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ABSTRACT

Motivated by the stereological problem of volume estimation from parallel section profiles, the so-called
Newton-Cotes integral estimators based on random sampling nodes are analyzed. These estimators generalize
the classical Cavalieri estimator and its variant for non-equidistant sampling nodes, the generalized Cavalieri
estimator, and have typically a substantially smaller variance than the latter. The present paper focuses on
the following points in relation to Newton-Cotes estimators: the treatment of dropouts, the construction of
variance estimators, and, finally, their application in volume estimation of convex bodies.
Dropouts are eliminated points in the initial stationary point process of sampling nodes, modeled by
independent thinning. Among other things, exact representations of the variance are given in terms of the
thinning probability and increments of the initial points under two practically relevant sampling models.
The paper presents a general estimation procedure for the variance of Newton-Cotes estimators based on
the sampling nodes in a bounded interval. Finally, the findings are illustrated in an application of volume
estimation for three-dimensional convex bodies with sufficiently smooth boundaries.

Keywords: Cavalieri estimator, dropouts, Newton-Cotes quadrature, numerical integration with random
nodes, stationary point process, variance estimation, weakly (m, p)-piecewise smooth function.

INTRODUCTION

Before proceeding to a more detailed introduction
to the paper, we give an informal description of the
original motivation and the main findings of this work.
Using Cavalieri’s principle, it is well known that the
volume of a d-dimensional solid can be approximated
from (d − 1)-dimensional volume measurements on
parallel hyperplanes intersecting the object with
equidistant spacing. In particular, the volume Vol(Y )
of a compact object Y ⊂R3 can be approximated from
sections with equidistant and parallel planes positioned
along some fixed direction ν ∈ S2, if the area of each
intersection profile is accessible; see (Baddeley and
Jensen, 2004, Chapter 7). Formally, if f (x) is the
area of the intersection of Y with the plane positioned
at a signed distance x ∈ R from the origin along ν ,
the integral

∫
f dx = Vol(Y ) of f : R → R can be

approximated by a Riemann sum

V̂ ( f ) = t ∑
x∈X

f (x), (1)

where X = t(U +Z) is a regular standard grid in R
shifted with U ∈ R and scaled by t > 0. In design-
based sampling the set of nodes is randomized by
choosing U uniform in the interval (0,1), in which
case the estimator (1) is commonly known as the

classical Cavalieri estimator. This choice of U turns
X into a stationary point process (random locally finite
collection of points in R with a translation invariant
distribution) with intensity (expected number of points
per unit interval) 1/t; see (Baddeley and Jensen, 2004).
Naturally, the properties of (1) do not rely on the fact
that f represents an area function. Thus, from now
on we assume that f is a compactly supported and
integrable function and that it is known at all points of
a stationary point process X ⊆ R, and we refer to f as
the measurement function. The estimator (1) can also
be used if the points of the process X with intensity
1/t are not equidistant, in which case it is referred
to as the generalized Cavalieri estimator as defined
initially in (Baddeley et al., 2006). Both estimators are
unbiased for the integral

∫
R f (x)dx (Baddeley et al.,

2006, Theorem 1), however, as indicated in (Baddeley
et al., 2006) and quantified in (Ziegel et al., 2010),
the variance of the generalized Cavalieri estimator may
be substantially higher than in the equidistant case.
Ziegel et al. (2010; 2011) also consider the practically
relevant situation where the f -values at some of the
points of X are unavailable (dropouts). Ziegel et al.
(2011) suggests a better alternative to (1) in this case
where discarded function values are approximated by
a weighted average of the closest two neighboring
known measurements before (1) is applied. In either
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case, the variance is higher than in the equidistant case.

As shown in (Stehr and Kiderlen, 2020),
the variance inflation imposed by non-equidistant
sampling in the generalized Cavalieri estimator can
in fact be avoided by using the so-called Newton-
Cotes estimators defined in (Kiderlen and Dorph-
Petersen, 2017). More precisely, it is shown that
these estimators are unbiased for

∫
R f (x)dx and that

their variances decrease (with increasing intensity
of X) at a rate equivalent to that of the classical
Cavalieri estimator as long as the typical increment
of X satisfies a mild integrability assumption. In
the present paper we continue the study on variance
properties and variance approximations of the Newton-
Cotes estimators, and we relate these to an application
to volume estimation. In particular, we consider
sampling processes obtained from an initial process
with dropouts, and, under practically relevant sampling
models, we give explicit variance representations.
Furthermore, we derive estimates for the variance of
the Newton-Cotes estimators based on sampling in a
bounded interval of R.

Given that the increments of X are available,
Kiderlen and Dorph-Petersen (2017) define the
Newton-Cotes estimators using quadrature rules as
follows. For fixed n ∈ N, on the interval from x0 ∈
X to its nth neighbor xn ∈ X , the function f is
approximated by a piecewise polynomial of degree
at most n passing through the points {x j, f (x j)}n

j=0,
where x1 < · · · < xn−1 are the ordered points in X ∩
(x0,xn). The nth (order) Newton-Cotes estimator V̂n( f )
is then obtained as the sum of integrals of such function
approximations averaged with respect to the starting
point. By this construction, V̂n( f ) is given as the
weighted sum

V̂n( f ) = ∑
x∈X

αn(x) f (x), (2)

where αn(x) = αn(x;X) is a rational function of n
point increments to the left and right of x ∈ X ; see
(Stehr and Kiderlen, 2020, Eq.’s (3.3) and (3.4)). In
particular, α1(x) = (h1(x)+h0(x))/2, where h0(x) and
h1(x) denotes the increment to the left and right of x,
respectively. This gives the trapezoidal estimator

V̂1( f ) = ∑
x∈X

h1(x)+h0(x)
2

f (x),

which will be of particular interest throughout this
paper. As for the classical and generalized Cavalieri
estimators, the nth Newton-Cotes estimator (2) is
unbiased for the integral

∫
R f (x)dx as long as

the typical increments satisfy certain integrability
conditions; see (4) below and (Stehr and Kiderlen,

2020, Theorem 2.1). Interestingly, Newton-Cotes
estimators of any order coincide with the classical
Cavalieri estimator when the points in X are
equidistant, and moreover, the trapezoidal estimator
applied to the equidistant process combined with
dropouts coincides with the correction method of
(Ziegel et al., 2011). This situation is modeled
(and will in the remainder be referred to) as
independent p-thinning, where independently for each
point its corresponding function value is discarded
with probability p ∈ [0,1). The latter claim will be
shown in the section on independent p-thinning. One
great advantage of Newton-Cotes estimators is that
they can be applied to any stationary point process
satisfying (4) with a variance-order independent of
the underlying point process. This will be clarified
in the next paragraph. In particular, the variances of
estimators applied to a stationary point process or a
thinning hereof are of the same order; see the section
on independent p-thinning.

The order of the variance depends not only on
the order n of V̂n but also on the smoothness of the
measurement function f . The smoothness concepts
described below are given in terms of jumps of a
function, which we define as follows: The function
h : R→ R jumps at the point a ∈ R if the limits and
the difference in

Jh(a) = h(a+)−h(a−) = lim
x↓a

h(x)− lim
x↑a

h(x)

are defined on R∪ {−∞,∞} and Jh(a) 6= 0. We refer
to Jh as the jump-function of h and we let Dh denote
the set of jump-points of h. The classical smoothness
concept is that of (m,1)-piecewise smoothness, and
this is used first and foremost in (Kiêu, 1997) and
subsequently in (Stehr and Kiderlen, 2020). For a
given m ∈ N0, a compactly supported function is said
to be (m,1)-piecewise smooth if it is (m− 1)-times
continuously differentiable and if the mth and (m +
1)st derivatives exist and are continuous except in
at most finitely many points, where they may have
finite jumps. However, the condition on the (m+ 1)st
derivative turns out to be rather restrictive from a
practical point of view: In the section on stereological
volume estimation below, we give an example of
a practically relevant measurement function whose
second derivative has infinite jumps at the boundary
of its support. It turns out that this less restrictive
smoothness property actually suffices for the variance
results presented in this paper to hold; in particular,
the entire paper (Stehr and Kiderlen, 2020) could
have been formulated under this milder smoothness
property. We refer to the appendix for a justification.
For this reason, from now on we consider what we
call weakly (m,1)-piecewise smooth functions, which
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differ from (m,1)-piecewise smooth functions by the
less restrictive property that the (m + 1)st derivative
is allowed to have finitely many (possibly infinite)
jumps. As the variance of V̂n is essentially given by
the order of the first non-continuous derivative of
the measurement function, we assume throughout the
following that m is chosen largest possible for a given
f , that is, we assume that the mth derivative has at
least one jump. It is not difficult to see that the (m+
1)st derivative of a weakly (m,1)-piecewise smooth
function is integrable.

