
Image Anal Stereol 2022;41:25-39 doi: 10.5566/ias.2642
Original Research Paper

STATISTICAL ASSESSMENT OF STRESS REDISTRIBUTION IN LOADED
POLYCRYSTALS
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1Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles
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ABSTRACT

This work deals with the analysis of stress redistribution in a polycrystal due to external loading, anisotropy of
elastic properties, and microstructure characteristics. A statistical method that enables assessing relationships
between stress fields and microstructure features of interest is suggested. The notion of generalised
semivariogram is introduced and used to determine the extent of spatial dependence in multivariate random
fields. Afterwards, it is allowed to perform the tests of independence based on the distance correlation
coefficient. The detected non-spatial dependencies are further examined, focusing on the identification of
the actual type of heteroscedasticity. The method is aimed at analysing large computational datasets resulting
from numerical simulations of stress redistribution in polycrystals under external loads. It is demonstrated
on datasets computed on a realistic microstructure of a NiTi wire subjected to tension while considering
uniform and preferential lattice orientation distributions and various degrees of elastic anisotropy. The method
shows for the considered microstructure and loading that the degree of elastic anisotropy does not affect
the dependencies contrarily to the lattice orientation distribution.

Keywords: distance correlation, elastic anisotropy, generalised semivariogram, heteroscedasticity, lattice
disorientation, test of independence.

INTRODUCTION

The deformation behaviour of polycrystalline
metals and alloys is driven by the evolution of
the internal stress field in response to external loads.
The internal stress field is proportional to the stretch
and the distortion of interatomic bonds is described at
the continuum level by a second-order strain tensor
εi j (i, j = 1,2,3) that is related to the second-order
stress tensor σkl (k, l = 1,2,3) through the elastic
constants forming a fourth-order elasticity tensor
Ci jkl (i, j,k, l = 1,2,3). The stress-strain relationship is
formulated by the following linear relationship defined
in the space of the crystal lattice as

σi j =
3

∑
k=1

3

∑
l=1

Ci jklεkl, i, j = 1, 2, 3. (1)

The components of the strain/stress tensors εi j/σi j
denote strain/stress acting on the plane normal to
the direction i along the direction j of the chosen
coordinate system. This can be, for instance,
the Cartesian coordinate system for which the integer
indices 1, 2, 3 relate to axes x, y, z, respectively, or
the cylindrical coordinate system for which the integer
indices 1, 2, 3 relate to axes r, ϕ, z.

The stress-strain fields within a polycrystal are
ruled by the deformation interactions among individual

crystals, called grains, constituting the polycrystals.
To simulate and understand these interactions,
the polycrystals are modelled by tessellation-based
methods that can be supported by experimental
data to generate realistic microstructure models.
For example, the 3DXRD experimental method
(Sedmák et al., 2016) providing information on
microstructure features in terms of grain volumes,
grains’ centres of mass, and grain-wise averaged
strains and stresses (Fig. 1 (b)) have been used
to reconstruct a realistic microstructure model of
a wire made from a NiTi shape memory alloy
(Otsuka and Wayman, 1998; Heller et al., 2020)
(Fig. 1 (a)) being used in biomedical applications.
Such microstructure models represented by a set of
convex polyhedra (Fig. 1 (c)) are used to simulate
stress-strain fields using numerical methods such as
the Finite Element Method (FEM) (Barbe et al.,
2001). FEM is applied to solve the problem of
internal force equilibrium formulated by a set of partial
differential equations including boundary conditions
representing the loading conditions and deformation
constraints (Zienkiewicz et al., 2013). The FEM
assumes a polynomial evolution of the displacement
field on the space of individual elements created
by the meshing of individual grains (Fig. 1 (d)).
The displacements at the elements’ vertices are
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Fig. 1: Example of microstructure reconstruction and modelling used to simulate stress-strain fields in
polycrystals subjected to external loads published in Heller et al. (2020). The microstructure of a NiTi wire
(a) was reconstructed from experimental data provided by the 3DXRD method (b) using tessellation modelling
(Petrich et al., 2019) resulting in a set of convex polyhedra (c) that are further discretised by finite elements (d)
for purposes of numerical simulations of stress-strain fields.

the solution of the simulation, while the stress-strain
fields are calculated from the displacement fields and
Eq. (1). Besides the tessellation-based methods, less
computationally demanding self-consistent modelling
methods are being used to estimate the effects of
crystal orientations on the distribution of stresses and
strains in loaded polycrystals (Willot et al., 2020).

The stress-strain redistribution inside the externally
loaded polycrystal stems from deformation processes
in individual grains that depend on the orientation of
the loading with respect to the crystal lattice, which
is in each of the grains oriented differently with
respect to the fixed sample’s coordinate system. This
is illustrated in Fig. 2 (a), where the orientation of
the cubic lattice is depicted in each of the grains
of a longitudinal cross-section of the microstructure
model of the NiTi wire shown in Fig. 1 (c). The lattice
orientation is further visualised by grain colours
reflecting the orientation of the wire axis in the grains’
cubic lattices according to the colour coding explained
in Fig. 2 (b). The blue shades prevail, meaning that
the crystals are preferentially oriented so that the wire
axis lies near the body diagonal of the crystal lattice.

