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ABSTRACT

Local Binary Pattern (LBP) are considered as a classical descriptor for texture analysis, it has mostly been used
in pattern recognition and computer vision applications. However, the LBP gets information from a restricted
number of local neighbors which is not enough to describe texture information, and the other descriptors that
get a large number of local neighbors suffer from a large dimensionality and consume much time. In this
regard, we propose a novel descriptor for texture classification known as Circular Parts Local Binary Pattern
(CPLBP) which is designed to enhance LBP by extending the area of neighborhood from one to a region of
neighbors using polar coordinates that permit to capture more discriminating relationships that exists amongst
the pixels in the local neighborhood which increase efficiency in extracting features. Firstly, the circle is
divided into regions with a specific radius and angle. After that, we calculate the average gray-level value of
each part. Finally, the value of the center pixel is compared with these average values. The relevance of the
proposed idea is validate in databases Outex 10 and 12. A complete evaluation on benchmark data sets reveals
CPLBP′s high performance. CPLBP generates the score of 99.95 with SVM classification.

Keywords: Feature extraction, Local binary pattern (LBP), Texture classification.

INTRODUCTION

Texture is a basic characteristic of the appearance
of various natural areas. It is an essential component
of computer vision systems, and is omnipresent in
natural images. Texture classification, as one of the
big issues in texture analysis, has been a long-
standing research topic in the domain of pattern
recognition and computer vision, because of its
importance firstly for understanding how the process
of texture recognition is employed in human vision
and secondly for the significant role it plays in
the large diversity of applications of image analysis
[Pietikainen et al., 2011]. The texture classification
is used in various applications (e.g.biomedical image
analysis, face recognition, remote sensing, face
analysis and biometrics, document classification,
object recognition, fabric inspection) [Tuceryan and
Jain, 1993]. The analysis of real world texture has
shown to be surprisingly difficult caused by the natural
texture inhomogeneity of scale and rotation changes,
variability in surface shape and illumination.

Like the classical problem of pattern recognition,
texture classification mainly comprises of two
sub issues: feature extraction and classifier design
[Pietikainen et al., 2011], [Tuceryan and Jain, 1993].
It is globally agreed that the most significant role
is the extraction of strong texture features to get

a good recognition result, because if poor features
are employed even the best classifier will fail
to attain great results caused by various imaging
distortions (including illumination, rotation, view
point, scaling, occlusion, nonrigid deformations and
noise). Therefore, the research works in the literature
are mostly concentrated on the feature extraction part
in the texture classification. Furthermore, an excellent
survey given in [Pietikainen et al., 2011, Brahnam
et al., 2014] of various textures feature extraction
methods have been developed.

For getting the best texture classification with
images that captured beneath changing pose condition
or illumination, we need to focus on the variations
of grayscale, scale and rotation. Various approaches
and models have been proposed to obtain gray
scale and rotation invariant texture classification
such as hidden Markov model [Chen and Kundu,
1994], autoregressive model [Kashyap and Khotanzad,
1986], Gaussian Markov model [Deng and Clausi,
2004]. Recently, [Cui et al., 2006] and [Liu et al.,
2009] introduce a texture classification method, which
employs a rotation-invariant feature derived from the
radon transform [Deans , 2007]. Local binary pattern
(LBP) approaches have also been utilized in the texture
analysis domain with rotation and scale invariance
[Guo et al., 2010a, Liu et al., 2015].
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Among the various texture features extraction
methods, Local Binary Pattern (LBP) [Ojala et al.,
2002] have appeared as one of the most significant
and broad-studied classes of texture features. Owing
to their remarkable advantages (easy to implement
and low computational complexity), LBP has evolved
rapidly in the domain of computer vision and image
analysis. Indeed, for a various range of issues several
LBP variants have been proposed in the literature:
face recognition [Ruiz-del Solar and Quinteros, 2008],
dynamic texture recognition [Zhao and Pietikainen,
2007], texture classification [Ojala et al., 2002, Liao et
al., 2009], face image analysis [Ahonen et al., 2006],
biomedical image analysis [Nanni et al., 2010], object
detection [Trefny and Matas, 2010, Nguyen et al.,
2013].

