons are conducted on two popular datasets to
verify the effectiveness of our method.

OUR METHOD

We describe in this section our decolorization
method. In Fig. 1, we show the flowchart of our
method by displaying all the main intermediate steps.
The proposed method includes three steps: smoothing,
clustering, and decolorization. In the following, we
show the details of each step.

SMOOTHING

Smoothing is a preprocess for many image
problems. In our method, the aim of using smoothing
is to reduce the colors of the given color image. As
we know, RGB color space is 3D and contains 2563

colors generally. Natural images usually contain tens
of thousands of colors. Through the smoothing step,
the number of colors can be largely reduced, which is
useful for accelerating the next clustering step.

Fig. 1: The flowchart of our method. Fig. 1a is from Cadı́k’s dataset Cadı́k (2008).
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There exist many smoothing methods in the
literature; some representative methods are Xu et al.
(2011); Min et al. (2014); Ham et al. (2017). Xu et al.
(2011) proposed an L0 gradient minimization method
for image smoothing, which can preserve sharp edges
globally ( L0 smoothing for short)). Min et al. (2014)
proposed a fast global image smoothing method based
on weighted least squares (WLS for short). Ham
et al. (2017) proposed a novel SD (for static/dynamic)
filter for image smoothing, which jointly leverages
structural information from guidance and input images
(SDF for short). We choose L0 smoothing method
Xu et al. (2011) as a baseline in this step. Noting
that choosing other smoothing techniques also works.
The influence of different smoothing methods in
our method will be quantitatively evaluated in the
experimental section.

The L0 smoothing method can be described as
follows. Assume I0 is the given image. L0 smoothing
aims to solve the following problem:

min
I

λ‖∇I(x)‖0 +‖I(x)− I0(x)‖2
2, (1)

where x ∈ Ω and Ω is the 2D image region. The first
term is the L0 regularization term, which requires that
the number of pixels with non-zero gradient is as small
as possible. The second term is the fidelity term, which
requires that the smoothing result is close to the given
image. L0 smoothing leads to cartoon-like images with
sharp edges. In the decolorization process, these sharp
edges are the key features that should be preserved.

(a) (b)

Fig. 2: Smoothing of a natural color image, λ = 0.01.
(a) Original color image with size 260× 390 (101400
pixels, 40582 different colors); (b) the result of L0
smoothing (15577 different colors).

In Fig. 2, we show the L0 smoothing result of a
natural image in Cadı́k’s dataset Cadı́k (2008). It can
be seen that the main content and sharp edges are
preserved in Fig. 2b, while the colors are reduced from
40582 to 15577. That is, 62% of the colors are reduced.
For cartoon-like images, the smoothing effect is not so
obvious. See Fig. 1, for example. After smoothing, the
colors reduce from 2783 to 2114. However, cartoon
images are much easier to segment than natural images
since the number of colors in cartoon images is usually
small.

CLUSTERING

Image clustering aims to partition an image into
several disjoint regions such that pixels in the same
region share some uniform characteristics such as
intensity, color, and texture. Fuzzy c-means (FCM)
clustering method Bezdek et al. (1984) is a widely
used method for image clustering. The standard FCM
model for partitioning image I into N class is given by

min
N

∑
i=1

∫
Ω

(I(x)− ci)
2u2

i (x)dx (2)

where Ω is the image region, {ci}N
i=1 are the

class centers and {ui}N
i=1 are membership functions

satisfying some constraints. The computational
complexity of the FCM algorithm increases as the
image size increases.

Szilagyi et al. (2003) proposed a faster enhanced
FCM algorithm for magnetic resonance (MR) image
segmentation. The basic idea is constructing a new
image based on the given MR image and then
performing the FCM in the range domain of the new
image. Since they consider gray images, the range
domain is 1D. In this paper, we generalize their idea
to color images. The range domain of a color image is
3D. Assume that the range domain contains L different
colors. The variable in the range domain is denoted as
ξr ∈ [0,255]3,r = 1, ...,L where r is the index. Then we
minimize the following energy function:

min
N

∑
i=1

3

∑
j=1

L

∑
r=1

vr(ξr j− ci j)
2u2

ir (3)

where vr is the number of pixels with the same
color ξr, which can be seen as the weight of ξr,
j denotes color channel, ci denotes the i-th class
center vector. The numerical algorithm is similar to
the FCM algorithm, so we omit the details. The revised
method is much faster than the standard FCM for color
image clustering, so we call this method as fast FCM
(FFCM).