The mismatch between elastic properties of
neighbouring grains is determined by the anisotropy of
elastic properties and the distribution of disorientations
(smallest misorientation) between grains. For

materials with the cubic crystal lattice, such as the one
of the present study, the elasticity tensor Ci jkl (Eq. (1))
is determined by three independent constants defined
in the coordinate system attached to the basal direction
of the cubic lattice

C11 =Ciiii, C12 =Cii j j =C j jii, C44 =Ci ji j =C ji ji,

i, j = 1,2,3, i ̸= j. The stress-strain relationship (Eq.
(1)) can be expressed in matrix form using Voigt
notation as follows

σ11
σ22
σ33
σ23
σ13
σ12

=


C11 C12 C12 0 0 0

C11 C12 0 0 0
C11 0 0 0

sym. C44 0 0
C44 0

C44




ε11
ε22
ε33

2ε23
2ε13
2ε12

 ,

where components of stress and strain tensors form
two vectors and the elasticity tensor is substituted
by 6 × 6 symmetric stiffness matrix determined by
the three constants in the case of the cubic crystal.
The extent of anisotropy of the cubic crystal is
defined by the coefficient of elastic anisotropy A that
is derived from the three independent constants as
the ratio of the shear stiffness in the basal plane,
C44, to the shear stiffness in the cube diagonal plane,
C′ = (C11 −C12)/2, i.e., A =C44/C′ (Zener , 1948).
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Fig. 2: Visualisation of lattice orientations in individual grains (a) by planar projections of cubic lattices and by
colours selected according to the colour coding (b).

The disorientation between grains is another factor
contributing to the mismatch in grain stiffnesses.
The distribution of disorientations is determined by
the distribution of crystal lattice orientations (Bunge,
1969). Besides a uniform distribution of crystal lattice
orientations inherited from the stochastic process of
metal solidification, materials may possess preferential
lattice orientations due to the thermomechanical
processing applied after the solidification. For
example, the NiTi wire is produced by hot rolling
and cold drawing involving a large, lattice orientation
dependent, plastic deformation process. Such a process
results in cubic lattice rotations such that their
body diagonals align preferentially along the wire
axis direction as shown in Fig. 3 (b1). This so-
called texture leads to a different disorientation angle
distribution (Fig. 3 (c1)) in comparison to uniformly
distributed lattice orientations (Fig. 3 (b2)) that result
in the disorientation distribution shown in Fig. 3 (c2).
The textured material possesses a lower frequency of
high disorientation angles that leads to a lower scatter
of axial stresses, as evident by comparing the axial
stress fields of the textured material (Fig. 3 (d1)) and
the material with the uniform distribution of lattice
orientations (Fig. 3 (d2)). The distribution of grain
orientations determines macroscopic elastic properties
of polycrystals (Hirsekorn, 1990).

Additionally to microstructure parameters,
including material parameters (e.g., elastic anisotropy)
and crystal lattice orientation, the redistribution of
stresses and strains in polycrystals is driven by
microstructure morphology (grains’ size, shape, and
grain boundaries). The knowledge of the relationship
between microstructure parameters and stress-strain
redistribution enables us to understand and predict
the material behaviour or optimise the materials’
performance.

The redistribution of the stress-strain fields
is usually characterised by averages and standard
deviations measured within a representative volume
element (RVE) originally introduced in Hill (1963).
In simple words, RVE is defined such that these
characteristics do not change further when increasing
the observation volume beyond that of RVE. However,
the variables in two adjacent RVEs could be correlated.
Therefore, the notion of an uncorrelated volume
element (UVE) was introduced in Sanei and Fertig
(2015). The average (nominal) values of stress
and strain characterise the effective macroscopic
deformation properties, while their standard deviations
characterise the local extremes of stress and strain.
While the global effective properties are considered
in structural engineering, the standard deviations are
considered for the prediction of critical stress states for
the initiation of other deformation properties. Hence,
both statistical characteristics of the stress-strain fields
are relevant for the materials’ performance.

In this paper, we suggest such an identification
method that searches for both spatial and non-
spatial dependencies. First, the identification of UVE
is presented. It empowers us to investigate non-
spatial dependencies on sets of nodes that are
at distances larger than the range of UVE, thus
eliminating the local effects. Second, we test if
considered microstructure parameters affect the stress
distribution within grains and/or at grain boundaries.
The grain and grain-boundary stress distributions
are assessed by average and standard deviation of
stresses within individual grains and grain boundaries,
respectively. The distribution of average stresses
within individual grains thus expresses the distribution
of inter-granular stresses, while the distribution of
standard deviations of stresses within individual
grains expresses the distribution of intra-granular
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Fig. 3: Effect of the preferential lattice orientation on the stress field. The behaviour of σzz (d1, d2) differs for
the textured material (a1, b1, c1) and the material having a uniform distribution of crystal orientation (a2, b2, c2).

stresses. The grain-boundary stress assesses local
stresses using the same statistical parameters that are
evaluated at the grain boundaries. Formal statistical
tests are used to evaluate the dependencies of
grain and grain-boundary stress distributions on
microstructure parameters. Third, in case of rejecting
the independence hypothesis, we further suggest
investigating whether the data are heteroscedastic,
i.e., whether grain to grain or boundary to boundary
fluctuations of the stress distribution increase or
decrease with the increase of a microstructure
parameter.

MATERIAL

In general, the problem at hand relates to
the broader issue of material-property relationship

seeking for the identification of relationships
between microstructure properties and macroscopic
deformation behaviour in order to optimise currently
used materials or design new materials (Fullwood et
al., 2010; Adams et al., 2013; Brough et al., 2017).
Specifically, we are interested in statistical methods
that asses the effect of microstructure on distributions
of inter- and intra-granular stresses and local stresses
near grain boundaries.