It should be mentioned that a third smoothness
concept for measurement functions has been
introduced in the literature by Garcı́a-Fiñana and
Cruz-Orive (2004). In that paper (q,1)-piecewise
smoothness has been extended to allow for arbitrary
real q ≥ 0, and functions with this property are
called q-smooth. Their theory is based on fractional
derivatives. For m ∈ N0 an (m,1)-piecewise smooth
function is also m-smooth, but the converse is false.
The function f (x) = 1[0,1]x log(x) is weakly (0,1)-
piecewise smooth, but neither (0,1)-piecewise smooth
nor 0-smooth, showing that our new notion covers
previously intractable measurement functions. On
the other hand, even when applying the theory to
the problem of estimating the volume of a compact
convex object, one cannot avoid fractional smoothness;
see (Garcı́a-Fiñana and Cruz-Orive, 2004). Although
smoothness assumptions – like those we will impose in
the section on volume estimation – can avoid fractional
smoothness of the measurement function, a unifying
approach is still missing but beyond the scope of the
present paper.

The variance of V̂n( f ) is given in terms of the
jumps of the (2m+ 1)st derivative of the covariogram
g(z) =

∫
R f (x) f (x + z)dx, z ∈ R, associated to f .

Here we make use of the fact that g is weakly
(2m+ 1,1)-piecewise smooth by Corollary 17 in the
appendix (an adaption of (Kiêu, 1997, Corollary 5.8) to
weakly piecewise smooth functions) and, since the mth
derivative of f has non-zero jumps, the fact that (2m+
1) is the order of the first discontinuous derivative
of g. If the measurement function is weakly (m,1)-
piecewise smooth, a decomposition of the variance of
the classical Cavalieri estimator (1), known for (m,1)-
piecewise smooth functions, holds:

Var(V̂ ( f )) = VarE(V̂ ( f ))+Z(t)+ r(t). (3)

Here, the extension term VarE(V̂ ( f )) explains the
general behavior of the variance and is given by
VarE(V̂ ( f )) = t2m+2g(2m+1)(0+)cm for a non-zero
constant cm independent of t and the measurement
function f . For instance, c0 = −1/6 and c1 = 1/360.
The Zitterbewegung Z(t), which is also of order t2m+2,

is a finite sum of terms oscillating around 0 with the
oscillation given in terms of the jumps a ∈ Dg(2m+1) , a 6=
0, of g(2m+1) away from the origin, and r(t) is a lower-
order remainder. The main message here is that the
variance decreases at a rate of t2m+2 when f is weakly
(m,1)-piecewise smooth and this rate of decrease is
not achievable with the generalized Cavalieri estimator
in the non-equidistant case; see e.g. (Ziegel et al.,
2010, Proposition 1). However, as shown in (Stehr and
Kiderlen, 2020, Theorem 2.3), if X is stationary with
intensity 1/t, applying a Newton-Cotes estimator of
order m also yields a decrease rate of t2m+2 for the
variance. Moreover, under certain assumptions on the
covariance structure of X , the variances of Newton-
Cotes estimators decompose similar to (3) but with the
Zitterbewegung not necessarily being oscillating. This
is the result presented in Lemma 2 below.

Two point models will receive particular interest
in this paper as they did in (Ziegel et al., 2010;
2011) and (Stehr and Kiderlen, 2020), namely
the perturbed and cumulative models. Note that
the perturbed model is formulated in terms of
perturbations from the equidistant model, and hence
it includes the equidistant model if the perturbations
have a degenerate distribution concentrated at 0.

Definition 1 (Perturbed model). A stationary point
process X = {xk}k∈Z with intensity 1/t is from
the perturbed model if xk = t(U + k + Ek), where
U is a uniform random variable on (0,1) and the
perturbations {Ek}k∈Z are independent and identically
distributed with EEk = 0 and |Ek|< 1/2 almost surely.
Moreover, U and {Ek} are assumed to be stochastically
independent.

Definition 2 (Cumulative model). A stationary point
process X with intensity 1/t is from the cumulative
model if it has independent and identically distributed
increments {ωk}k∈Z, where ωk (necessarily) has
expectation t. Furthermore, the increments are
assumed to have a continuous distribution and a
moment-generating function η 7→ Eeηωk which is
finite in a neighborhood of 0.

Note that the cumulative model is defined slightly
differently than the model with cumulative errors
in (Stehr and Kiderlen, 2020), hence the different
naming. In contrast to that paper, we always require
the condition on the moment-generation function. In
fact, all variance results in (Stehr and Kiderlen, 2020)
for the model with cumulative errors also require the
latter condition.

The purpose of this paper is to extend the results
of (Stehr and Kiderlen, 2020) on Newton-Cotes
estimation. The first goal is to allow for independently
p-thinned point processes; in particular, we will state
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explicit variance expressions in terms of the thinning
probability p for the trapezoidal estimator when
sampling from the perturbed or cumulative models.
By letting p = 0 the exact expressions (Stehr and
Kiderlen, 2020, Theorems 2.4 & 2.5) for the original
models are recovered. Secondly, we derive and present
statistical estimates for the variance of Newton-Cotes
estimators applied to any point process. In the special
cases of sampling from the perturbed or cumulative
model with potential thinning alternative estimates
are suggested which appear to be particularly robust.
Finally, we substantiate our findings by application to
the stereological problem of estimating the volume of
a compact convex set Y ⊂ R3 from parallel section
profiles. We will state variance relations for V̂n in terms
of principal curvatures of the boundary of Y . We will
also discuss the case where the joint direction of the
section planes is isotropically randomized and show
among other things that the variance of the Newton-
Cotes estimator then is essentially proportional to the
surface area of the object. This is well-known for
the classical Cavalieri estimator based on equidistant
points (see (Cruz-Orive, 1989; Matheron, 1965)) but
exact conditions on Y for this statement to hold have
not been specified before, not even in the classical case.

The paper is organized as follows. First we
introduce relevant notation and rephrase two important
results on the variance of Newton-Cotes estimators
in general and in particular of the trapezoidal
estimator. We introduce independent p-thinning to
model dropouts, show that the results for Newton-
Cotes estimators also apply to a thinned process
and give explicit variance expressions for V̂n when
sampling from the perturbed or cumulative model
with potential thinning. Next, we give an overview of
techniques to estimate the variance of Newton-Cotes
estimators, concluding with a section on stereological
volume estimation.

VARIANCE OF NEWTON-COTES
ESTIMATORS

In this section we introduce the notation used
throughout the paper, and we give a brief overview
of the results on Newton-Cotes estimators presented
in (Stehr and Kiderlen, 2020).

For a function f : R→ R, we let f (k) denote its
kth derivative whenever it is defined. At times, we will
also use the notation f ′ and f ′′ for the first and second
derivative, respectively.

For any finite-intensity stationary point process X
on R we define points and increments in X relative

to x ∈ X as follows: For any j ∈ Z, s j(x) = s j(x;X)
denotes the jth successor (predecessor for j < 0) of
x in X with s0(x) = x by definition, and h j(x) =
h j(x;X) = s j(x)− s j−1(x) denotes the distance from
the jth successor (predecessor) of x to its left neighbor
in X .

Throughout the paper, a subscript u on a point
process indicates a scaling to unit intensity, i.e. Xu =
X/t has intensity 1 when X has intensity 1/t, t > 0.

We let P0
X denote the Palm distribution of X ,

that is, the conditional distribution of X given that it
contains the origin (see e.g. (Schneider and Weil, 2008,
Section 3.3)), and we let E0

X denote the expectation
with respect to the Palm measure. When considering a
point process under its Palm distribution, we suppress
the dependence on the origin 0, writing for instance
s j(0) = s j and h j(0) = h j, j ∈ Z.

The results in (Stehr and Kiderlen, 2020) are
formulated under the overall assumption of finite
positive and negative moments of the typical point
increment, and for completeness we include it here.
Note that (Stehr and Kiderlen, 2020, Assumption 2.1)
is slightly stronger than Assumption 1 below, but the
arguments and comments in that paper show that (4) is
actually sufficient for all results to hold.

Assumption 1. For fixed Newton-Cotes order n ∈ N,
we have

E0
X h j

1 < ∞ for all
{

j ∈ N if n = 1,
j ∈ Z if n≥ 2.

(4)

Before proceeding to the results on Newton-Cotes
estimators, we introduce a stochastic process Km(·) =
Km(· ;X) on R, m ∈ N0. It is commonly referred to as
the (mth) Peano kernel, as it appears as an integration
kernel in a Peano-type error representation of the
Newton-Cotes estimator for a weakly (m,1)-piecewise
smooth function f (adaption of (Stehr and Kiderlen,
2020, Theorem 2.2)):

V̂n( f )−
∫
R

f (x)dx

=
∫
R

f (m+1)(r)Km(r)dr+∑
a∈Df (m)

Jf (m)(a)Km(a)
(5)

for m ≤ n. For details on Km and the summarized
properties below, see Sections 3 & 4 in (Stehr and
Kiderlen, 2020). The Peano kernel is a piecewise
polynomial of order at most (m+ 1) with coefficient
given in terms of the underlying point process X
and the order n of the Newton-Cotes estimator. More
specifically, Km(r) depends on the n points in X to
the left and right of r ∈ R. It is translation covariant,
i.e. Km(r+ s;X + s) = Km(r;X) for all s,r ∈ R. When
X is a stationary point process satisfying (4), Km is
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a stationary stochastic process with finite absolute
moments of any positive order, i.e. E|Km(r)| j =
E|Km(0)| j < ∞ for all j ∈ N and r ∈ R. We let
Hm(·)=Hm(· ;X) denote the covariance function of Km
associated to X , that is, Hm(s) = Cov(Km(r),Km(r +
s)). It is independent of r ∈R and, by Cauchy-Schwarz
inequality, Hm(s)≤Hm(0) for all s ∈R where equality
cannot hold on non-degenerate intervals; see Lemma
1 below. Moreover, Km is co-homogeneous of degree
m+1, and, thus

Hm(tr; tX) = t2m+2Hm(r;X) = t2m+2Hm(r) (6)

for all r ∈ R and 0 < t < ∞.