(a) (b) (c)

Fig. 3: Clustering of color images in Fig. 2, class
number is N = 6. (a) Result of the standard FCM on the
original image in Fig. 2a, computational time=3.01s;
(b) result of FFCM on the original image in Fig. 2a,
computational time=0.86s; (c) result of FFCM on the
smoothed image in Fig. 2b, computational time=0.26s.
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In Fig. 3, we compare the clustering results of
FCM and FFCM. Note that for FCM, we show
∑

N
i ciui(x) as the final clustering results. For FFCM,

we let the membership value of pixel x in class i as
uir where I(x) = ξr. Then the membership functions
{ũi(x)}N

i=1 can be defined for each pixel x such that
the final clustering is given by ∑

N
i ciũi(x). Visually, the

result of FCM and FFCM are similar; see Fig. 3a and
Fig. 3b. The result of FFCM on the smoothed image
in Fig. 3c seems good. Meanwhile, FFCM saves 72%
computational time than FCM. When applying FFCM
on the smoothed image, we can save another 70%
computational time. On the whole, our FFCM together
with L0 smoothing is about 11 to 12 times faster than
FCM without smoothing.

In order to evaluate the performance of FCM
and FFCM on image segmentation, we use the
standard test color images set from the Berkeley
Segmentation Dataset BSDS500 https://www2.
eecs.berkeley.edu/Research/Projects/
CS/vision/bsds/., which contains 100 color
images in the test folder. The segmentation number
is fixed as 10. The PSNR of FCM and FFCM
segmentation results are 29.25dB and 29.29dB,
respectively. The total computational time of FCM
and FFCM are 1575s and 195s, respectively.

Actually, as a preprocessing step for our proposed
decolorization method, FCM and FFCM yield similar
final decolorization results; see Table 1 in the
experimental section. However, with FFCM, the
algorithm is much faster than using FCM.

CLUSTERING-GUIDED DECOLORIZATION

Our motivation is that we expect the distinctive
colors can be decolorized into distinctive gray values.
For example, in Fig. 1, the image is segmented into
four classes. The color values of the four cluster
centers are displayed in Fig. 1d. These four colors
can be seen as distinctive colors in the given color
image. Our aim is to assign four distinctive gray values
to these four colors. Intuitively, the four distinctive
gray values should be equally distributed in [0,255].
Actually, it has been proved that the uniformly
distributed gray image has the best contrast Bertalmio
et al. (2007). Hence we choose the four gray values as
255, 170, 85, 0, see Fig. 1f. The remaining problem
is how to correspond the four colors to the four gray
values. As an output of the FFCM clustering method,
the class centers have no order in Fig. 1d. So we
sort the colors according to the brightness of the
colors. We choose to measure the brightness of the
colors by calculating the Euclidean norm of the color
vector. Then we get the sorted colors in Fig. 1e, where

brightness decreases from top to bottom. Then we have
constructed the correspondence of the four colors in
Fig. 1d with the four gray values in Fig. 1f.

Let us go back to our decolorization problem.
Following the existing global decolorization methods,
we assume that the decolorized gray image g can
be represented by a linear combination of the three
channels of the color image, i.e.,

g(x) = w1R(x)+w2G(x)+w3B(x) (4)

where R,G,B are the red, green and blue channels of
the given color image I, and wi, i = 1,2,3 are three
scalar weights. The decolorization problem is to find
the optimal weights. Assume the class number is N >
1. After clustering, we get N sorted colors which can
be formulated as an N × 3 matrix A. Each row of A
denotes a color vector. As stated above, we expect that
the sorted colors correspond to uniformly distributed
gray values in [0,255] one by one. The gray value
vector can be written as

b = [255,(N−2)a,(N−3)a, · · · ,2a,a,0]T , (5)

where a is the maximum integer less than 255/N. For
example, in Fig. 1e, we have N = 4, a = 85 and then
b = [255,170,85,0]T .