The method is tested on simulation data published
in Heller et al. (2020). The dataset is related to a single
microstructure tessellation model approximating
a real NiTi wire microstructure loaded by tension
along the wire axis. The approximation was
performed by using Laguerre tessellation fitted to
experimental data collected in a 3DXRD experiment,
providing information on grain volumes, centres
of mass positions, and lattices’ orientation as
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schematically shown in Fig. 1. The method was
applied to assess the effect of preferential lattice
orientation, the magnitude of elastic anisotropy,
and grain boundary orientation. Therefore, five
datasets were used. Two datasets account for
a very low elastic anisotropy and different lattice
orientation distributions compared in Fig. 3: 1)
experimentally identified preferential orientation
of [111] lattice directions along the wire axis,
denoted as texture; 2) uniform lattice orientation
distribution, denoted as uniform. Three other datasets
account for the experimentally identified preferential
lattice orientation distribution and three different
elastic anisotropies: low, mid and high, obtained by
different choices of Ci jkl in Eq. (1). Table 1 provides
an overview of the datasets used in this work, including
their abbreviations used hereinafter.

Table 1: Overview of used datasets including their
abbreviations, where A = 2C44/(C11 −C12).

Lattice ori. Elastic constants A

C11 C12 C44

uniform uniform 169.00 141.00 33.00 2.36

texture preferred 111 169.00 141.00 33.00 2.36

low preferred 111 162.45 145.45 34.00 4.00

mid preferred 111 159.00 147.63 35.00 6.16

high preferred 111 152.90 143.50 35.40 7.53

From a mathematical point of view, we deal with
a tessellation (Fig. 1 (c)) with multiple mark sets
with values in multidimensional metric spaces. Similar
marked tessellation was also studied in Pawlas et al.
(2020) to test the independent marking of a tessellation
marked with crystallographic orientations. In this
paper, one set of marks, which is considered to be
the set of response variables, is formed by the tensor
of mean values (Stressg [avg]), the distribution
of which characterizes the inter-granular stress
fluctuations, and the tensor of standard deviations
of the stress components (Stressg [std]), which
characterizes the intra-granular stress fluctuations.
Both these tensors are calculated from all elements
constituting the grain. For the local stresses near grain
boundaries, we again consider the two stress tensors.
However, in this case, we compute the mean (Stressb
[avg]) and the standard deviation (Stressb [std]) only
from the elements lying on the grain boundaries. As
the explanatory variables, we consider the following
set of microstructure features:

– Lattice ori – lattice orientation described by
a unit quaternion,

– Load ori – deviation angle of the [111]
crystallographic direction of a grain from
the loading axis,
– Dis [. . . ] – disorientation angles with
neighbouring grains (mean, minimum, maximum,
and standard deviation),
– Volume – volume of a grain normalised by
the average volume within the sample.

Regarding the grain boundary microstructure, we use
these variables:

– Area – size of the boundary,
– Boundary ori – three-component normal vector
describing the tilt of the grain boundary,
– Dis angle – disorientation angle between
the pair of neighbouring grains,
– Vol ratio – ratio of the volume of the larger grain
to the volume of the smaller one sharing the grain
boundary.

The geometrical characteristics are computed based on
the parametric representation of the tessellation.

METHODS

To determine the character of the desired
relationships, we use various approaches and
distinguish spatial and non-spatial dependence. First,
the spatial dependence of the stress field needs to be
filtered out. This can be achieved by the usage of
the random field and the generalised semivariogram
applied to a suitably large subsample of elements,
which empowers the determination of UVE. Once
the UVE is determined, further analysis follows, which
proceeds only with the grain and boundary variables.
For a spatially independent subsample of grains,
the tests of independence between the stress values
and microstructure variables are applied. For pairs
for which the independence hypothesis is rejected,
heteroscedasticity is examined.

SPATIAL DEPENDENCE

When dealing with image data of polycrystalline
materials, spatial dependencies are often present.
Thus, for further analysis, it is essential to determine
the range of spatial dependence, which is the distance
beyond which the data are independent. The range
determines the size of the UVE. More precisely,
the UVE is estimated by a ball with a diameter equal
to the estimated range. This plays an important role
because it enables us to select spatially uncorrelated
subsamples.
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Spatially distributed data on D ⊆ R3 are modelled
by a spatial random field, which is a collection of
random variables {Z(x), x ∈ D} with, most frequently,
real values. Let {Z(x), x ∈ D} be a stationary random
field. To express the spatial dependence of the random
field, it is common to use the so-called semivariogram,
defined as

γ(h) =
1
2
E
[
Z(x+h)−Z(x)

]2
, h ∈ D−D, (2)

where D−D = {h : h = y− x, x ∈ D, y ∈ D}. If there
exists a finite limit lim∥h∥→∞ γ(h) called the sill, we
define the range C as the minimal value for which
the semivariogram hits its sill, i.e.,

C = min
{

s ≥ 0 : γ(x) = lim
∥h∥→∞

γ(h), for all ∥x∥ ≥ s
}
.

The range indicates the distance within which
values at two points in D are spatially correlated.
In geostatistics, it is common to define the practical
range (or effective range) as the distance at which
the semivariogram achieves 95% of its sill, see
(Schabenberger and Gotway, 2005, Section 1.4.2).