Lemma 1. Let n ∈ N, m ≤ n and a compact interval
I ⊂ R be given. If Hm(s) = Hm(0) for all s ∈ I, then I
is a singleton.

Proof. For contradiction, assume that Hm(s) = Hm(0)
for all s ∈ I, where I is a compact interval of positive
length r > 0. Without loss of generality we may
assume that I has rational endpoints. For j ∈ Z and
s ∈ Q ∩ I, we have Km( jr + s) = Km( jr) for all
s ∈ Q∩ I, almost surely. Here we used the assumed
equality, stationarity and the fact that Q is countable.
As the intervals in { jr+ I : j ∈ Z} cover R, and any
two neighboring intervals have rational endpoints in
common, we conclude that

Km(s) = Km(0) for all s ∈Q, (7)

almost surely. As K0 is linear on each connected
component of R \ X by (Stehr and Kiderlen, 2020,
Eq. (3.7)), Equation (7) implies Km ≡ Km(0) on R\X
almost surely when m = 0. For m ≥ 1, the process
Km(·) has continuous paths by (Stehr and Kiderlen,
2020, Lemma 3.1), so (7) implies Km ≡ Km(0) on
R almost surely. In either case (5) yields V̂n( f ) =∫
R f (x)dx for almost all realization of X and all weakly
(m,1)-piecewise smooth functions f . Taking two such
functions f1, f2 coinciding on all points of X but with∫
R f1(x)dx 6=

∫
R f2(x)dx we obtain a contradiction.

An important property introduced in (Stehr
and Kiderlen, 2020) is that of admissibility of
a point process. Strong admissibility improves
the order of the variance when the degree of
smoothness of the measurement function exceeds the
order of the estimator (Stehr and Kiderlen, 2020,
Theorem 2.3), and weak admissibility ensures a
variance decomposition similar to (3) as seen in
Lemma 2 below. Note that the class of admissible point
processes is closed under scaling.

Definition 3. Let n ∈ N be given and let X be a
stationary point process satisfying (4). X is called
strongly n-admissible if

∫ z
0 Hn(s)ds is uniformly

bounded in z ≥ 0. X is called weakly n-admissible if
limz→∞

1
z
∫ z

0 Hn(s)ds = 0.
Lemma 2. Let n ∈ N be given and assume that X
is a stationary point process satisfying (4) and with
intensity 1/t > 0. If f is weakly (m,1)-piecewise
smooth with m≤ n and covariogram g, then

Var(V̂n( f )) = VarE(V̂n( f ))+Zm(t)+ r(t), (8)

where the extension term VarE(V̂n( f )) is of order t2m+2

and is given by

VarE(V̂n( f )) = (−1)m+12g(2m+1)(0+)Hm(0), (9)

the Zitterbewegung Zm(t) is of order O(t2m+2) and
satisfies

Zm(t) = (−1)m+1
∑

a∈Dg(2m+1)\{0}
Jg(2m+1)(a)Hm(a), (10)

and the remainder r(t) is of order O(t2m+2). If m < n
or X is weakly n-admissible, r(t) is of order o(t2m+2).

Proof. Applying (6), we may write

Hm(r) = Hm(r;X) = t2m+2Hm(r/t;Xu) (11)

for all r ∈ R, where Xu = X/t is a unit-intensity point
process. By properties of the Peano kernel, Hm(0;Xu)
is independent of t and Hm(r/t;Xu) is uniformly
bounded in t. The result now follows from an adaption
of (Stehr and Kiderlen, 2020, Proposition 6.1) to
weakly piecewise smooth functions.

Both the perturbed and cumulative models are
strongly n-admissible for all n ∈ N and, in particular,
the remainder r(t) in Lemma 2 is of order o(t2m+2).
Even stronger, if X is from the perturbed model then
r 7→ Hm(r;Xu) is periodic with period 1 for all m ∈ N0

and sufficiently large |r|, and
∫ r+1

r Hm(s;Xu)ds = 0
(Stehr and Kiderlen, 2020, Lemma 7.1). Hence, if X
has intensity 1/t, the Zitterbewegung (10) is of order
t2m+2 and it is a finite sum of terms each oscillating
around 0. If X is from the cumulative model there is
ε > 0 such that Hm(r/t;Xu) = O(e−εr/t) for all r ∈ R
as t ↓ 0, due to (Stehr and Kiderlen, 2020, Lemma 7.3).
Hence, by (11), it follows that the Zitterbewegung Z(t)
is o(t2m+2) and thus (8) reads

Var(V̂n( f )) = VarE(V̂n( f ))+o(t2m+2) (12)

as t ↓ 0 in this case.

In (Stehr and Kiderlen, 2020, Eq.’s (7.8) and (7.9))
Hm(0;Xu) is simplified for n = 1 and m ∈ {0,1}.
Using these representations, the following corollary to
Lemma 2 is a consequence of the fact that E0

X h j
1 =

t jE0
Xu

h j
1 for all j ∈ N.
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Corollary 3. Let X be a stationary point process
satisfying (4) and with intensity 1/t > 0, and let f be
weakly (m,1)-piecewise smooth with covariogram g.
For m = 0 we have

VarE(V̂1( f )) =−g(1)(0+)1
6

1
t E

0
X h3

1

=−t2g(1)(0+)1
6E

0
Xuh3

1,
(13)

and for m = 1 we have

VarE(V̂1( f )) = g(3)(0+) 1
360

(
6 1

t E
0
X h5

1−5(1
t E

0
X h3

1)
2)

= t4g(3)(0+) 1
360

(
6E0

Xuh5
1−5(E0

Xuh3
1)

2).
INDEPENDENT p-THINNING

In this section we consider the point process X
to be obtained by so-called independent p-thinning,
where 0 ≤ p < 1 denotes the probability of an initial
point being removed. We let X̃ = {x̃k}k∈Z denote the
underlying stationary point process on R with finite
intensity 1/t̃ > 0, and we define X by X = {x̃k ∈ X̃ :
Uk > p}, where {Uk}k∈Z denotes an i.i.d. sequence of
uniform (0,1) variables independent of X̃ . Hence, Uk
is the thinning variable associated to the point x̃k ∈ X̃ ,
and therefore x̃k ∈ X with probability P(Uk > p) =
1− p. We refer to X̃ as the initial process and X as
the observed or thinned process. If p = 0 no dropouts
occur and naturally X̃ = X . If X has intensity 1/t, it is
not difficult to see that t = t̃/(1− p). As in the previous
section we let Xu =X/t denote the scaled unit-intensity
process of X .

As mentioned previously, the correction method
introduced in (Ziegel et al., 2011, Section 4) coincides
with the trapezoidal estimator applied to the thinned
process X if the initial process X̃ is equidistant. To see
this, recall that α1(x) = (h1(x)+h0(x))/2 for all x∈ X ,
where, for some k ∈ Z, x = x̃k. If X̃ has intensity 1/t̃
and x ∈ X we have h1(x) = t̃ min{ j ≥ 1 : Uk+ j > p}
and h0(x) = t̃ min{ j ≥ 1 : Uk− j > p}. Consequently,
the trapezoidal estimator reads

V̂1( f ) = t̃ ∑
k∈Z

ψk f (x̃k),

with the weight

ψk =
1
2 1(Uk>p)

(
min{ j ≥ 1 : Uk+ j > p}
+min{ j ≥ 1 : Uk− j > p}

)
.

This is exactly the estimator introduced in (Ziegel
et al., 2011, Section 4). Note that the estimators
only coincide when the underlying point process is
equidistant, and if this is not the case, the trapezoidal
estimator is superior. For instance, the correction

method of (Ziegel et al., 2011) is of order t̃ 3 when the
underlying process is from the perturbed model and
the measurement function is weakly (1,1)-piecewise
smooth, whereas the trapezoidal estimator is always of
order t4 (and hence also of order t̃ 4) for weakly (1,1)-
piecewise smooth functions; see (Ziegel et al., 2011,
Proposition 4) and Lemma 2 above.

We now aim for variance expressions of Newton-
Cotes estimators when applied to the observed process
X . As the results in the previous section rest on
Assumption 1, we have to assure that this condition
is satisfied by the observed process X . Lemma 4 below
shows that this is in fact the case if the initial process
satisfies Assumption 1. Subsequently, we find explicit
variance expressions for the trapezoidal estimator
applied to the observed process X , when the initial
process X̃ is from the perturbed or cumulative model.
We show that X is strongly n-admissible in either
case, and hence it satisfies (8) with the remainder
r(t) of order o(t2m+2). VarE(V̂n( f )) is given by (9)
for arbitrary n and explicitly in Corollary 3 for the
trapezoidal estimator.