[Ojala et al., 2002] introduced Local Binary
Pattern (LBP) histogram for grayscale and rotation
invariant texture classification. Although the original
LBP method had important limits, the general
philosophy of LBP has proven very popular owing
to its flexibility and efficiency, furthermore the
various modifications and extension were introduced
to enhance their robustness and performance. [Liao et
al., 2009] proposed Dominant Local Binary Pattern
(DLBP) that eliminate seldom-occurred patterns by
using the most frequency ones. [Bianconi et al.,
2015] was investigated the problem of determining
sets of discriminative patterns by answring a specific
question which is the best labelled methods or
unlabelled methods. [Guo et al., 2010a] was the
first ones that introduced Completed Local Binary
Pattern (CLBP) which combine various LBP features:
CLBPS, CLBPM where the signs and magnitudes of
local differences are done into two complementary
components and CLBPC which is the same as
the original LBP. LBPV [Guo et al., 2010b]
was introduced to incorporate the globally rotation
invariant matching with locally variant LBP texture
features. After that DRLBP [Satpathy et al., 2014]
was suggested to mix gradient magnitude information
with LBP. Later, RLBP was introduced by [Chen
et al., 2013] to be rugged to the noise existed
in the image by modifying the coding of bits of
LBP. Recently, [Liu et al., 2016] proposed MRELBP
which regrouped MRELBP-NI, MRELBP-RD and
MRELBPCI in order to upgrade the noise ruggedness
and discriminative power furthermore to take both
microtexture and macrotexture texture information.
[Guo et al., 2016] suggested SSLBP, which combined
SSLBPCS and SSLBPCM founded on DLBP [Liao et
al., 2009] in scale space, specifically in scale variation
for texture classification. [Tabatabaei and Chalechale,
2019] proposed directional thresholded LBP (DTLBP)
for noise-tolerant image feature extraction using

average of the directional neighboring pixels values for
thresholding to reduce noise.

In texture analysis, we can notice that the majority
of the LBP methods use a limited number of
neighboring pixels, therefore local textural information
is loot. With the aim to improve the performance of
LBP in texture classification, an effective extension of
LBP for feature extraction is proposed in this paper
named Circular Parts Local Binary Pattern (CPLBP).
The CPLBP substitutes each neighborhood with the
region of pixel neighbors (circular parts) specified by
an angle and radius which permit to keep all the spatial
information, after that each center is thresholded with
the average of each region. The important properties
such as rotation and scale invariance are more robust
than LBP and based on the impact of the polar
coordinate (radius R and angle θ ). Furthermore,
computing the mean of each part of the circle allows
to capture more information than the neighboring
pixels and help to reduce the noise. According to
the experimental results, we demonstrate that the
suggested LBP extension can enhance the performance
in terms of the classification accuracy.

The paper is organized as follows: a brief review
of the original LBP is presented after introduction, our
approach CPLBP is presented in the second section. In
Section 3 we show the experimental results, followed
by discussion and conclusion in the last Section.

MATERIALS AND METHODS

LOCAL BINARY PATTERN (LBP)
The original LBP [Ojala et al., 2002] is considered

as a texture analysis for grayscale images, which
characterizes the local spatial patterns of texture image
patch through comparing the center pixel with his
neighbors to make a string of binary bits that will be
encoded to a decimal number. The way to calculate
LBP is as follows:

LBPr,N(c)=
N−1

∑
i=0

s(gi−gc)2i,s(x)=
{

1 x≥ 0
0 x < 0 (1)

where N is the number of pixels in the neighbors,
r is the radius of neighbors, gc is the grey level
of the central pixel of the neighbourhood and
s() is the sign function. If we assume that the
coordinates of center pixel gc is (0,0), then the
coordinates of the neighbors are calculated as follows
: (−r sin(2πn/N),r cos(2πn/N)). Furthermore, on
sampling circle, the majority of sampling points do
not correspond to the right pixel position specially
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for circular sampling pattern, a bilinear interpolation
is generally required. Fig. 1 shows the circularly
symmetric neighbor sets of LBP.

Fig. 1. The neighbor points used in the LBP method.