However, this approach is used only for spatially
distributed data with real values. A generalisation
to multidimensional data is not so often considered
in the literature. Such a generalisation is needed
for our purposes due to the desire to assess
the spatial correlation of the stress tensor values. More
specifically, let us consider a stationary spatial random
field with values in a general metric space (X,d)
with dimension higher than one. We suggest defining
the generalised semivariogram as

γ(h) =
1
2
E
[
d (Z(x+h), Z(x))

]2
, h ∈ D−D. (3)

It is easily seen that the semivariogram defined by
Eq. (2) is a special case of Eq. (3) on the Euclidean
space X = R with d(x,y) = |x− y|. Another method
of measuring spatial correlations on multidimensional
spaces is used, e.g., in Abdallah et al. (2015).

Let {Z(x), x ∈ D} be a motion-invariant (i.e.,
stationary and isotropic) random field with values
in X. It means that the distribution of distances
d (Z(x),Z(y)) depends only on the distance ∥x − y∥
between the corresponding ground points. Following
Matheron’s estimator (Schabenberger and Gotway,
2005, Section 4.4.1), we define a non-parametric
estimator of γ(r) for r ≥ 0 as

γ̂(r) =
1

2|N(r)| ∑
x,y∈N(r)

[
d (Z(x), Z(y))

]2

,

where N(r) = {(x,y)∈ D×D : ∥x−y∥= r}. However,
since for fixed r ≥ 0, the set N(r) contains very little
or no pair, we divide the interval [0,R), R > 0, into k
equidistant bins of width δ = R/k. Then γ is estimated
for representing points ri = (i−1/2)δ by

γ̂(ri) =
1

2|Ni| ∑
x,y∈Ni

[
d (Z(x), Z(y))

]2

, i = 1, . . . ,k, (4)

where Ni = {(x,y)∈D×D : ∥x−y∥∈ [ri−δ/2,ri+δ/2)}.

We intend to determine the range of spatial
dependence so that the data are correlated if the ground
points are within this distance and the correlation is
negligible outside it. From γ̂ given by Eq. (4), we can
naturally estimate the sill and the practical range. Then
we can define the UVE as a ball with a diameter equal
to the estimated practical range.

To apply this procedure to the stress field,
the values of element-wise stress tensor can be viewed
as a realisation of a spatial random field. We focus only
on the cubic structure of a polycrystalline material.
The corresponding stress tensor (σkl) (k, l = 1,2,3)
can then be represented as a real symmetric 3 × 3
matrix. Thus, we consider a spatial random field with
ground points in D and values in the metric space
(R3×3, d1) with the ℓ1-metric d1 defined as

d1(x,y) =
3

∑
i, j=1

|xi j − yi j|, x,y ∈ R3×3. (5)

This metric depends on the choice of the basis.
However, the present study deals with a simple
uniaxial loading along the axis of a cylindrical sample.
Hence the natural choice of the cylindrical coordinate
system (z-axis along the loading direction being
the wire axis) points its z-axis along the average
orientation of the principal stress. Therefore, the metric
given by Eq. (5) can be considered as very close to
a metric operating with principal stresses. The choice
of the metric for more general types of loading and
stress states requires further investigations. One can
consider the distances discussed in Angulo (2014) or
Yamaji and Sato (2006).

NON-SPATIAL DEPENDENCE
Assume that the random field {Z(x), x ∈ D} is

observed at spatial locations xi ∈ D. Once the range C
is determined, a sample Z(x1), . . . ,Z(xn) of practically
independent variables is obtained by subsampling
the original locations so that the distance between all
pairs is greater than C, i.e., ∥xi−x j∥>C, i, j = 1, . . . ,n.

When we consider a tessellation composed of
grains Ξi, a subsample of practically independent
grains is obtained as follows. First, for each grain
Ξi denote its centre of mass by Xi, estimate its
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diameter, and denote it as ri. Then randomly order
the grains. The first grain is included in the subsample.
Each additional grain, say Ξ j, is included only if
it satisfies the condition ∥Xi − X j∥ − (ri + r j) > C
for all preceding grains Ξi, otherwise it is rejected.
An example of this sequential procedure is shown
in Fig. 4, where accepted grains are highlighted.
The resulting subsample contains only grains with
a mutual distance greater than C.

We have obtained subsamples that could be
regarded as spatially independent data, which are
used to analyse the non-spatial dependencies. We
use a specific test that makes it possible to test
the independence between variables with values in
higher and not necessarily equal dimensions. In case
of rejecting the independence hypothesis, we further
focus on the heteroscedasticity of the stress variables.

Fig. 4: Example of a tessellation with uncorrelated
volume (left) and subsample of spatially uncorrelated
grains (right).

The procedure is to be demonstrated on three
examples of dependent and, for simplicity, real-
valued variables depicted in Fig. 5. The dependence
is apparent in all three examples. We see that
the dependence is non-linear and even non-monotone.
Moreover, in the latter two examples, the data are
also heteroscedastic. The variability in Fig. 5 (b)
monotonically decreases while there is a non-
monotonic relationship in Fig. 5 (c).

The procedure proceeds as follows. First,
the independence test is performed. Then, in
the case of rejecting the independence hypothesis,
heteroscedasticity is studied. The values of both
Pearson and Spearman correlation coefficients are
close to zero in all three examples presented in Fig.
5. Therefore, we prefer to apply the independence
test based on the distance correlation, which will be
explained later. The next step is the heteroscedasticity
investigation method, which is based on clustering
the data according to the explanatory variable. This is
followed by computation of the correlation coefficient
between the cluster means of the explanatory variable
and the standard deviations (stds) of the response
variables within a single cluster. Finally, formal

statistical tests of uncorrelatedness and independence
are performed.

(a)

(b)

(c)

Fig. 5: Simulated examples of dependent variables.