Lemma 4. If the initial process X̃ satisfies (4), then so
does the thinned process X.

Proof. Between two consecutive points in the thinned
process X , the number of removed points from the
initial process X̃ follows a geometric distribution on
N0 with success probability (1− p). By independence,
this implies

E0
X h j

1 =
∞

∑
k=1

(1− p)pk−1E0
X̃ s j

k. (14)

As E0
X h j

1 ≤ E0
X̃ h j

1 < ∞ for all j < 0 we may assume
j ≥ 0. By an application of the multinomial theorem
and Hölder’s inequality, E0

X̃ s j
k has the upper bound

E0
X̃

(
h1 + · · ·+hk

) j ≤ ∑
j1+···+ jk= j

(
j

j1, . . . , jk

)
E0

X̃

[
h j

1

]
= k j E0

X̃

[
h j

1

]
,

and we conclude the proof as E0
X h j

1 ≤ E0
X̃

[
h j

1

]
(1−

p)∑
∞
k=1 k j pk−1 < ∞, due to the assumption on X̃ .

As mentioned, a point process from the perturbed
model is strongly n-admissible for any n ∈ N, and this
is also the case under independent thinning.

Lemma 5. Let the initial process X̃ be from the
perturbed model and let X be the observed process.
For all n, j ∈ N and m ∈ N0, X satisfies

(i) Hm(r;Xu) = Hm(r+1;Xu)+o(r− j),

(ii)
∫ r+1

r Hm(s;Xu)ds = o(r− j),
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as r→±∞. Furthermore,

(iii) X is strongly n-admissible.

Proof. As r 7→ Hm(r) is an even function due to
stationarity, it is enough to show the claims (i) and (ii)
for positive r→ ∞.

Before proving (i) –(iii) we introduce some
notation which will be used throughout the proof. First,
to simplify notation, we will write Km(r) = Km(r;Xu)
and Hm(r) = Hm(r;Xu), as we do not consider the
observed process but only the associated unit-scaled
process. For s ∈ R and r ≥ 0 let

A−(s) = A−(s;Xu) =
{

#
(
Xu∩ [s− r

3 ,s)
)
≥ n
}
, and

A+(s) = A+(s;Xu) =
{

#
(
Xu∩ [s,s+ r

3)
)
≥ n
}

be the events that Xu has at least n points to the left and
right of s, respectively, within a distance of at most
r/3. Furthermore define I±(s) = I±(s;Xu) = 1A±(s;Xu)
as the associated indicator functions, and note that they
are vanishing for small r. We also define the shifted
process X∗ = Xu −U = {k + Ek : Uk > p, k ∈ Z}
and correspondingly K∗m(s) = Km(s;X∗) and I∗±(s) =
I±(s;X∗). Due to the i.i.d. property of perturbations
and thinning variables, the distributional equivalence

K∗m(s)I
∗
±(s)

D
= K∗m(s+1)I∗±(s+1) (15)

holds for all s ∈ R, where the translation covariance
of Km(s;X) and I±(s;X) was used. Furthermore, by
construction, K∗m(s)I

∗
−(s) and K∗m(s)I

∗
+(s) only depend

on the variables

{(Ei,Ui) : i+Ei ≥ s− r/3}
⊆ {(Ei,Ui) : i≥ s− r/3−1/2},

and

{(Ei,Ui) : i+Ei < s+ r/3}
⊆ {(Ei,Ui) : i < s+ r/3+1/2},

respectively. In particular, K∗m(s)I
∗
−(s) and K∗m(s

′)I∗+(s
′)

are stochastically independent for s− s′ ≥ 2r/3+1.

Let n ∈ N and m ∈ N0 be fixed and consider r ≥ 0.
To prove (i) we observe by stationarity that P((A−(s)∩
A+(0))c) ≤ 2P(A+(0)c) = 2P(#(Xu ∩ [0,r/3)) < n),
and thus

P
(
(A−(s)∩A+(0))c)= o(r− j) (16)

for all j ∈ N and s ∈ R, as r → ∞. This is seen as
follows: With b·c denoting integer part, there are at
least Nr = br/3c − 2 points in X̃u ∩ [0,r/3), and the
number B of these points also in Xu is a binomial

random variable with Nr trials and success probability
1− p. As p < 1 it is not difficult to see that P(B < n)
is of order o(N− j

r ) for any j ∈ N, and hence also of
order o(r− j) as r→ ∞. Equation (16) now follows as
P(#(Xu∩ [0, r

3))< n)≤ P(B < n).

By the Cauchy-Schwarz inequality and the fact
that EK4

m(r) = EK4
m(0)< ∞, (16) implies that

E[Km(r)Km(0)] = S(r)+o(r− j) (17)

for all j ∈ N, where

S(r) = E[Km(r)I−(r)Km(0)I+(0)]

is defined for notational convenience. Conditioning on
U and using the translation covariance of Km and I±,
S(r) reads

S(r) =
∫ 1

0
E[K∗m(r−u)I∗−(r−u)K∗m(−u)I∗+(−u)]du

=
∫ 1

0
E[K∗m(r−u)I∗−(r−u)]E[K∗m(−u)I∗+(−u)]du

for r ≥ 3, where it has been used that K∗m(r−u)I∗−(r−
u) and K∗m(−u)I∗+(−u) are independent for such r.
Equation (15) now implies that

S(r) = S(r+1)

for all j ∈ N and r ≥ 3. Using this and (17) with r and
r+1 yields (i) .

Defining R∗±(s) = E[K∗m(s)I∗±(s)], we note that∫ 1

0
R∗±(s−u)du = E[Km(s)I±(s)]

= E[Km(0)I±(0)] = E[Km(0)]+o(r− j)

(18)

for all s ∈ R, as r → ∞. The first equality is seen
by conditioning on U , the second equality is due
to stationarity, and the third equality is obtained
by Cauchy-Schwarz’ inequality using the fact that
P(A±(0)c) = o(r− j) and EK2

m(0)<∞. Equations (17)–
(18), Fubini’s theorem and a substitution now yield∫ r+1

r
E[Km(0)Km(s)]ds

=
∫ 1

0
R∗+(−u)

∫ 1

0
R∗−(r+1−u− s)dsdu+o(r− j)

= (E[Km(0)])2 +o(r− j),

which proves (ii) .

That Xu (and consequently X by (6)) is strongly n-
admissible is easily seen by (ii) as∣∣∣∫ z

0
Hn(r)dr

∣∣∣= ∣∣∣bzc−1

∑
i=0

∫ i+1

i
Hn(s)ds+

∫ z

bzc
Hn(s)ds

∣∣∣
≤

∞

∑
i=0

∣∣∣∫ i+1

i
Hn(s)ds

∣∣∣+Var(Kn(0))< ∞.

This is exactly assertion (iii) .
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Theorem 6. Let the initial process X̃ be from the
perturbed model with intensity 1/t̃ and let X be
the observed process with intensity 1/t. Let θk =
E(E1 − E0)

k be the kth moment of the difference in
perturbations. If f is weakly (m,1)-piecewise smooth
with covariogram g, then VarE(V̂1( f )) coincides with

−t̃ 2g(1)(0+)
1
6

(
1+3θ2 +

6p
(1− p)2

)
, (19)

for m = 0, and

t̃ 4g(3)(0+)
1

360

(
1+

120p3 +300p2 +120p
(1− p)4

+30θ2
p2 +4p+1
(1− p)2 −45θ

2
2 +30θ4

)
,

(20)

for m = 1. Moreover, the Zitterbewegung Zm(t) is of
order t2m+2 (hence t̃ 2m+2) and it is a finite sum of terms
each oscillating around 0.

Before proving this result, we make a few
comments on the extension term. As mentioned, the
trapezoidal estimator and the correction method of
(Ziegel et al., 2011) coincide when the initial point
process is equidistant. In particular, when θk = 0 for
all k ∈ N, the result above should match (Ziegel et al.,
2011, Proposition 3). However, according to (Ziegel et
al., 2011), the second summand in (20) is erroneously
claimed to be (120p3 +390p2 +120p)/(1− p)4.

Considering perturbed sampling without thinning
(p = 0), how much do we underestimate the extension
term if we use the classical variance, that is, if we
disregard the perturbations by setting θk = 0 above?
In the rather extreme case where E1 is uniform
on (−1/2,1/2) the extension term equals 3/2 and
27/4 times the classical extension term for m = 0,1,
respectively. By comparison, the extension term of
the generalized Cavalieri estimator equals 2 times the
classical extension term when m = 0; see (Ziegel et
al., 2011, p. 190). In the worst case where the errors
Ei are arbitrarily close to ±1/2, the extension term
approaches 5/2 and 79/4 times the classical extension
term for m = 0,1, respectively.

Proof. As processes from the perturbed model satisfy
(4), also X satisfies (4) due to Lemma 4. Recall that
θk = E(E j − E0)

k = E(E1 − E0)
k for all j 6= 0, with

θk = 0 for all odd k. It is not difficult to see that
E0

X̃ s5
j = t̃ 5E( j + E j − E0)

5 = t̃ 5( j5 + 10θ2 j3 + 5θ4 j)
for all j ∈ N, and consequently, using (14),

E0
X h5

1 =
∞

∑
j=1

p j−1(1− p)E0
X̃ s5

j

= t̃ 5
∞

∑
j=1

p j−1(1− p)( j5 +10θ2 j3 +5θ4 j)

= t̃ 5
( p4 +26p3 +66p2 +26p+1

(1− p)5

+10θ2
p2 +4p+1
(1− p)3 +5θ4

1
1− p

)
.