To force the correspondence of the colors in
matrix A with the gray values in vector b, based
on equation (4), we propose to optimize the weight
w= [w1,w2,w3]

T by solving the following least square
problem with constraints:

minw ‖Aw−b‖2
2

s.t. 0≤ wi ≤ 1, i = 1,2,3,
w1 +w2 +w3 = 1.

(6)

This minimization problem can be easily solved by
quadratic programming with the MATLAB routine
”quadprog”. Then the final decolorization result g
is given by formula (4) with the optimal weights
determined by (6).

As an example, in Fig. 1, we set the class number
as N = 4, then we have

A =

144.42 73.99 237.98
224.94 31.44 4.94
118.87 118.89 120.37
104.37 125.94 2.65

 , b =

255
170
85
0

 .
By calling “quadprog” in MATLAB with inputs A,b
and constraints, we get the solution

w =
[
0.5111,0.0000,0.4889

]T
.

Finally, the output gray image is given by the linear
combination of the three channels of the color image
with weights 0.5111,0 and 0.4889, which is shown in
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Fig. 1g. It is obvious that distinctive colors in Fig. 1a
is also distinctive in the gray image Fig. 1g.

Remark that in our method the colors of the
class centers are ordered according to their brightness
measured by Euclidean distance. If their brightness are
the same, no ordering is possible. In this case, we omit
the color ordering step. The minimization problem in
(6) can also be solved by quadratic programming. For
example, we construct an RGB image with only red
(255,0,0), green (0,255,0), and blue (0,0,255) colors in
Fig. 4a. Then we have

A =

255 0 0
0 255 0
0 0 255

 , b =

 255
127.5

0

 .
The solution of (6) is given by w= [0.75,0.25,0]T . The
decolorized image Fig. 4b shows that our method can
distinguish the three colors in the gray image.

(a) color image (b) our result (N=3)

Fig. 4: Test on a synthetic image with uniform
brightness. (a) The color image with pure R, G, and
B colors; our final decolorization result (N = 3).

EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments
to evaluate our method and compare it with
some representative local and global decolorization
approaches using the benchmarking Cadı́k’s dataset
Cadı́k (2008) and COLOR250 dataset Lu et al. (2014).
Cadı́k’s dataset contains 24 color images, and most of
them are synthetic images. COLOR250 contains 250
color images, including natural images, digital charts,
logos, and illustrations. We compare our method with
eight existing methods CIE-Y, Gooch05 Gooch et al.
(2005), Smith08 Smith et al. (2008), Lu12 Lu et al.
(2012a), Gcs15 Liu et al. (2015), Du15 Du et al.
(2015), SP17 Liu et al. (2017a), and Wpm17 Liu
et al. (2019). Note that there are two algorithms
GcsDecolor1 and GcsDecolor2 in Liu et al. (2015),
we choose the better one GcsDecolor2. Similarly, there
are two algorithms WpmDecolor1 and WpmDecolor2
in Liu et al. (2019), we choose the better one
WpmDecolor2.

For methods CIE-Y, Gooch05 and Smith08, their
results on Cadı́k’s dataset are provided in Cadı́k
(2008), while their results on COLOR250 are provided
in Lu et al. (2014). The results of Lu12, Gcs17,
Du15, SP17 and Wpm17 are either provided by the
authors or generated by their source codes with default
parameters. Our method is performed under Windows
10 and MATLAB R2018a with Intel Core i7-8500
CPU@1.80GHz @1.99GHZ and 32GB memory.

SENSITIVITY STUDY
In this subsection, we test the sensitivity of the

proposed method in terms of the parameters, noise,
structure and video sequence images.

In our method, there are three parameters. The
default parameters are given as follows. In the L0
smoothing step, λ is the regularization parameter that
controls the smoothness of the resulted image. The
larger λ is, the smoother the result is. The cluster
number is the only parameter in the clustering step. We
let N varies from 2 to 10 empirically. Then for each
test image, we get nine decolorization result images.
To choose the best decolorization result in the nine
images, we use the E-score measure. Note that there is
a threshold integer τ in the E-score calculation, which
denotes the color or grayscale difference of pixel pairs.
We set τ = 9 and select the decolorization image with
the highest E-score as our final result.