Test of independence
To test the independence between random vectors,

we use the so-called distance correlation coefficient
introduced in Székely et al. (2007); Székely and Rizzo
(2009) for a pair (X , Y ) of random vectors having
finite first moments. The advantage of the distance
correlation coefficient is that, unlike both Pearson
and Spearman coefficients, the distance correlation
between two random variables is zero if and only
if these variables are independent. This allows
performing statistical tests of independence, not only
uncorrelatedness. The test can be performed using
the permutation bootstrap method. Moreover, using
the distance correlation, we can deal with variables
with values in spaces with higher and not necessarily
equal dimensions. However, unlike Pearson and
Spearman coefficients the test based on the distance
correlation coefficient does not reveal the type of
the relationship.
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The definition of the distance correlation
coefficient was extended in (Lyons, 2013) to
random elements with values in metric spaces of
strong negative type. This property is needed for
the equivalence saying that the distance correlation
between two random elements is zero if and only if
these elements are independent.

We say that a metric space (X, d) is of negative
type if

n

∑
i=1

n

∑
j=1

cic jd(xi,x j)≤ 0

for all n ∈ N, x1, . . . ,xn ∈ X, and c1, . . . ,cn ∈ R such
that ∑

n
i=1 ci = 0. A metric space (X,d) is of strong

negative type if it is of negative type and∫
X×X

d(x1,x2) d(ν1 −ν2)
2(x1,x2) = 0 ⇐⇒ ν1 = ν2

for all ν1,ν2 probability measures on X with finite first
moment (Lyons, 2013).

For the sake of simplicity, we describe only
a sketch of the independence test, for more details
see Székely et al. (2007) or Lyons (2013). Let
(X1,Y1), . . . ,(Xn,Yn) be a random sample of random
elements (X , Y ) with values in metric spaces of
strong negative type (X, dX), (Y, dY ), respectively. For
j, k = 1, . . . ,n compute the distance between the j-th
and k-th component of the vector (X1, . . . ,Xn) using
the dX metric and apply the same to the vector
(Y1, . . . ,Yn) with the metric dY . This gives rise to
the matrices (aX

j,k) and (aY
j,k), respectively. From these

matrices we construct matrices (AX
j,k) and (AY

j,k) as
follows:

A j,k = a j,k −
1
n

n

∑
i=1

a j,i −
1
n

n

∑
i=1

ai,k +
1
n2

n

∑
i=1

n

∑
l=1

ai,l.

The empirical distance correlation coefficient is then
calculated as

dCorrn(X ,Y ) =
dCovn(X ,Y )√

dVarn(X)dVarn(Y )
,

if dVarn(X)dVarn(Y )> 0, otherwise 0, where

dCov2
n(X ,Y ) =

1
n2

n

∑
j=1

n

∑
k=1

AX
j,kAY

j,k,

dVar2
n(X) =

1
n2

n

∑
j=1

n

∑
k=1

(AX
j,k)

2,

dVar2
n(Y ) =

1
n2

n

∑
j=1

n

∑
k=1

(AY
j,k)

2.

The corresponding p-value of the permutation
bootstrap test is calculated as

p =
1

N +1

[
1+

N

∑
i=1

111
{

dCorr(i)n (X ,Y )≥ dCorrn(X ,Y )
}]

,

where dCorr(i)n (X ,Y ) denotes the empirical coefficient
calculated from the random sample X1, . . . ,Xn and
a randomly permuted sample Y (i)

1 , . . . ,Y (i)
n obtained

from the random sample Y1, . . . ,Yn.

As shown in Table 2, the null hypothesis of the test
concerning the examples from Fig. 5 is rejected in all
three cases at the level α = 0.05.

Table 2: Results of independence test for examples
from Fig. 5.

Fig. 5 (a) Fig. 5 (b) Fig. 5 (c)

dCorrn 0.220 0.210 0.090

p-value ≪ 0.005 ≪ 0.005 0.006

To apply the distance correlation approach to our
data, we need appropriate metrics dX and dY . Since
(R3×3,d1), with d1 defined by Eq. (5), is a space of
negative type, according to Lyons (2013, Corollary
3.18), d1/2

1 can be used to measure the distances
between stress tensors. Let S3 denote the set of unit
quaternions and let ddis denote the disorientation angle.
It can be shown that (S3,ddis) is a metric space of
negative type and thus, d1/2

dis can be used to measure
the distances between lattice orientations. Similarly,
the metric

d1/2
α (u,v) =

√
arccos

(
|∑3

i=1 uivi|
∥u∥∥v∥

)
,

can be used to measure the distances between two
boundary orientations represented by lines through
the origin, spanned by non-zero vectors u and v, which
are the normal vectors of two boundaries.

Heteroscedasticity investigation

Let X (e.g., disorientation angle) and Y (e.g.,
grain-wise averaged stress tensor) be random elements
for which the test introduced above rejects the null
hypothesis about the mutual independence. The natural
desire is to quantify the manner of dependence.
Given the variable X , we focus only on determining
the heteroscedasticity of Y , i.e., the case when
the conditional variance of Y is non-constant.
There are already developed procedures for testing
the heteroscedasticity (see, e.g., Breusch and Pagan
(1979); Koenker and Bassett (1982)). Nevertheless,
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our question of interest is how the standard
deviation/variance of the response variable depends on
the explanatory variable. For higher-dimensional data,
this task is not straightforward. Therefore, we study
the dependence for all components separately. In some
cases, such reduction to individual components does
not make sense, e.g., for lattice orientation.