By similar arguments it is shown that E0
X h3

1 = t̃ 3((1+
3θ2)/(1 − p) + 6p/(1 − p)3). Since t = t̃/(1 − p),
(19) and (20) follow by applying Corollary 3 to X .
The claim on the Zitterbewegung is a consequence of
Lemma 5 and (10).

Next we turn to the cumulative model from
Definition 2. Interestingly, this model class is closed
under independent thinning. In the following, {ω̃k}
and {ωk} denotes the increments of the initial process
X̃ and the thinned process X , respectively.

Lemma 7. If the initial process X̃ is from the
cumulative model, then so is the thinned process X. In
this case, for all n∈N and m∈N0, there is some ε > 0
such that Hm(s) = O(e−εs) as s→ ∞. In particular, X
is strongly n-admissible.

Proof. Let F̃ be the continuous distribution function
of the initial increments. The independence of these
increments and the thinning variables show that X
has independent and identically distributed increments
with continuous distribution function F given by
F(x) = ∑

∞
k=1(1 − p)pk−1F̃∗k(x). Here F̃∗k denotes

the k-fold convolution of F̃ , that is, the distribution
of ω̃1 + · · · + ω̃k. Furthermore, Eeηω1 = ∑

∞
k=1(1 −

p)pk−1(Eeηω̃1)k, which is finite if Eeηω̃1 < 1/p. Since
there is η̃ > 0 such that Eeη̃ω̃k < ∞, a dominated
convergence argument shows that Eeηω̃1 < 1/p if
we choose η > 0 small enough. The claim on the
convergence rate of Hm is now a consequence of (Stehr
and Kiderlen, 2020, Lemma 7.3).

Theorem 8. Let the initial process X̃ be from the
cumulative model with intensity 1/t̃ and let X be
the observed process with intensity 1/t. Define ν̃k =
Eω̃k

1/t̃ k as the kth moment of the increments in the
initial unit-intensity scaled process X̃u. If f is weakly
(m,1)-piecewise smooth with covariogram g, then
VarE(V̂1( f )) coincides with

−t̃ 2g(1)(0+)
1
6

(
ν̃3 + ν̃2

6p
1− p

+
6p2

(1− p)2

)
,
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for m = 0, and

t̃ 4g(3)(0+)
1

360

(
6ν̃5−5ν̃

2
3 +

60p(ν̃4 + ν̃3ν̃2)

1− p

+
60p2(5ν̃3 +6ν̃2

2 )

(1− p)2 +
ν̃21080p3

(1− p)3 +
540p4

(1− p)4

)
,

for m = 1. Moreover, Zm(t) is of order o(t2m+2) (hence
o(t̃ 2m+2)) for m = 0,1.

Proof. By definition, the cumulative model has finite
exponential expectation and in particular (4) is
satisfied for both the initial and the observed model.
By the multinomial theorem, the independence and
identical law of the increments, and by the fact that
ν̃1 = 1,

E(ω̃1 + · · ·+ ω̃ j)
5/t̃ 5

= ∑
k1+···+k j=5

(
5

k1, . . . ,k j

) j

∏
i=1

ν̃ki

=

(
j
1

)
ν̃5 +

(
j
2

)(
2
1

)
(5ν̃4 +10ν̃3ν̃2)

+

(
j
3

)(
3
2

)
(20ν̃3 +30ν̃

2
2 )

+

(
j
4

)(
4
3

)
60ν̃2 +

(
j
5

)
120

= jν̃5 + j( j−1)(5ν̃4 +10ν̃3ν̃2)

+ j( j−1)( j−2)(10ν̃3 +15ν̃
2
2 )

+ j( j−1)( j−2)( j−3)10ν̃2

+ j( j−1)( j−2)( j−3)( j−4)

for all j ∈ N. Consequently,

E0
X h5

1 =
∞

∑
j=1

p j−1(1− p)E0
X̃ s5

j

=
∞

∑
j=1

p j−1(1− p)E(ω̃1 + · · ·+ ω̃ j)
5

= t̃ 5
(

ν̃5

1− p
+

(10ν̃4 +20ν̃3ν̃2)p
(1− p)2

+
(60ν̃3 +90ν̃2

2 )p2

(1− p)3 +
240ν̃2 p3

(1− p)4

+
120p4

(1− p)5

)
.

Similarly, it is seen that E(ω̃1 + · · ·+ ω̃ j)
3/t̃ 3 = jν̃3 +

3 j( j− 1)ν̃2 + j( j− 1)( j− 2) for all j ∈ N and hence
E0

X h3
1 = t̃ 3

(
ν̃3/(1− p) + ν̃26p/(1− p)2 + 6p2/(1−

p)3
)
. Since the relation t = t̃/(1− p) holds, the lemma

is concluded by Corollary 3 (applied to X), Lemma 7
and (12).

VARIANCE ESTIMATION

Traditionally, the variance of the classical Cavalieri
estimator is approximated by its extension term, and
hence an estimation of the extension term serves as an
estimation of the variance as a whole. It is debatable
if this is appropriate, as a particular sample may
result in a large Zitterbewegung. Hence, using the
extension term only, one risks actually underestimating
the variance. However, at least in the stereological
application that is discussed at the end of this paper,
we see that the Zitterbewegung never can exceed
the extension term, see (33), so 2VarE(V̂n) is an
upper bound for the variance, only neglecting the
remainder term in this application. The extension term
is (relatively) easy to estimate and is traditionally
used as an approximation for the unknown variance
of the classical Cavalieri estimator (1). In view of
the variance decomposition (8) we can follow these
lines also for the new Newton-Cotes estimators and
focus therefore on the estimation of the extension term.
The estimation naturally depends on the available
information on the sampling points. In this section
we discuss a general estimation approach based on
the observed process, and, if we sample from the
perturbed or cumulative models with information on
the initial process available, we mention another
approach for the trapezoidal estimator exploiting the
exact representations from Theorems 6 and 8.

Throughout this section we assume that the
measurement function f is weakly (m,1)-piecewise
smooth with known m ∈ N0, and we estimate the
variance based on the points X ∩ L of the observed
process X falling inside a bounded interval L⊆ R. We
assume that f is known at the points X ∩L and that L
contains the support of f . We let the observed process
X have intensity 1/t.

Before proceeding, we introduce an estimation
procedure for the Palm expectation of a function of
increments as this will be of great relevance below.
More precisely, for the point process X and a fixed
n ∈ N, we aim to estimate Θ = t−1E0

X F(h1, . . . ,hn),
where F : Rn→ R is an integrable function. For the n
largest points in X ∩L, some of the subsequent n point
increments are not accessible from the information
of X in L. To correct for this censoring close to
the boundary of L, we use the following Hanisch
estimator, where we only consider points x in X ∩
L for which all of the subsequent n increments
h1(x), . . . ,hn(x) are observed:

Θ̂ = ∑
x∈X∩L
sn(x)∈L

F
(
h1(x), . . . ,hn(x)

)
H 1

(
L∩ (L− sn(x)+ x)

) . (21)
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Here H 1 denotes the 1-dimensional Hausdorff
measure, that is, the length measure. By the
refined Campbell theorem (Schneider and Weil, 2008,
Theorem 3.5.3) it is seen that Θ̂ is unbiased for Θ. To
estimate the intensity 1/t we simply use the unbiased
estimator #(X ∩L)/H 1(L).

As the extension term (9) factorizes similar to
the classical case, we can estimate the contribution
from the point process (through Hm) and from the
measurement function (through g) separately. We first
estimate the variance Hm(0) depending on the point
process X only. More specifically, if n ∈ N is the
order of the Newton-Cotes estimator, using (Stehr
and Kiderlen, 2020, Eq.’s (3.6) and (3.7)) and the
refined Campbell theorem (Schneider and Weil, 2008,
Theorem 3.5.3), it is not difficult to see that there are
(known) rational functions pm,qm : Rn→ R such that

Hm(0) = EK2
m(0)− (EKm(0))2

= 1
t E

0
X pm(h1, . . . ,hn)− (1

t E
0
X qm(h1, . . . ,hn))

2,

where the latter term vanishes for all m < n; see (Stehr
and Kiderlen, 2020, Lemma 4.1). For n= 1, comparing
with Corollary 3, we see that p0(h1)= h3

1/12, p1(h1)=

h5
1/120 and q1(h1) = h3

1/12. Applying (21) with F
substituted by pm and qm, Hm(0) can be estimated by
the information of X in L.

Secondly, we estimate the derivative g(2m+1)(0+).
To do so, we apply similar techniques as in (Kiêu,
1997, Section 6.2), where we explicitly use the fact
that the covariogram g is weakly (2m+1,1)-piecewise
smooth. An induction argument using Lemma 15 in the
appendix (an adaption of the refined partial integration
formula (Kiêu, 1997, Lemma 4.1) to weakly piecewise
smooth functions) yields

g(y) =
2m+1

∑
j=0

g( j)(0+)
j!

y j +R2m+1(y;g) (22)

for all y > 0, where the remainder R2m+1 satisfies

R2m+1(y;g) = ∑
a∈Dg(2m+1)∩(0,y)

(y−a)2m+1

(2m+1)!
Jg(2m+1)(a)

+
1

(2m+1)!