[Ojala et al., 2002] introduce a rotation invariant
version LBPri

(r,N) of LBP(r,N). This version aims to
group together the LBPs which are actually rotated
versions of the same pattern. After that, they noted
that certain LBP patterns often occur than others,
so the uniform LBP are used to only conserve the
uniform patterns and groups all the other patterns as a
nonuniform. A pattern is considered as uniform, if the
number of spatial transitions in the sequence between
0 and 1 is lower or more equal to two. For example,
the model LBP 00000100 is uniform (transition
twice) and 00001010 is not uniform (transition 4
times). In the same paper Ojala proposed the rotation
invariant uniform LBP descriptor to get an improved
rotation invariance as well as to minimize the feature
dimensionality, this proposition regroups two versions
of LBP(r,N) ( LBPri

(r,N) ) and the uniform LBP(r,N)

(LBPu
(r,N)). In particular, the rotation invariant uniform

LBP is defined as:

LBPriu2
r,N =

{
∑

N−1
i=0 s(gi−gc)2i, i f U(LBPr,N)≥ 2

p+1 otherwise
(2)

where the uniform LBP is given by:

U(LBPr,N) =
N

∑
i=1
|s(g mod (i,N)−gc)− s(gi−1−gc)|.

(3)
where the function mod (i,N) is the modulus of i to N

THE PROPOSED METHODS

This paper presents a new extension of LBP
method for texture classification framework.

CPLBP (CIRCULAR PARTS LOCAL
BINARY PATTERN ) CLASSIFICATION
METHOD
Given the fact that the traditional encoding strategy

of LBP uses a specific number of neighbors, even
though the changing of radius that leads to loose the
information. Our proposed method tries to keep all
the information coming from neighbors by calculating
the average of all pixels values from each part of
the circle specified by angle and radius values (using
polar coordinate system). Therefore, the CPLBP is
discriminative and robust comparing to LBP due to
the fact that it is designed to contain more spatial
information.

Our approach named Circular Parts Local Binary
Pattern (CPLBP) can be considered as an extension of
the original LBP given by:

CPLBPR,P(c)=
P−1

∑
p=0

s(gMp−gc)2p,s(x)=
{

1 x≥ 0
0 x < 0

(4)

Like LBP the central pixel gc intensity is the gray
level of the central pixel of the neighborhood and
s() is the sign function. R = r1 + r2 + r3 + ...+ rn
represent radius, P is the circle part and gMp is the
average pixels intensity of the circle part P. Since
we are working in the sampling circle as LBP. If we
suppose that (0,0) are the coordinates of the center
pixel gc, then the coordinates of neighbors which are
included in the circle part are calculated as follow:
(−Rsin(2πn/P),Rcos(2πn/P)) where R = r1+ r2+
r3+ ...+ rn.

The following steps to get CPLBP are the
following:

1. Divide the circle into parts. Choosing the radius
R and the angle θ of the circular part. These
parameters (R,θ ) enable to partition the circle of
all pixel neighbors into parts. Each part is a region
of pixel neighbors. The number of parts depends
on the choice of the angle θ . For example, if θ =
30 the circle will be divided into 12 parts.

2. Calculating the value of gMp. Each part of the
circle according to their radius and angle include
a region of pixel neighbors, which are grouped to
compute the average value of the circle part.
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3. Computing the Local Binary Pattern. In this step
the value of the center pixel gc is compared with
the average value of each part of the circle gMp to
form the LBP encoded pattern.

In order to illustrate the proposed CPLBP. Fig. 2
shows the entire procedure with the example CPLBP
(8,3). As presented in Fig. 2, the important parameters
of CPLBP are R and θ , R = r1+ r2+ r3 = 3 denotes
the radius of the circle centered at pixel gc = 161, and
we choose θ = 45 which allowed to divide the circle
into 8 parts. Each part of pixel neighbors with θ =
45 exactly contains 6 neighbors . The average value
of each six neighbors is calculated (in the example
”gM1 = 160.33”) and compared with the center gc =
161 to form the local binary code ”01110100”.

Note that the three properties Uniform, Rotation
Invariant and Rotation Invariant Uniform are
applicable for CPLBP.

EXPERIMENTAL RESULTS

TEXTURE IMAGE DATASETS

Our approach is tested using two of the publicly
available texture databases known as Outex TC 0010
and Outex TC 0012. These databases are captured
from a large variety of real material surfaces at nine
different angles (0.5, 10, 15, 30, 45, 60, 75 and 90), it
includes 24 classes. Outex TC 0010 has 180 texture
images per class and each image has size 128*128
under illumination ’Inca’ while Outex TC 0012 has
200 texture images per class and each image has size
128*128 under several illumination conditions (’Inca’,
’horizon’, and ’t184’). Some samples of this texture
image database are shown in Fig. 3.