The proposed approach lies in clustering
the data based on the values of the explanatory variable
followed by computation of the means and stds within
clusters. The final step comprises the calculation of
the correlation coefficients from which conclusions
about the dependence can be made. Knowledge of
the correlation coefficients between these vectors
provides information about the shape or at least
the manner of dependence in the original data. This
is useful when dealing with some large datasets, in
which case the depicted graphs can be quite cluttered.

The proposed method is the following. Arrange
the random sample (X1,Y1), . . . ,(Xn,Yn) into a matrix
Z with n rows and 2 columns. Sort the rows of Z
by the values of the vector (X1, . . . ,Xn) and denote
the resulting matrix as Z′ = (X ′, Y ′). Divide Z′ into k
groups/clusters with number of components n1, . . . ,nk
with ∑

k
i=1 ni = n. Next, compute vector X̄ ′

· of group
means of X ′ and vector Y ⋆

· of group stds of Y ′, i.e.,

X̄ ′
· =

(
1
n1

n1

∑
i=1

X ′
1,i, . . . ,

1
nk

nk

∑
i=1

X ′
k,i

)
,

Y ⋆
· =

(√
1
n1

n1

∑
i=1

(
Y ′

1,i − Ȳ ′
1·

)2
, . . . ,

√
1
nk

nk

∑
i=1

(
Y ′

k,i − Ȳ ′
k·

)2
)
,

where Ȳ ′
· =

(
Ȳ ′

1·, . . . ,Ȳ
′
k·
)

denotes the vector of group
means of Y ′. The sketch of the procedure is given in
Eq. (6).X1 Y1

...
...

Xn Yn

 sort by X−−−−−→

X ′
1 Y ′

1
...

...
X ′

n Y ′
n

 clustering−−−−−→



X ′
1,1 Y ′

1,1
...

...
X ′

1,n1
Y ′

1,n1
...

...
X ′

k,1 Y ′
k,1

...
...

X ′
k,nk

Y ′
k,nk


means of X−−−−−−→

stds of Y

X̄ ′
1· Y ⋆

1·
...

...
X̄ ′

k· Y ⋆
k·


(6)

In the last step, we compute the correlation
coefficients between vectors X̄ ′

· and Y ⋆
· and perform

the corresponding tests of coefficients being zero.

We use both Pearson and Spearman as well as
the distance correlation coefficient. The Pearson
correlation coefficient measures the strength of
a linear relationship while Spearman’s rank correlation
coefficient the strength of a monotonic relationship.
Therefore, we conclude that the relationship is non-
monotonic if the null hypothesis is rejected for
the distance correlation only and is not rejected for
both Pearson and Spearman coefficients. Rejecting
the null hypothesis about uncorrelatedness using
the Pearson test would suggest that the relationship
between the variables is linear. However, due to
the large power of this test, a linear dependence
may also be suggested in the case of monotonic
but non-linear relationships. Thus, for the sake of
simplicity, we decide to reduce the number of options
and exclude the linear relationship. We also record
the sign of the Pearson correlation coefficient to
determine whether the relationship is positive or
negative. The classification of the dependence is as
follows.

– None – the test based on the distance
correlation does not reject.
– Non-monotone – the test based on
the distance correlation rejects, but both
Pearson and Spearman do not reject.
– Monotone (−) – the test based on
the distance correlation rejects and also
Pearson or Spearman. Additionally, the sign of
the Pearson coefficient is −1.
– Monotone (+) – the test based on
the distance correlation rejects and also
Pearson or Spearman. Additionally, the sign of
the Pearson coefficient is 1.

An important question is how to cluster
the components of Z′. One possibility is to
divide Z′ into approximately equally large groups.
The disadvantage of this choice is that dissimilar
values of X ′ may occur in one group. This may lead to
larger stds of X ′ within a single group. To avoid this,
one can divide Z′ into groups based on the stds of X ′.
In practice, we fix an upper bound of the std and add
another X ′

i to a cluster until the bound is exceeded.
However, this approach can give rise to the problem
of small cluster sizes ni. Moreover, the property of
generality could be lost.

To compromise between these two approaches,
we use the k-means clustering method (see e.g.,
MacQueen (1967)). This iterative method finds
a locally optimal solution by minimising the distance
between each component and its nearest cluster mean.
It seems that a good choice of the initial solution may
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be the division of Z′ into approximately equally large
clusters.

The remaining question is the choice of k, i.e.,
the number of clusters. For large values, the problem
with low values of ni may occur again. On the contrary,
for small values of k, unrealistic stronger correlations
may appear. For example, there are only two
observations for the choice k = 2. Thus, the correlation
would most likely be strong. To conclude, with a fixed
number of observations N, the need is to construct
as many clusters as possible as well as to construct
clusters with sufficiently many components. For this
reason, as a rule of thumb we propose the choice
k = ⌊

√
N⌋, where ⌊·⌋ denotes the floor function.

The scheme of the proposed procedure is summarised
in Algorithm 1.

Algorithm 1
1. Compute (X̄ ′

· ,Y
⋆
· ) as in Eq. (6).

2. Compute p-values of the tests based on
distance, Pearson and Spearman correlation
coefficients.

3. Apply classification.

However, since we use only the spatially
independent subsample, the results may depend on
the choice of the subsample. Therefore, it is convenient
to use multiple subsamples (obtained by choosing
different seeds) and combine the results. For this
purpose, we use the extreme rank envelope test
(Myllymäki et al., 2017). The scheme of the procedure
is summarised in Algorithm 2. The idea is to compute
the correlation coefficients together with the p-value
of the corresponding test of significance between
means and stds for each subsample. Then apply
the same to the permuted pairs. In more detail,
the vector of means stays fixed while we are randomly
permuting the vector of stds. This gives rise to a table
of size (#subsamples × (#permutations+1)) of p-
values. Finally, the extreme rank envelope test can
be applied to this table to determine the extremeness
of the original unpermuted pair. The procedure is
summarised in Algorithm 2.