Let us study the sensitivity of our method to
the parameters. Firstly, we test the influence of class
number N. In Fig. 5, we show the clustering and
decolorization results of image Fig. 1a in Cadı́k’s
dataset with different N varies from 2 to 10. The results
of N = 2 and N = 3 are similar, where the black
regions cannot be distinguished. The results of the
others seem similar. By careful observation, we find
that the results are quite good for N = 4,8,10, which
have good contrast and all the distinctive colors have
distinct gray values. The E-scores are reported below
each gray image. When N = 4, the decolorized image
has the highest E-score and good visual quality, which
is chosen as the final result of the proposed method.

Next, we test the sensitivity of parameters λ , τ and
noise in our method. In Fig. 6 and Fig. 7, we test our
method on two images in Cadı́k’s dataset with different
parameter pairs (λ ,µ). We set λ = 0.1,0.01,0.001
and τ = 9,10,20, such that there are nine pairs of
parameters. In Figs. 6-7, the decolorization results in
the first rows are the results of the clean color images,
while the second rows are the results of the noisy color
images which are contaminated by Gaussian noise
with zero mean and standard deviation 20. All the
decolorization images in Fig. 6 seem quite similar in
terms of contrast. In Fig. 7, for the clean color image,
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(a) N = 2 (b) N=3 (c) N=4 (d) N=5 (e) N=6 (f) N=7 (g) N=8 (h) N=9 (i) N=10

(j) 0.8797 (k) 0.8797 (l) 0.9028 (m) 0.8779 (n) 0.8941 (o) 0.8896 (p) 0.8885 (q) 0.8888 (r) 0.8887

Fig. 5: Decolorization results of the image in Fig. 1a with different class numbers N = 2,4,6,8,10. Each column
shows the clustering result and the corresponding decolorized gray image with E-score.

(a) color (b) (0.1,9) (c) (0.1,20) (d) (0.1,30) (e) (0.01,9) (f) (0.01,20) (g) (0.01,30) (h) (0.001,9) (i) (0.001,20) (j) (0.001,30)

(k) noisy (l) (0.1,9) (m) (0.1,20) (n) (0.1,30) (o) (0.01,9) (p) (0.01,20) (q) (0.01,30) (r) (0.0001,9) (s) (0.001,20) (t) (0.001,30)

Fig. 6: Parameter sensitivity of the proposed method. The parameters (λ ,τ) are shown below each subfigure. (a)
Clean test image ”2.png” in Cadik’s dataset; (b)-(j) final results for (a) with different parameters; (k) noisy test
image which is contaminated by Gaussian noise with zero mean and standard deviation 20; (l)-(t) final results for
(k) with different parameters.

the results are different in contrast and dynamic range.
Figs. 7cdfgij are similar and have a high dynamic
range; however, the dark regions are not distinctive.
While Figs. 7beh have low dynamic range but good
region contrast. We also find that for the noisy color
image in Fig. 7, our decolorization results are quite
robust to both parameters and noise.

In the structure of the proposed method, there are
three steps: smoothing, clustering and decolorization.
In the first two steps, there are many choices. We
test some different combinations on Cadı́k’s dataset.
For smoothing, there are four choices: no smoothing
(NONE), L0 smoothing Xu et al. (2011), WLS
Min et al. (2014), SDF Ham et al. (2017). For
clustering, there are two choices: FCM and FFCM.
The computational time and average E-score are
reported in Table 1. From Table 1, we find that
FCM without smoothing is the slowest; meanwhile,
its average E-score is the lowest. Both L0+FFCM
and WLS+FFCM are about four times faster than
NONE+FCM. SDF+FFCM is about 2.7 times faster

than NONE+FCM. The average E-scores of the
decolorization results are quite similar. Among all,
L0+FFCM has a little higher average E-score than
others. We remark that the computational time reported
in Table 1 is the total computational time of our
method which includes all the preprocessing steps
and the calculation of the E-score for each candidate
decolorized image.

smoothing clustering E-score Time
NONE FCM 0.9101 41.3s

L0 FFCM 0.9122 10.1s
WLS FFCM 0.9106 9.4s
SDF FFCM 0.9104 15.3s

Table 1: The performance of the proposed
decolorization method with different choices of
smoothing and clustering methods on Cadı́k’s dataset.
The average E-score and average computational time
are reported.