Fig. 3. Outex Texture Database.

RESULTS

To test the performance of the proposed approach,
we use support vector machine (SVM) classifier
method with the stratified 10-fold cross validation to
prevent over-fitting.
Considering this new proposed method CPLBP
extensive experiments are used to demonstrate the
performance of our method compared with other
methods from the literature. In the experimental result
1 and 2 we will effectiveness observation CPLBP in
the radius and angle change respectively.

EXPERIMENTAL RESULTS 1

This first experiment is done to evaluate the
effect of thresholding the center pixel with the
mean region of circular pixel neighbors. In this
experiment, we compare CPLBP with LBP using
both databases Outex TC 0010 and Outex TC 0012,
employing different values of radius (1,2,3,4,5,6,7,8,9
and 10) and a fixed value of angle θ = 45 in order to
reduce the feature dimension and running time.

Experiment 1-1: Radius evaluate CPLBP with LBP
version

On Outex TC 0010

Table 1 presents the comparative results of the
classification accuracy of the proposed experiment
CPLBP with different versions of LBP (classic,
uniform (u2), rotation invariant uniform (riu2)) using
Outex TC 0010 . It can be noticed that our approach
is enhanced in term of accuracies and achieved the
best results for all versions: CPLBP = 99.65, CPLBPu2
= 99.05 and CPLBPriu2 = 98.24 with the radius
R=10 contrary to LBP that lose their performance
progressively: LBP classic = 96.11, LBPu2 = 90.07
and LBPriu2 = 81.62. This is mainly due to the impact
of capturing much more discriminating information
from local pixel neighbors existing in each part of
circle specified by equal angle θ and represented with
the average value, consequently they maintain their
robustness especially when the radius increases.

On Outex TC 0012

Table 2 illustrates the comparative results of
CPLBP with LBP classic using two different
illumination conditions Outex TC 0012 ”t184” and
”horizon” with rotation changes. As can be seen
from the results, our proposed approach provides
also superior performance in term of average of all
radius 94.61 and 95.20 Outex TC 0012 (”horizon”,
and ”t184”) respectively, and mostly when the radius
increase with R=10 92.83 for T184 and 92.75 for
horizon. As mentioned before, this high performance
is owing to: Firstly, on the impact of polar coordinate
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Fig. 2. The CPLBP of (P=8,R=3).

Table 1. Classification accuracy (%) of the CPLBP descriptor for different values of radius R on the TC10 dataset.
Classification accuracy % Outex TC10

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10 Average
LBP classic 99.83 99.86 99.88 99.53 99.10 98.99 99.26 98.56 97.48 96.11 98.86

CPLBP 99.86 99.88 99.90 99.86 99.95 99.95 99.84 99.88 99.79 99.65 99.86
LBP u2 99.86 99.84 99.56 99.30 98.77 98.36 96.76 94.88 92.43 90.07 96.98

CPLBP u2 99.88 99.67 99.77 99.79 99.70 99.72 99.75 99.63 99.51 99.05 99.65
LBP riu2 96.26 97.10 97.94 96.71 94.00 94.12 91.60 88.40 84.58 81.62 92.23

CPLBP riu2 95.30 96.06 98.01 98.91 99.26 98.77 98.36 98.31 98.05 98.24 97.93

Table 2. Classification accuracy (%) of the CPLBP descriptor for different values of radius R on the TC12 dataset.
Classification accuracy % Outex TC12

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10 Average
Outex TC12 T184

LBP classic 94.08 95.44 94.73 94.23 94.15 93.42 91.50 90.88 88.79 86.54 92.38
CPLBP 95.33 95.43 95.25 95.54 95.08 94.90 94.94 93.52 93.29 92.83 94.61

Outex TC12 horizon
LBP classic 94.84 95.48 95.75 94.90 94.25 93.42 92.29 91.63 90.02 87.48 93.01

CPLBP 97.30 96.90 96.38 96.25 95.40 94.92 94.56 93.88 93.65 92.75 95.20

system that helps to get new extension robust than LBP
in term of rotation changes. Secondly, on the local
region pixel neighbors captured in precise θ that bring
more spatial information than just one neighbor from
LBP.