∫ y

0
g(2m+2)(t)(y− t)2m+1dt.

For k ∈ N0, we estimate the covariogram g using

ĝ(k, t) = t ∑
x∈X∩L

f (x) f (sk(x)), (23)

which, by the refined Campbell theorem (Schneider
and Weil, 2008, Theorem 3.5.3) and the fact that L
contains the support of f , satisfies Eĝ(k, t) = E0

X g(sk).

Let βk be given by βk = g(k)(0+)/k!. As g( j) is odd and
continuous for all odd j ≤ 2m, we find using (22) that

ĝ(k, t) =
m

∑
j=0

E0
X [s

2 j
k ]β2 j +E0

X [s
2m+1
k ]β2m+1 + εk,t ,

(24)
where the error εk,t arises from a Taylor expansion
and the covariogram estimation. Consequently, Eεk,t =

E0
X R2m+1(sk;g), and hence

Eεk,t = E0
X

[
∑

a∈Dg(2m+1)

a>0

(sk−a)2m+1
+

(2m+1)!
Jg(2m+1)(a)

+
1

(2m+1)!

∫
∞

0
g(2m+2)(r)(sk− r)2m+1

+ dr
]
,

where (x− r)k
+ = 1x>r(x− r)k. By definition, s j

k(0) =
t js j

k(0;Xu), and as E0
Xu

s j
k < ∞ for all k, j ∈ N0 and

g(2m+2) is integrable by assumption, we conclude by
dominated convergence that Eεk,t = o(t2m+1) as t ↓ 0.
Applying this convergence rate, the proposition below
follows from (24).

Proposition 9. Let X be the observed process
with intensity 1/t and let f be weakly (m,1)-
piecewise smooth with covariogram g. For N ≥
m + 1 define the (N + 1) × (m + 2) matrix QX =

(E0
X s j

i )i∈{0,...,N}, j∈{0,2,...,2m,2m+1}. If the linear system
QX η =(0, . . . ,0,1)> has a solution η = {ηk}N

k=0, then,
with ĝ(k, t) given by (23),

β̂2m+1 =
N

∑
k=0

ĝ(k, t)ηk (25)

estimates g(2m+1)(0+)/(2m+ 1)! with a bias of order
o(1) as t ↓ 0.

In the corollary below we present estimators for
the extension term of the trapezoidal estimator when
m ∈ {0,1}. To use Proposition 9 for m = 1, we require
the denominator in (27) to be non-zero. This ensures
that the linear system has a solution, and it is for
instance always satisfied for the perturbed model. Note
that for m = 0 we choose N = 2 larger than necessary
since this is traditionally used in equidistant sampling;
see e.g. (Kiêu, 1997, Formula (6.9)) and recall (13).
If we instead choose N = 1 we estimate g′(0+) by
(−ĝ(0, t)+ ĝ(1, t))/t.

Corollary 10. Let X be the observed process with
intensity 1/t and let f be weakly (m,1)-piecewise
smooth. Define g̃(k, t) = ĝ(k, t)/t, with ĝ(k, t) given
by (23), and γi, j = 1

t E
0
X s j

i . The extension term
VarE(V̂1( f )) of the trapezoidal estimator is estimated
with a bias of order o(1) by:(1

4 g̃(0, t)− 1
3 g̃(1, t)+ 1

12 g̃(2, t)
)
γ1,3 (26)
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for m = 0, and

g̃(0, t)(γ2,2− γ1,2)− g̃(1, t)γ2,2 + g̃(2, t)γ1,2

γ1,2γ2,3− γ2,2γ1,3

×
( 1

10 γ1,5− 1
12(γ1,3)

2) (27)

for m = 1, if the denominator in (27) is non-zero. All
γi, j can be unbiasedly estimated using X ∩ L by the
Hanish estimator (21).

We have described a general estimation approach
where the only requirement on the observed process X
(other than stationarity) is the existence of a solution
to the linear system in Proposition 9. However, if
the model of X is known this can also be used to
construct other estimates for Hm(0) and the weights
{ηk} in (25). In particular, if both the observed
process X and its underlying initial process X̃ are
accessible, a decomposition of the extension term
similar to Theorems 6 and 8 can be constructed,
representing the Palm expectations in terms of the
thinning probability p and increments of the initial
process. Preliminary simulations for the trapezoidal
estimator under perturbed and cumulative sampling
indicate that such a model-specific estimation has
a smaller variance than the general approach, and
furthermore it appears to be much more robust for
varying intensity, especially when thinning is present.
This will be investigated further in a future paper.

AN APPLICATION TO VOLUME
ESTIMATION

We now specialize the above results to
stereological volume estimation. This had been the
original starting point of our research and extends
the settings of the well-established Cavalieri estimator
and its generalizations. The target is the volume of a
compact set Y ⊂Rd . For a unit vector ω ∈ Sd−1 let ω⊥

be the hyperplane with normal ω and let H k be the
k-dimensional Hausdorff-measure in Rd . We assume
that the measurement function

f (x) = H d−1(Y ∩ (xω +ω
⊥)
)

(28)

is available at all points x of a stationary point process
X in R. In order to apply the theory of Newton-Cotes
estimators we assume throughout the following that
Assumption 1 is satisfied for a given n ∈ N. Then,
the Newton-Cotes estimator of order n is unbiased
for

∫
R f (x)dx, which is equal to H d(Y ) by Fubini’s

theorem. In the special case where the points in X
are equidistant, Newton-Cotes estimators of any order
coincide with the classical Cavalieri volume-estimator.

We recall a number of fundamental notions from
convex geometry; see e.g. (Schneider, 2014). A set
Y ⊂ Rd is called a convex body, if it is non-empty,
compact and convex. We say that a hyperplane H in
Rd supports the convex body Y , if H ∩Y 6= /0 and one
of the two open half-spaces generated by H does not
contain any points of Y . If H = xω +ω⊥ supports Y
and ω points in the direction of the open half-space that
is disjoint from Y , the unit vector ω is called an outer
normal vector of Y at the support set H ∩Y . We say
that Y is strictly convex if its boundary does not contain
any non-degenerate line-segments. A convex body is of
class C2

+ if its boundary is a regular submanifold of Rd

that is twice continuously differentiable (in the sense
of differential geometry) and all principal curvatures
are positive at all boundary points. In particular, if Y is
of class C2

+, it is strictly convex.

If the convex body Y ⊂ Rd and a unit vector
ω ∈ Sd−1 are given, the support of the measurement
function (28) is a compact interval [x−,x+]. The
hyperplanes H− = x−ω + ω⊥ and H+ = x+ω + ω⊥

support Y at support sets Y− and Y+ with outer unit
normals −ω and ω , respectively. The number d(ω) =
x+− x− is called the width of Y in direction ω . The
function ω 7→ d(ω) is continuous on Sd−1. If the width
d(ω) does not depend on ω , the set Y is called a
body of constant width. Clearly, any ball is of constant
width with d = d(ω) being its diameter, but there are
other convex bodies of constant width in Rd . However,
among all point symmetric bodies Y (meaning that
there is a point z ∈ Rd with Y − z = {−x : x ∈ Y − z})
balls can be characterized by having constant width.
These and further results on bodies of constant width
can be found in (Gardner, 2006, 3.2); see in particular
Theorem 3.2.7 of this monograph.

The asymptotic variance behavior depends on the
smoothness of f , which in turn reflects properties of
the set Y . To illustrate how basic geometric regularity
of a set Y yields smoothness properties of f , we restrict
considerations to convex objects in three-dimensional
space (d = 3), but note that generalizations to sets of
higher dimension and with a boundary being a smooth
manifold are also possible. As a consequence of the
Brunn-Minkowski inequality (Gardner, 2002, p. 361),
the measurement function f 1/2 for a given Y ⊂ R3 is
concave on its support [x−,x+]. If the support set Y+
(Y−) is a singleton or a line-segment, the function f is
continuous in x+ (x−). In particular, f is continuous
when Y is strictly convex.

If Y is of class C2
+ the principal radii r1(ω), r2(ω)

of curvature exist at the support point of Y with outer
normal vector ω . The second normalized symmetric
function s2(ω) = r1(ω)r2(ω) of the principal radii is
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continuous and has integral∫
S2

s2(ω)H 2(dω) = H 2(∂Y ), (29)

where the right side is the surface area of the boundary
∂Y of Y ; see (Schneider, 2014, (4.26) and (4.32)).
For later use, we also remark that the function s2
determines the convex set Y of class C2

+ uniquely up to
translations; see (Schneider, 2014, (4.26) and Theorem
8.1.1).

Proposition 11. Let Y ⊂R3 be a convex body of class
C2
+. Then the measurement function f in (28) is twice

continuously differentiable on R \ {x−,x+}, and f ′

jumps exactly at the endpoints x− < x+ of the support
of f . The jump at x+ is 2π

√
s2(ω) and the jump at x−

is 2π
√

s2(−ω).