Our method is designed for a single image decolor.
It has limitations in processing color video sequences
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(a) color (b) (0.1,9) (c) (0.1,20) (d) (0.1,30) (e) (0.01,9) (f) (0.01,20) (g) (0.01,30) (h) (0.001,9) (i) (0.001,20) (j) (0.001,30)

(k) noisy (l) (0.1,9) (m) (0.1,20) (n) (0.1,30) (o) (0.01,9) (p) (0.01,20) (q) (0.01,30) (r) (0.0001,9) (s) (0.001,20) (t) (0.001,30)

Fig. 7: Parameter sensitivity of the proposed method. The parameters (λ ,τ) are shown below each subfigure. (a)
Clean test image; (b)-(j) final results for (a) with different parameters; (k) noisy test image which is contaminated
by Gaussian noise with zero mean and standard deviation 20; (l)-(t) final results for (k) with different parameters.

Fig. 8: Video decolorization by the proposed method. First row: the color images in some frames. Second row:
our decolorization results. Third row: the difference of two adjacent frames in the second row (adding 150 for
better display).

since the relation between frames is not considered.
We test a video in Fig. 8 in which the decolorization
results of six frames are displayed. The difference
images of the decolorized results in the adjacent
frames are shown in the last row. From the results,
it is easy to see that the first three frames are
almost consistent and the last three frames are almost
consistent for each color. However, the difference
between the third and fourth frames is obvious.

QUANTITATIVE EVALUATION
In the following experiments on Cadı́k’s dataset

and Color250 dataset, we use the default parameters
λ = 0.01,N = 2, ...,10,τ = 9 if not specified. For
quantitative assessment, we compare the E-score
measure of the decolorization results of each method.
We let the threshold τ in E-score varies from 1 to

40, as suggested by Lu et al. (2014). The E-score
curves of the two test datasets are shown in Fig. 9a
and Fig. 9b, respectively. Higher E-score means better
image quality. For Cadı́k’s dataset, when τ ∈ [0,20),
our method gives the highest E-score. It indicates
that our method can preserve the low contrast (the
color difference is not very prominent) in the color
image better than others. Actually, there are many low
contrast regions in color images with abundant colors.
When τ ≥ 20, Gcs17 has the highest E-score and
our method is second best. For COLOR250 dataset,
when τ ∈ [0,32], our method gains the highest E-score
among all, see Fig. 9b. Gcs17 have a very close E-score
as ours, which are higher than others.

23



F. LI et al.: Guided image decolorization

10 20 30 40
0.6

0.7

0.8

0.9

1

1.1

E
-s

c
o
re

CIE_Y

Gooch05

Smith08

Lu12

Gcs15

Du15

SP17

Wpm17

Ours

(a) Cadı́k’s dataset
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(b) COLOR250 dataset

Fig. 9: Qualitative evaluation of different methods on two datasets with E-score. The x-axis denotes the threshold
τ involved in the calculation of E-score.

(a) Preference rate (Gray is our method) (b) Accuracy rate

Fig. 10: Results of the preference experiment and accuracy experiment in user study. The gray bar denotes our
method. Cadı́k’s dataset is tested.

USER STUDY

We use all the 24 images in Cadı́k’s dataset for
the user study. In this study, we invited 20 participants
(8 males and 12 females) at the age of 20–41 with
no eye-sight deficiency, who are students or teachers
in the university. In the experiments, six methods
are mainly compared: Cadik08, Lu12, Gcs15, Du15,
Wpm17 and ours. For Cadik08, we choose the best
results according to the ranking of scores (see Cadı́k
(2008)) involving seven decolorization methods. Note
that averagely the last five methods have the top five
E-score values as shown in Fig. 9.