Fig. 4 draws the comparison accuracies of LBP
classic and CPLBP of both databases outex TC 0010
and 0012 with ten different radius from 1 to 10. Our
descriptor outperforms the classical LBP (even with
high radius they keep a good accurate).

Experiment 1-2: Radius comparative CPLBP with
SOTA

In order to examine the robustness, performance
and other advantage of our approach CPLBP in
texture classification, we pick out five classification
approaches based on the state of art literature LBP

methods. They comprise LTP [Tan and Triggs,
2007], RLBP [Mehta and Egiazarian, 2013], DRLBP
[Satpathy et al., 2014], CLBP [Bianconi et al., 2015] .

Table 3 shows the comparative results of the
classification accuracy(%) for outex TC 0010 and
0012 (t184 and horizon). We have made this following
observations from the results of the experiments.

In term of mean accuracy, RLBP and DRLBP
are better then LBP. This is because RLBP and
DRLBP shift results in a rotation invariance, as
the weights depend on the neighborhood which
make it more robust to detect the rotation variation.
CPLBP S and CPLBP M get the sign and magnitude
features respectively. The LTP is generally greater
then LBP because it takes into account tree relations
between center pixel and its neighbors ’greater than’,
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Fig. 4. The performance of CPLBP according to radius variation using (a) Outex TC 0010 (b) Outex TC 0012
t184 and horizon.

Table 3. Classification accuracy (%) of the CPLBP descriptor with the state of the art methods for different values
of R on the outex TC 0010n and 0012 databases.

Classification accuracy % Outex TC 10 and 12
R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10 Average

Outex TC10
LBP classic 99.83 99.86 99.88 99.53 99.10 98.99 99.26 98.56 97.48 96.11 98.86

LTP 99.84 99.93 99.95 99.91 99.88 99.88 99.68 99.00 98.77 97.92 99.48
RLBP 99.35 99.81 99.84 99.95 99.86 99.93 99.51 98.40 98.63 97.69 99.40

DRLBP 98.58 98.05 99.86 99.93 99.88 99.93 99.65 99.31 98.59 97.99 99.17
CLBP M 98.94 99.58 99.81 99.72 99.75 99.49 99.03 98.13 97.82 96.94 98.92
CLBP S 99.79 99.93 99.98 99.81 99.70 99.70 99.31 98.56 97.48 96.32 99.06
CPLBP 99.86 99.88 99.90 99.86 99.95 99.95 99.84 99.88 99.79 99.65 99.86

Outex TC12 T184
LBP classic 94.08 95.44 94.73 94.23 94.15 93.42 91.50 90.88 88.79 86.54 92.38

LTP 95.58 95.69 95.60 95.10 94.68 93.47 92.88 92.75 92.25 91.69 93.87
RLBP 90.27 92.46 92.45 88.50 88.00 86.19 83.73 84.65 82.83 80.88 87.00

DRLBP 90.11 90.81 94.41 90.19 89.00 87.15 85.10 85.47 83.44 82.80 87.85
CLBP M 92.40 94.23 94.25 93.73 93.15 92.81 91.77 91.27 90.33 89.79 92.37
CLBP S 96.52 96.35 96.29 96.10 95.47 94.50 93.60 92.13 91.73 90.00 94.27
CPLBP 95.33 95.43 95.25 95.54 95.08 94.90 94.94 93.52 93.29 92.83 94.61

Outex TC12 horizon
LBP classic 94.84 95.48 95.75 94.90 94.25 93.42 92.29 91.63 90.02 87.48 93.01

LTP 96.33 95.73 95.88 95.15 94.79 94.42 93.38 93.77 93.10 92.06 94.46
RLBP 92.88 93.44 91.83 88.58 88.48 86.04 86.31 86.19 84.31 82.31 88.04

DRLBP 93.01 93.50 91.96 88.60 87.92 85.52 84.96 85.75 83.90 81.02 87.61
CLBP M 94.25 95.29 95.06 94.19 94.00 93.67 91.94 91.42 90.56 89.38 92.98
CLBP S 97.50 97.52 96.75 96.23 95.85 94.65 93.85 93.56 92.77 91.65 95.03
CPLBP 97.30 96.90 96.38 96.25 95.40 94.92 94.56 93.88 93.65 92.75 95.20