If f ′′ has a right sided limit at x− and a left sided
limit at x+ then f is weakly (1,1)-piecewise smooth.

Proof. We first set out to prove that f is twice
continuously differentiable on R \ {x−,x+}, and
can restrict attention to the interior of its support.
Translating Y appropriately, it is enough to show that f
is twice continuously differentiable in a neighborhood
of x = 0 when the origin is an interior point of Y .
Assuming 0 ∈ intY , we show first that the radial
function ρY (u) = max{t ≥ 0 : tu ∈ Y}, u ∈ S2, is
a twice continuously differentiable function on the
sphere S2. It is enough to show this claim in the
neighborhood of one unit vector, which we may
assume to coincide with the last standard basis vector
e3. As Y is of class C2

+ and 0 is an interior point of
Y , there is an open ball U in e⊥3 centered at 0 (and
with a radius strictly smaller than 1) and a local C2-
parametrization h : U → R such that (x,h(x)), x ∈U ,
parametrizes a patch of the boundary of Y close to
(0,h(0)). Any point u in a neighborhood of e3 in S2 can
be written as u=(x,

√
1−‖x‖2), x∈U , and thus tu is a

boundary point of Y if and only if t
√

1−‖x‖2 = h(tx).
The implicit definition of ρY (u) = t through

F(x, t) = h(tx)− t
√

1−‖x‖2 = 0

shows that ρY is C2 in a neighborhood of e3 in S2

by the implicit function theorem. As the origin is an
interior point of Y , this implies that the Minkowski
functional ρ

−1
Y of Y is in C2(S2) and Y is therefore

2-smooth in the sense of Koldobsky (2005). Like in
(Koldobsky, 2005, Lemma 2.4) one now shows that f
is twice continuously differentiable in a neighborhood
of x = 0, noting that the origin-symmetry required in
the statement of the lemma is not needed for the proof.

We have already seen that strict convexity implies
continuity of f . We now show that the first derivative
of f has finite jumps at the endpoints x− and x+ of
its support. Without loss of generality, we may now
assume ω = e3, that Y is rescaled and that the origin
0 ∈ Y is chosen such that e3 is the boundary point of
Y where the support plane at position x+ = 1 meets
Y . As we have already seen, there is a local C2-
parametrization h : U → R with U as above, such that
(x,h(x)), x ∈U , parametrizes a patch of the boundary
of Y close to (0,h(0)) = e3. A first order Taylor
expansion with a second order remainder term, using
the fact that the gradient of h must be zero at x = 0,
shows

h(x) = 1− 1
2 x>A(ξx)x (30)

in U , where A(·) is the Hessian matrix of −h and ξx is
a point on the line segment with endpoints 0 and x.

The eigenvalues λ1 and λ2 of A(0) are the principal
curvatures of Y at e3 and thus coincide with 1/r1(e3)
and 1/r2(e3) up to permutation (Schneider, 2014,
Section 2.5) and are positive by assumption. As A(·)
is continuous, there is a compact neighborhood V of 0
in U such that x>A(ξx)x≥ min{λ1,λ2}

2 ‖x‖2 for all x ∈V .
This and the convexity of Y imply the existence of a
constant ε0 such that Mε = {x ∈U : h(x)≥ 1−ε} ⊂V
for all 0 < ε < ε0. We claim that for such ε , the
orthogonal projection of Yε = Y ∩

(
(1− ε)e3 + e⊥3

)
onto e⊥3 coincides with Mε , so

f (1− ε) = H 2(Mε

)
. (31)

In fact, if this was not the case, there would be a point
(x′, t)∈Yε with x′ 6∈U . The convexity of Y implies that
all points x ∈U of the line segment s between x′ and 0
are in Mε . But s∩ (U \V ) 6= /0, so Mε contains points
outside V , a contradiction.

In view of (31) and (30) we have

1
ε

f (1− ε) = H 2
( 1√

ε
Mε

)
= H 2({x ∈ 1√

ε
U : x>A(ξ√εx)x≤ 2}

)
→H 2({x ∈ e⊥3 : x>A(0)x≤ 2}

)
,

as ε ↓ 0, where the continuity of A(·) was used again.
The limit set in the last displayed formula is an
ellipse in e⊥3 with half axes

√
2/λi, i = 1,2 and area

2π/
√

λ1λ2. This implies

f ′(1−) =− 2π√
λ1λ2

=−2π
√

s2(e3),

which is the negative of the jump of f ′ at x+ = 1, as
f ′(x) = 0 for x > x+. Replacing ω by −ω , the above
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arguments show a corresponding equality for the jump
at x−.

As f ′′ exists and is continuous on R\{x−,x+}, this
function can at most have two discontinuities. Under
the assumption in the last claim of the theorem, these
discontinuities are points where f ′′ has jumps, so f
is weakly (1,1)-piecewise smooth. This concludes the
proof.

As mentioned in the introduction, there are
practically relevant examples of measurement
functions with unbounded second derivative. In
particular, there are convex bodies of class C2

+ with a
measurement function f which is not (1,1)-piecewise
smooth but only weakly (1,1)-piecewise smooth.
An example can be constructed by modifying the
measurement function π(1− (1− x)2) = π(x(2− x)),
0 ≤ x ≤ 2, of the unit ball centered at the point ω . We
consider the measurement function

f (x) = π(x+x3/2)(2−x) = π(2x+2x3/2−x2−x5/2),

0≤ x≤ 2 (and zero elsewhere), of a body of revolution
Y with axis ω . Because f ′′(0+) = ∞, the function f is
not (1,1)-piecewise smooth, but only weakly (1,1)-
piecewise smooth. For the corresponding surface of
revolution, the principal curvatures at a boundary point
with level x are known to be

κ1(x) =
1

ρ(x)
√

1+ρ ′(x)2

=
2√

(2ρ)2(x)+(2+3x1/2−2x− 5
2 x3/2)2

,

and

κ2(x) =−
ρ ′′(x)√

1+ρ ′(x)23 =−ρ
3(x)ρ ′′(x)κ3

1 (x),

where ρ(x) =
√

f (x)/π is the radius of the section
disk of Y at level x. This can be used to show that Y
is a convex body of class C2

+.

In the last statement of the proposition, we
assumed that all discontinuity points of f ′′ are jump
points. It is an open problem if this condition can be
replaced by a more geometric assumption on Y . But
it is well-known that the measurement function of any
ellipsoid in R3 has a second derivative which satisfies
this property for any direction ω . In addition, f ′′ is
uniformly bounded in ω in this case; see, for instance,
(Kiêu, 1997, Appendix B.1).

Corollary 12. For ω ∈ S2 assume that Y ⊂ R3 is a
convex body of class C2

+ with measurement function f

supported by [x−,x+], and such that f ′′ has one-sided
limits at x− and x+. Then the covariogram g of the
measurement function (28) is weakly (3,1)-piecewise
smooth and g(3) has three jumps. These jumps have
positions −d(ω), 0 and d(ω) = x+ − x− and their
heights are

Jg(3)(0) = 4π
2(s2(ω)+ s2(−ω)), and

Jg(3)

(
±d(ω)

)
= 4π

2
√

s2(ω)s2(−ω).

Proof. That g is weakly (3,1)-piecewise smooth
follows from Corollary 17 of the appendix. The
relation

Jg(3)(c) = ∑
b−a=c

Jf ′(a)Jf ′(b), c ∈ R,

which is a special case of (40), in combination with
Proposition 11 yields the remaining claims.

Note that 2g(3)(0+) = Jg(3)(0) as g(3) is odd. Hence,

g(3)(0+) = 2π
2(s2(ω)+ s2(−ω)).

When Y is point symmetric, we have s2(ω) = s2(−ω)
for all ω ∈ S2 and thus

Jg(3)(0) = 2Jg(3)

(
±d(ω)

)
= 8π

2s2(ω).

Theorem 13. Let n ∈ N be given. Assume that Xu
is a unit-intensity stationary point process satisfying
Assumption 1, and that Y ⊂ R3 is a convex body of
class C2

+ whose measurement function supported by
[x−,x+] in direction ω ∈ S2 has a second derivative
with one-sided limits at x− and x+. If Vn(Y ) =
Vn,ω(Y ) is the nth Newton-Cotes estimator based on
intersections of Y with the hyperplanes {xω +ω⊥ : x∈
tXu} with t > 0, then

Var(Vn,ω(Y )) =VarE(Vn,ω(Y ))+Zω(t)+rω(t), (32)

where the extension term is given by

VarE(Vn,ω(Y )) = 4π
2(s2(ω)+ s2(−ω)

)
H1(0;Xu)t4,

and the Zitterbewegung

Zω(t) = 8π
2
√

s2(ω)s2(−ω)H1
(d(ω)

t ;Xu
)
t4

satisfies
Zω(t)≤ VarE(Vn,ω(Y )). (33)

The remainder rω(t) is of order O(t4). If Xu is weakly
1-admissible, rω(t) is of order o(t4).