Algorithm 2
1. S times repeat:

I. Subsample
(
(X1,Y1), . . . ,(XnS ,YnS)

)T .

II. Compute (X̄ ′
· ,Y

⋆
· ) as in Eq. (6).

III. Compute p-values of the tests based on
distance, Pearson and Spearman correlation
coefficients.

IV. P times randomly permute Y ⋆
· and compute

p-values of the tests.
→ Three vectors of p-values of length (P+1).
2. Apply the extreme rank envelope test to all
three matrices (type S× (P+1)) → p-values.

3. Apply classification.

Table 3 provides a summary of the results
of the simpler method described in Algorithm
1 applied to the examples from Fig. 5 with
the response Y and the explanatory variable X . There
are p-values corresponding to the uncorrelatedness
and independence tests with sign of the Pearson
coefficient. The p-values corresponding to the tests
for which the null hypothesis is rejected at the level
α = 0.05 are highlighted. The results correspond to
our expectations. The method did not reveal any
heteroscedasticity in Fig. 5 (a). The variance in
Fig. 5 (b) is monotonically decreasing. The method
discovered a non-monotonic relationship between X
and the variance of Y in Fig. 5 (c).

Table 3: The p-values of statistical tests for
the data presented in Fig. 5.

Fig. 5 (a) Fig. 5 (b) Fig. 5 (c)

Pearson 0.479 (−) ≪ 0.005 (−) 0.907 (−)
Spearman 0.330 (−) ≪ 0.005 (−) 0.990 (−)
Distance 0.519 ≪ 0.005 0.013
Dep. type None Mon. (−) Non-mon.

RESULTS

SPATIAL DEPENDENCE
Our dataset is comprised of 7685 grains with more

than 1500000 elements. According to the procedure,
to characterise the heteroscedasticity in the data,
the first step is the determination of the spatial
dependencies. For this purpose, we use the generalised
semivariogram defined by Eq. (3). We estimate this
function from a random field of stress tensors at
element-wise locations, which give more refined
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information about the range of dependence than
only grain-wise averaged stress tensors. However,
since estimating the semivariogram over all elements
would be computationally demanding, we choose
a random sample of elements in the following
way. From each grain, we randomly select 1/5
of the contained elements. This leads to a sample
composed of approximately 300000 elements. These
sampled elements are used in the estimator given by
Eq. (4).

Fig. 6 shows the estimates of the generalised
semivariograms of stress tensors for different choices
of elastic constants. The bin width in Eq. (4)
is δ = ri+1 − ri = 0.5. We see that the estimated
ranges for different choices of the elastic constants
are comparable, around 6µm. Note that the mean
grain diameter of the underlying tessellation is
approximately 4–5µm. Thus, we conclude that
the stress values mostly affect the stress values of
the neighbouring grains only.

Fig. 6: Estimates of the generalised semivariogram for
all five datasets.

NON-SPATIAL DEPENDENCE

Test of independence
In the previous section, it was shown that

the stress tensor values are affected by grains at
a certain distance. Hence, to apply the independence
test mentioned above, which is applicable only to
i.i.d. samples, we choose a subsample of practically
spatially uncorrelated grains. Such a subsample
consists of 430 grains for dataset uniform, 335 grains
for dataset texture, and 382 grains for the remaining
datasets. This should guarantee the independence
and identical distribution of components within
the subsample.

Table 4 provides a summary of the results
of the independence test between the grain
microstructure variables and Stressg [avg], Stressg

[std]. The cells corresponding to the dependent pairs,
i.e., the independence hypothesis was rejected, are
highlighted. It is conclusive that the stress field values
depend on the lattice orientation for all datasets,
which corresponds to the natural dependence due
to the directional anisotropy of elastic properties.
The microstructure with uniformly distributed
crystal orientations showed lower dependence on
microstructure parameters compared to the textured
one as the test of independence was not rejected
only for lattice orientation, volume and maximum
disorientation angle, where the former two affect
both Stressg [avg] and Stressg [std], while the last
one affects only intra-granular stresses (Stressg
[std]). The textured microstructure showed additional
dependencies of the stress field values on load
orientation, minimum and mean disorientation angle.
The variance of disorientation of neighbouring grains
affected only average grain stresses. Finally, the elastic
anisotropy does not seem to systematically affect
the dependencies.

Regarding the grain boundaries, to avoid
the internal dependencies within samples, the range
of spatial dependence C should be again taken
into consideration. This time we choose to take
a subsample of the grain boundaries such that none
of the pairs has centres closer than C. This subsample
is comprised of 1104 grain boundaries for the dataset
uniform, 791 grain boundaries for the texture, and 947
grain boundaries for the remaining datasets.

Table 5 provides a summary of the results
of the independence test between the boundary
microstructure variables and both Stressb [avg] and
Stressb [std] as the results for these tensors are
identical. The cells corresponding to the dependent
pairs are again highlighted. We see that for all
datasets, we reject the independence hypothesis
between stress on the grain boundary and its
area irrespectively of texture and degree of the elastic
anisotropy. In addition, we reject the independence
hypothesis between stress on the grain boundary
and disorientation for textured microstructure and all
anisotropy degrees. The stress seems to be independent
of both the boundary orientation and the volume ratio
of the neighbouring grains.