’equal to’ and ’less than’. Contrary, LBP can take
only two of them ’greater than’ and ’less than’.
Finally, as can be seen in the table, our proposed
descriptor CPLBP achieves a best performance than
the other methods in illumination and rotation changes
specifically when the radius is high owing to: Firstly,
using polar coordinate system that enables to exploit
scale and rotation invariance properties for much more
robustness approach than other approaches. Secondly,
extending the area of neighborhood from one to a
region of local pixel neighbors employing radius and
angle parameters and represented with the average

value increases efficiency in extracting feature without
increasing of dimensionality.

Fig. 5 shows the classification accuracy of our
approach compared to various state of the art methods
using the average of ten different radius R= {1, 2, 3, 4,
5, 6, 7, 8, 9, 10}. It is observed from the fig. that our
descriptor achieves best accuracies for all databases.
For example, Outex TC 0010 average accuracy is:
99.86%.
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(a)

(b)

Fig. 5. The performance of CPLBP (according to the
average of different radius) compared to state of the
art methods.

EXPERIMENTAL RESULTS 2

This second experiment aims to evaluate the
robustness of our approach using a variety of angles
that can decrease or increase the number of parts of
local pixel neighbors in the circle. In this study, we
adopt the uniform rotation invariant version of LBP to
minimize the dimension of feature vector and running
time when 12 and 16 neighbors are used. Furthermore,
each specific angle of our proposed method is
equivalent to an exact number of neighbors on LBP.
In this setup, we fixed radius R = 6 and we varied the
angle on five values θ = {π/8,π/6,π/4,π/3,π/2}.

Experiment 2-1: Angle evaluate of CPLBP with
LBP version on Outex TC 0010 and 0012

Table 4 shows the classification results on Outex
databases 0010 and 0012 (t184 and horizon). As
we can seen, the highest classification accuracy of

99.14 is revealed through CPLBP (Outex 10) when
θ = π/6. Moreover, for all databases and on each
angle value, the best result is obtained by our new
descriptors CPLBP which demonstrate the strongest of
this method on illumination, rotation and scale changes
with the same dimension on the feature pattern of LBP.
In general, employing mean value of local regions of
pixel neighbors identified by θ for thresholding instead
of one neighbor in LBP is more discriminating, which
gives good classification results.

The accuracy of our new proposed approach can
be also observed in Fig. 6 after fixing radius as 6 and
varying θ on five angles {π/8, π/6, π/4, π/3, π/2}.
It can be observed that CPLBP preserves high stability
and efficiency for various θ values compared to the
original method LBP.

Fig. 6. The performance of CPLBP according
to θ variation using (a) Outex TC 0010 (b)
Outex TC 0012 t184 and horizon.

Experiment 2-2: Angle comparative CPLBP with
SOTA

A comparative study presented in table 5 compares
the performance of our new descriptor with state
of the art approaches (LTP [Tan and Triggs,
2007], RLBP [Mehta and Egiazarian, 2013], CLBP
[Bianconi et al., 2015]) using the most popular
challenge databases Outex TC 0010 and 0012 (t184
and horizon). The significant improvement results of
accuracies are marked by our new descriptor CPLBP
(riu2) particularly when increasing θ like π/3 and
π/2 due to the fact that the other descriptors lose a
lot of information comes from neighbors and take just
a limited number of pixel neighbors which decreases
their robustness contrary to CPLBP (riu2) keeping all
the details information coming from pixel neighbors.

Fig. 7 plot the results of average classification
accuracy as a fonction of θ values for all databases: 7a
Outex TC 0010, 7b Outex TC 0012 t184 and horizon
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Table 4. Classification accuracy (%) of the CPLBP descriptor for different values of angle θ with fixed radius
R=6 on the TC10 and TC12 dataset.