The user experiment consists of two parts:
preference experiment and accuracy experiment. In
the preference experiment, two decolorized images
were displayed at two sides of the color image
every time. Observers were instructed to select the

decolorized image that they preferred. The two images
are the results of our method and one of the five
methods in Cadik08, Lu12, Gcs15, Du15, and Wpm17.
Each participant is asked to choose 24 × 5 = 120
image pairs. In the accuracy experiment, every time,
five decolorized images obtained by Cadik08, Lu12,
Gcs15, Du15, and Wpm17, and our method were
displayed along with the color original in the third.
Observers were asked to select the decolorized images
that best match the original color image in appearance.
Results of the user experiment are shown in Fig. 10.
We find that the proposed method outperforms the
other methods in terms of both preference and
accuracy. The preference ratio of our method versus
Cadik08, Lu12, Gcs15, Du15, and Wpm17 are 0.556,
0.688, 0.583, 0.609, and 0.608 respectively; see Fig.
10a. All the values are bigger than 0.5, which means
that our method is better than others. The preference
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of Lu12 is the lowest. The accuracy comparison is
displayed in Fig. 10b. It’s obvious that the ranking
from best to worst is: ours, Gcs15, Cadik08, Wpm17,
Du15, and Lu12.

QUALITATIVE EVALUATION
For qualitative evaluation, we list some results

of Cadı́k’s dataset in Fig. 11 and some results of
COLOR250 dataset in Fig. 12. As can be seen
from Figs. 11-12, our results in the last column
seem quite competitive with the best of the others.
Visually, our results have good contrast. Meanwhile,
the distinctiveness of colors is well preserved in the
decolorized images by our method.

Let’s show some details. In Figs. 11, the digital
“2” in the first row is much more evident in the
results of Wpm17 and ours than others. In the second
row, the results of Lu12, Gcs15, Wpm17 and our
method are similar and are much better than others.
In the third row, the color blocks are distinctive in
our results, which outperforms others. In the fourth
row, the decolorized white flowers are more visually
pleasing than dark flowers. Among the white flowers,
our method can preserve the details in the flower and
leaves better than others; and Wpm17 can preserve
better contrast of the flower and the background than

others. For the sunrise image in the last row, the results
of Gcs15, Wpm17 and our method have better contrast
than others.

In Figs. 12, in the first row, the jacket’s color
contrast is better preserved by CIE-Y, Gcs15, Du15
and ours. In the second and third rows, the overall
contrast of our results seems quite good. In the fourth
row, the colors of the three blocks are different; our
result is the best among all which preserves the color
contrast very well. In the last row, the results of Gcs15
and our methods are better than others since different
color blocks are distinctive.

CONCLUSIONS AND FUTURE
WORK

We presented a clustering-guided decolorization
method in this paper. The clustering step guided
us to find distinctive colors. Then we find the
optimal linear combination weights by constructing
the correspondence of distinctive colors with specified
distinctive gray values. We can get many decolorized
images by setting different class numbers. We choose
the final decolorized image with the best E-score.

Color CIE-Y Gooch05 Smith08 Lu12 Gcs15 Du15 SP17 Wpm17 Ours

Fig. 11: Decolorization results of different methods on some images in Cadı́k’s dataset. The left column is the
original color image. The second to the last columns are results of different methods. The last row show the names
of the methods for each column.
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Color CIE-Y Gooch05 Smith08 Lu12 Gcs15 Du15 SP17 Wpm17 Ours

Fig. 12: Decolorization results of different methods on some images in COLOR250 dataset. The left column is
the original color image. The second to the last columns are results of different methods. The last row show the
names of the methods for each column.

There are several limitations of our method. 1)
E-score is not consistent with the human visual
system in some tests. So the final result was chosen
by E-score maybe not optimal. 2) The proposed
method is time-consuming since it has several steps,
including smoothing, clustering, optimization, and
E-score calculation. It takes about 9 seconds for
decolorizing an image with size 390 times 390, in
which E-score calculation takes about 3 seconds.
3) The proposed method lacks consistency between
frames for video decolorization. Our future work will
focus on overcoming the above limitations which
include: designing a new measure which is more
consistent with the human visual system; reducing the
computational time by optimizing all the steps in our
method; and studying consistent video decolorization
model.
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