To fully understand the relationships between
the stress distribution and the microstructure variables,
these results may be compared with the analysis
through the Pearson correlation coefficient (applied
to individual components of the multidimensional
variables). However, the values of the Pearson
coefficient are almost zero for all examined
pairs except for the pairs formed by Area and
the components of Stressb [std] corresponding
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Table 4: Dependencies of stress tensors values on microstructure grain variables. The cells corresponding to
the dependent pairs, i.e., the independence hypothesis was rejected, are highlighted.

Dis [avg] Dis [min] Dis [max] Dis [std] Lattice ori Load ori Volume

Stressg [avg] [std] [avg] [std] [avg] [std] [avg] [std] [avg] [std] [avg] [std] [avg] [std]

uniform ✓ ✓ ✓ ✓ ✓

texture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

low ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

mid ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

high ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

to datasets with non-uniformly distributed crystal
orientations. In this particular case, the values are
significantly high. Thus, we can conclude that for
these datasets, the values of Stressb [std] are higher
for larger boundaries.

Table 5: Dependencies within grain boundaries
(both Stressb [avg] and Stressb [std]). The cells
corresponding to the dependent pairs, i.e.,
the independence hypothesis was rejected, are
highlighted.

Area Boundary ori Dis angle Vol ratio

uniform ✓

texture ✓ ✓

low ✓ ✓

mid ✓ ✓

high ✓ ✓

Heteroscedasticity

Next, we apply the method from Algorithm 2 with
choices S = 99 and P = 199. However, the variables
of interest have values in higher dimensions. Thus,
we need to look at their components individually.
The results are shown in Fig. 7. Since all datasets
with preferred lattice orientation behave very similarly
irrespectively of the elastic anisotropy we distinguish,
for simplicity, only the datasets uniform and texture.

It can be noted that, in the case of
the microstructure with uniformly distributed lattice
orientations, the stress within the whole grain is related
to:

– Volume – the smaller volume, the larger
distributions of inter- and intra-granular stresses,
i.e., the larger variance of mean stress (Stress

[avg]) and standard deviation of stress (Stress
[std]) within grains,
– Dis [max] – the grains with higher maximum
disorientation have a smaller variance of intra-
granular stresses (Stress [std]),
– Load ori – no dependence, which is in
agreement with usually assumed macroscopic
elastic anisotropy of polycrystals with uniformly
distributed lattice orientations.

The local stress at the grain boundary depends on
the area of the grain boundary (Area) – the grain
boundaries with smaller area have larger mean stress
and stress inhomogeneity at grain boundaries.

The same dependencies and their trends apply
to the textured microstructure with the preferred
lattice orientations. However, the following additional
dependencies of the stress within the whole grain are
detected:

– Load ori – the grains having their [111] lattice
direction closer to the loading direction show
higher variance of mean stresses for all stress
components while a smaller variance of intra-
granular normal stresses and larger variance of
intra-granular shear stresses,
– Dis [avg] – the grains with higher mean
disorientation have a larger variance of mean
stress,
– Dis [std] – the grains with higher fluctuation
of disorientations have a smaller variance of mean
stress,
– Dis [min] and Dis [max] – not a unique trend
was identified.

The local stress at the grain boundary of
textured microstructure depends additionally on
the disorientation of neighbouring grains (Dis angle) –
the grain boundaries having larger disorientation show
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(a) Stressg [avg]. (b) Stressg [std].

(c) Stressb [avg]. (d) Stressb [std].

Fig. 7: Heteroscedasticity type of the stress components within grains (a, b) and on grain boundaries (c, d).

a larger variance of mean stresses and larger variance
of stress fluctuations at grain boundaries.

DISCUSSION

The results showed that for the considered
microstructure and loading, the degree of elastic
anisotropy does not essentially affect the dependencies
contrarily to the lattice orientation distribution that
was found to affect the dependencies. We were
able to detect some dependencies between stress and
microstructure. Moreover, we characterised the actual
type of trend of variance of stress conditionally on
microstructure parameters.

What might still be an object of discussion is
the choice of the families as well as the recommended
lower bound of the number of observations contained
in each cluster. The higher performance of the method
would be unequivocally ensured by a higher number of
observations. However, collecting such a considerably
large dataset may be an issue. Moreover, processing

such a dataset may be time-demanding. With a large
dataset, we can afford to have enough clusters to
accurately test the dependence as well as to be
endowed with enough observations inside each cluster
to compute the mean and standard deviation with
higher precision. In the case of spatially independent
data, the method simplifies to no subsampling and no
extreme rank envelope test. Thus, for such a dataset,
fewer observations are satisfactory.

A disadvantage of the proposed method is
the necessity of reducing the multivariate variables
down to single components. When dealing with
complex variables such as the grain orientation,
the reduction becomes complicated. The reduction of
the stress tensor is quite natural from the origin of
the variable.

The method, however, provides only insight into
the dependence of the stress components on single
variables. This helps to understand the individual
relationships, but in case of an intention to model
the whole structure, a deeper grasp is needed. For
example, the whole vector of disorientations should be
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taken into consideration instead of only the vector of
characteristics. An important note is also that, when
investigating the dependencies, multicollinearity may
be present. Thus, it is important to be careful in
explaining the results. To check the multicollinearity, it
is possible to use the independence test with distance
correlation coefficient or another already established
method (see, e.g., Kumar (1975); O’Brien (2007)). In
the presented analysis, there was nothing to indicate
that the microstructure parameters are dependent.
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