Classification accuracy % Outex TC10 and 12
LBP N=16 N=12 N=8 N=6 N=4 Average

CPLBP θ = π/8 θ = π/6 θ = π/4 θ = π/3 θ = π/2
Outex TC10

LBP riu2 97.45 95.79 94.12 84.42 78.26 90.01
CPLBP riu2 98.22 99.14 98.77 96.27 91.50 96.78

Outex TC12 T184
LBP riu2 71.40 71.81 73.20 69.23 60.46 69.22

CPLBP riu2 83.85 77.31 76.98 76.67 72.29 77.42
Outex TC12 horizon

LBP riu2 73.79 72.79 73.15 70.85 64.94 71.11
CPLBP riu2 86.19 78.67 77.73 74.92 73.04 78.11

Table 5. Classification accuracy (%) of the CPLBP descriptor with the state of the art methods for different values
of angle θ with fixed radius R=6 on the TC10 and TC12 dataset.

Classification accuracy % Outex TC10 and 12
Others descriptors N=16 N=12 N=8 N=6 N=4 Average

CPLBP θ = π/8 θ = π/6 θ = π/4 θ = π/3 θ = π/2
Outex TC10

LBP riu2 97.45 95.79 94.12 84.42 78.26 90.01
LTP riu2 99.51 99.44 99.14 95.72 91.81 97.12

RLBP riu2 97.52 95.74 94.03 89.98 78.66 91.19
CLBP M riu2 97.48 97.64 94.40 85.12 70.32 88.99
CLBP S riu2 97.31 95.39 93.96 83.66 78.31 89.73
CPLBP riu2 98.22 99.14 98.77 96.27 91.50 96.78

Outex TC12 T184
LBP riu2 71.40 71.81 73.20 69.23 60.46 69.22
LTP riu2 77.21 76.23 78.60 78.73 73.02 76.76

RLBP riu2 71.54 71.92 73.19 69.02 61.83 69.50
CLBP M riu2 72.23 72.13 72.13 64.54 54.50 67.11
CLBP S riu2 71.67 71.25 73.02 68.90 61.58 69.28
CPLBP riu2 83.85 77.31 76.98 76.67 72.29 77.42

Outex TC12 horizon
LBP riu2 73.79 72.79 73.15 70.85 64.94 71.11
LTP riu2 78.67 77.00 79.79 78.81 75.50 77.95

RLBP riu2 73.92 72.88 73.48 70.63 65.35 71.25
CLBP M riu2 72.85 73.44 72.42 64.94 54.44 67.62
CLBP S riu2 73.71 73.50 73.31 70.60 64.60 71.14
CPLBP riu2 86.19 78.67 77.73 74.92 73.04 78.11

. As illustrated in the fig. 7, CPLBP provides the best
results and a high performance even they have small
decrease for CPLBP compared to LTP method on
Outex TC 0012. As it maintain before, this diminution
due to the thresholding of LTP which takes three
relations ’greater than’, ’equal to’ and ’less than’.

One last remark concerns the running time of our
new approach CPLBP. For images with 128*128 pixels
like Outex TC 0010 and under this experimental
condition: MATLAB R2018a, Windows system, Intel

Pentium(R) Core(TM) i7-4500U CPU 2.39 GHz, and
8 GB memory, the running time consuming with
CPLBP is 15 seconds for each image depending on
the variation of (Radius,θ ) which is 10 time bigger
than other methods that takes approximately just 0.10
seconds. This time is caused by the computation of
average values in each local region which can be seen
as a limit of the proposed approach. Although the time
consuming of the CPLBP increases, the performance is
greatly increased. Specially, when the radius increase
because the basic LBP and many other variations are
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(a) (b)

Fig. 7. The performance of CPLBP according to Average of θ variation of stat of art methods

used to encode only the local microtexture at the same
time they have a problem to capture the macrotexture
that is dominant in specific cases. Consequently, our
descriptor CPLBP is based on patch mean values, so
it is possible to integrate over large areas,therefore the
problem of capturing macrotexture is solved.

CONCLUSION

This paper presented a novel and robust extension
of local binary pattern for texture classification. Our
approach uses the average of a set of neighbor
pixels in the circular angular area instead of one
neighbor in the original LBP which allows to get a
powerful and discriminating information from images
for several cases: fixed θ and varying R in the
polar coordinates and vice versa. On the Outex
databases, the experimental results demonstrate that
the suggested approach is more robust than the original
one to the changing illumination, scale and rotation.
Furthermore, the comparison of our method with the
state of art methods shows very good classification
accuracies.
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