We remark that (33) also holds for more general
objects Y , as long as its measurement function f is
weakly (1,1)-piecewise smooth and f ′ has exactly two
jumps.
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Proof. The explicit forms of VarE(Vn,ω(Y )) and Zω(t)
are obtained by inserting the jumps of the third
derivative g(3) of the covariogram given in Corollary
12 into the corresponding equations of Lemma 2,
taking (6) into account. The asymptotic behavior of
rω(t) has also been established in Lemma 2. The
bound (33) follows from H1(·;Xu)≤H1(0;Xu) and the
inequality of arithmetic and geometric means.

The explicit expression for the extension term in
Theorem 13 also shows which directions ω ∈ S2 are
best possible in terms of asymptotic variance when the
Zitterbewegung is neglected. If possible, one should
choose ω in the set of all unit vectors for which
the average (s2 + š2)/2 attains its minimum, where
š2 denotes the reflection of s2. When Y is point
symmetric, this is the set where the second normalized
symmetric curvature function s2 is minimal. Of course,
s2 is not available in applications, but with this in
mind, one might want to choose ω such that the
corresponding support point has large curvature (that
is, the vicinity is ‘peaked’).

A common strategy to determine the orientation of
the hyperplane stack in applications is to randomize
the direction ω in an isotropic way. We will write Eω

for the expectation with respect to ω in this case. The
assumptions of the following corollary are for instance
satisfied if Y is an ellipsoid; see the comment right
before Corollary 12.

Corollary 14. Let the assumptions of Theorem 13
be satisfied for all ω ∈ S2. Assume in addition that
the second derivative of the measurement function is
uniformly integrable in ω ∈ S2. If ω is a uniform
random unit vector which is independent of Xu, then
(8) with m = 1 holds with

VarE(Vn(Y )) = 2πH 2(∂Y )H1(0;Xu)t4. (34)

The term corresponding to the Zitterbewegung is

Z(t) = 8π
2Eω

[√
s2(ω)s2(−ω)H1

(d(ω)
t ;Xu

)]
t4,

and satisfies

Z(t)≤ VarE(Vn(Y )) (35)

with equality if and only if Y is a ball with diameter d0,
say, and H1(d0/t;Xu) = H1(0;Xu). The remainder is of
order O(t4), and even of order o(t4) when Xu is weakly
1-admissible.

Proof. Due to the law of total variance and the fact that
Vn,ω( f ) is unbiased for all ω , we have Var(Vn(Y )) =
EωVar

[
Vn,ω(Y )

∣∣ω], where the latter variance has been

described in Theorem 13. Hence, taking expectations
in (32) shows

Var(Vn(Y )) =EωVarE(Vn,ω(Y ))
+EωZω(t)+Eωrω(t).

The first term on the right equals (34) due to (29) and
the second term is obviously Z(t).

Now let gω denote the covariogram of the
measurement function f = fω with respect to the
direction ω ∈ S2. By (Stehr and Kiderlen, 2020,
Proposition 6.1)

rω(t) = t4
∫
R

g(4)ω (s)H1(
s
t ;Xu)ds,

and, for all ω , it is of order o(t4) if Xu is weakly
1-admissible. As H1(·;Xu) is uniformly bounded and
independent of ω , the asserted lower order properties
of r(t) = Eωrω(t) follow by dominated convergence if

Eω

∫
R
|g(4)ω (s)|ds < ∞. (36)

The function g(4)ω is uniformly integrable in ω ∈ S2 by
(38) and the assumption that f ′′ω is uniformly integrable
in ω. Thus (36) follows.

We now fix t > 0. Inequality (35) clearly holds due
to (33) and (29). If the former holds with equality for a
given t, we must have

H1
(d(·)

t ;Xu
)
= H1(0;Xu) (37)

almost surely, and s2 = š2, almost surely. The function
s2 is continuous by assumption, so this implies s2 = š2
on S2, which shows that Y must be point symmetric, as
Y is determined by s2 up to translation. As the width
d(·) is continuous and positive on S2, its range is a
compact interval in (0,∞), which, by the almost sure
equality (37) and Lemma 1, implies that the range
is degenerate and hence Y has constant width. This
means that d(ω) does not depend on ω , so there is a
constant d0 > 0 such that d = d0 on S2. But the only
origin symmetric convex bodies with constant width
d0 are balls with diameter d0. This and (37), which
now reads H1(d0/t;Xu) = H1(0;Xu), shows one of the
implications of the characterization of equality in (35).
The other is trivially satisfied.

Under the assumptions of Corollary 14 one can
also show Z(t) ≥ −VarE(Vn(Y )). However, this lower
bound is not sharp even in the equidistant case.
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APPENDIX

In this appendix we list generalizations of
important results from (Kiêu, 1997) such that they
now apply not only to functions with finitely many
finite jumps, but also to integrable functions with
finitely many, possibly infinite jumps. With these
generalizations in mind, it is easily seen that all the
results of (Stehr and Kiderlen, 2020) involving (m,1)-
piecewise smooth functions also apply for weakly
(m,1)-piecewise smooth functions. One simply has to
note that integrability of f (m+1) and g(2m+2) actually
suffice where their boundedness was used in previous
papers (here f denotes the measurement function and
g its associated covariogram).

To state the results below, we follow the notation
in (Kiêu, 1997), and let CK be the set of all compactly
supported piecewise continuous functions with finitely
many finite jumps, and we let Cb be the set of all
piecewise continuous bounded functions with locally
finitely many and finite jumps. Furthermore, we define
CK to be the set of compactly supported piecewise
continuous and integrable functions with finitely many
(possibly infinite) jumps. In particular, if h ∈CK such
that h′ is continuous in all but finitely many points with
possibly infinite jumps, then h′ is integrable by the first
fundamental theorem of calculus, and thus h′ ∈CK .

The following generalization of (Kiêu, 1997,
Lemma 4.1) follows simply by noticing that the
integrability of h′ is enough to guarantee the
integrability of h′φ in its proof.

Lemma 15 (Generalization of (Kiêu, 1997,
Lemma 4.1)). Let h∈CK and φ ∈Cb such that h′ ∈CK
and φ ′ ∈Cb. Then∫

R
h(x)φ ′(x)dx+

∫
R

h′(x)φ(x)dx =−∑
a∈Dhφ

Jhφ (a).

In the proposition below, f̌ means the reflection
of f , i.e. f̌ (x) = f (−x), and ∗ denotes convolution.
Similarly, f̌ (k) is the kth derivative of f̌ , and ˇJf (k) is the
reflection of the jump-function associated to f (k).

Proposition 16 (Generalization of (Kiêu, 1997,
Proposition 5.7)). Let f be a function with all
derivatives up to order m in CK and derivative of order
m+ 1 in CK . Then all derivatives up to order 2m+ 1
of its covariogram g are in CK , and the derivative of
order 2m+2 of g is in CK with

g(2k) = f (k) ∗ f̌ (k)+∑
0≤`<k

Jf (`) ∗ f̌ (2k−`−1)

+∑
0≤`<k

(−1)`+1 ˇJf (`) ∗ f (2k−`−1),
(38)

g(2k+1) = f (k) ∗ f̌ (k+1)+∑
0≤`<k

Jf (`) ∗ f̌ (2k−`)

+∑
0≤`≤k

(−1)`+1 ˇJf (`) ∗ f (2k−`) (39)

for all 2k and 2k+1 less than or equal to 2m+2.

Proof. The claim for 2k and 2k + 1 less than or
equal to 2m is exactly (Kiêu, 1997, Proposition 5.7).
The expression (39) for k = m and the claim that
g(2m+1) ∈ CK follow by differentiation from (Kiêu,
1997, Proposition 5.6) realizing that this proposition
holds true even under the weaker assumption f1, f2 ∈
CK and f ′2 ∈CK , where the notation of this proposition
has been adopted. One simply has to realize that f1 ∗ f ′2
is continuous also for f ′2 ∈CK .

The expression (38) for k = m + 1 follows by
differentiation using another generalization of (Kiêu,
1997, Proposition 5.6): Let f1 ∈ CK and f2 ∈ CK
such that f ′2 ∈ CK . Then f1 ∗ f2 ∈ CK is continuous,
f1 ∗ f ′2 ∈ CK and ( f1 ∗ f2)

′ ∈ CK coincides with f1 ∗
f ′2 + Jf2 ∗ f1 outside D( f1∗ f2)′ . Moreover, JJ f2∗ f1 = Jf2 ∗
Jf1 . The proof follows along the same lines as that
of (Kiêu, 1997, Proposition 5.6) using Lemma 15
and the appropriate generalizations of (Kiêu, 1997,
Lemmas 5.4 and 5.5).

The following corollary generalizes the claims of
(Kiêu, 1997, Corollary 5.8) relevant for this paper and
for (Stehr and Kiderlen, 2020).

Corollary 17 (Generalization of (Kiêu, 1997,
Corollary 5.8)). If f is weakly (m,1)-piecewise smooth
then its covariogram g is weakly (2m+1,1)-piecewise
smooth with

Jg(2m+1) = (−1)m+1 ˇJf (m) ∗ Jf (m) . (40)

Proof. The fact that g(k) is continuous for k ≤ 2m is
shown in the original corollary. The fact that g is then
weakly (2m + 1,1)-piecewise smooth with the given
jumps of g(2m+1) follows easily from Proposition 16
and its proof.
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