
Image Anal Stereol 2021;40:181-191 doi: 10.5566/ias.2586
Original Research Paper

IMPROVED MODEL CONFIGURATION STRATEGIES FOR KANNADA
HANDWRITTEN NUMERAL RECOGNITION

GOPAL D. UPADHYE1, U. V. KULKARNI2 AND DEEPAK T. MANE3

1Pimpri Chinchwad College of Engineering, Pune, Maharashtra, 411044, India, 2Shri Guru Gobind Singhji
Institute of Engineering and Technology, Nanded, Maharashtra, 431606, India, 3JSPM’s Rajarshi Shahu College
of Engineering, Maharashtra, 411033, India
e-mail: gopalupadhye@gmail.com, uvkulkarni@sggs.ac.in, dtmane@gmail.com
(Received June 9, 2021; revised December 5, 2021; accepted December 7, 2021)

ABSTRACT

Handwritten numeral recognition has been an important area in the domain of pattern classification. The task
becomes even more daunting when working with non-Roman numerals. While convolutional neural networks
are the preferred choice for modeling the image data, the conception of techniques to obtain faster convergence
and accurate results still poses an enigma to the researchers. In this paper, we present new methods for
the initialization and the optimization of the traditional convolutional neural network architecture to obtain
better results for Kannada numeral images. Specifically, we propose two different methods- an encoder-
decoder setup for unsupervised training and weight initialization, and a particle swarm optimization strategy
for choosing the ideal architecture configuration of the CNN. Unsupervised initial training of the architecture
helps for a faster convergence owing to more task-suited weights as compared to random initialization while
the optimization strategy is helpful to reduce the time required for the manual iterative approach of architecture
selection. The proposed setup is trained on varying handwritten Kannada numerals. The proposed approaches
are evaluated on two different datasets: a standard Dig-MNIST dataset and a custom-built dataset. Significant
improvements across multiple performance metrics are observed in our proposed system over the traditional
CNN training setup. The improvement in results makes a strong case for relying on such methods for faster
and more accurate training and inference of digit classification, especially when working in the absence of
transfer learning.

Keywords: Numeral recognition, particle swarm optimization, convolutional autoencode, Kannada numerals.

INTRODUCTION

Pattern classification involves modeling of data
to extract relevant features that indicate a particular
pattern. Research has been actively pursued on
handwritten numeral recognition, an important
application of pattern classification. Given an input
image, the task objective is to correctly predict one of
the ten numerals to which the image belongs. Most of
the contemporary methods, including state-of-the-art
algorithms, work well on Latin numerals. There is still
a vast scope for improvements in the performance
of numeral recognition systems on non-English
numerals. With the range of data becoming more
diverse, systems working on non-English numerals
are the need of the hour. (El-Sawy et al., 2017),(Mane
and Kulkarni, 2020)

Kannada is a native Indian language with a
rich history spoken in the state of Karnataka and
other neighboring regions. The numerals in Kannada
are known for their peculiar curves and angles
in the writing style.(Prabhu, 2019) Further, every
individual will have a different way of writing these
numbers. Handwritten Kannada numeral recognition

thus becomes a daunting task.(Hu, 2020) The
use of contemporary machine learning and deep
learning techniques for Kannada numeral recognition
algorithms has been limited. (Karthik and Murthy,
2015),(Shettar et al., 2015)

Majority of previous approaches in this domain
have used traditional statistical feature-based methods
or preliminary machine learning algorithms (Saini
et al., 2021). Deep learning approaches have focused
on using basic ANNs or CNNs (Ganesh et al.,
2016). Advanced AI techniques are gaining adoption
across multiple domains (Ratadiya and Mishra, 2019;
Ratadiya et al., 2020). In this paper, we present two
different approaches for enhancing the performance
of the convolutional neural networks for Kannada
handwritten numeral recognition. Specifically, we
work on the designing of two methods, one that
focuses on improved initialization of the architecture,
while the other focuses on improved optimization
strategy to decide the best-suited model configuration.

Our main contributions through this paper can be
enlisted as follows:

1. We have contributed a new Kannada numeral

181



UPADHYE GD et al.: Kannada Handwritten Numeral Recognition

dataset to the community created under a standard
setup to promote further research in this area.

2. We use an encoder-decoder set up to improve
the weight initialization of the model for better
feature extraction from Kannada numerals instead
of random initialization.

3. We incorporate an evolutionary algorithm to
decide the architecture setup that is otherwise
derived empirically in traditional techniques. Thus,
any possibility of bias is eliminated. Further, we
also evaluate the performance of the proposed
approaches on Dig-MNIST, a publicly available
standard sized dataset.

The paper structure is as follows: A brief overview
of the previous related work and background is done
in section 2. The presented techniques are described in
depth in section 3. Section 4 focuses upon describing
the used datasets while the obtained results are
analyzed in section 5. The paper is concluded in
section 6.

BACKGROUND AND RELATED WORK

The previous approaches for Kannada languages
have relied on the use of derived or handcrafted
features or inputs fed to the algorithms. The
contributions in the domain of deep learning,
especially using advanced convolutional networks
have been paltry.

Fig. 1. Equivalence between English and Kannada
numerals.

The self created dataset of size 20200 samples
used in this paper. It contains handwritten samples
of handwritten Kannada digits from 0 to 9, which
are collected from peoples of the regions where this
language is mainly spoken in states of India. The
digits written on A-4 sized paper by peoples. Such
505 total samples collected and its corresponding
sets created which results into 5050 total handwritten
digits. The RGB images of these digits with .jpg
extension now converted into gray scale and cropped
at size 28 x 28. For transformation, random scaling
and vertical, horizontal skewing of 0.5 factor methods
applied on these images. Resultant dataset now
increased from 5050 to 20200 samples. The similarity
mapping between English digit verses Kannada digit
represented in Fig. 1.

One of the first approaches for this task
used features based on moments to predict the
numerals.(Ragha and Sasikumar, 2010) These were
passed as input to a feed-forward neural network
to train the final system. Kumar (Prasanna Kumar,
2013) presented an approach that involved splitting
the input image into four sections and extracting the
required components from each of these sections. This
approach required very less trainable parameters and
inference time but this speed of prediction did take
a toll on the accuracy of the system. A clustering
approach using the K means algorithm was used
by Sheshadri et al. (Sheshadri et al., 2010) for
conducting OCR for printed characters in Kannada.
Kavya et al. made use of zoning that involves
feature extraction from demarcated zones, fused with
a classifier to get the final output.(Kavya et al., 2016)
Recognition of isolated digits was worked upon by
Gurudath and Ravi.(Gurudath and Ravi, 2016) Karthik
et al.(Karthik and Murthy, 2015) applied SVM-
based kernels and gradient descriptors for this task.
Killedar and Deshpande(Killedar, 2015) proposed a
template-based matching strategy for recognition as
well as translation of Kannada numbers. The nearest
neighbor approach has also been tried out to produce
satisfactory results.(Shettar et al., 2015) Hallur and
Hegadi earlier proposed a holistic approach followed
by a feed-forward neural network approach for
performing the task. (Hallur and Hegadi, 2014),(Hallur
and Hegadi, 2013) Isolated Kannada numerals were
recognized using a framework built on data fusion by
Mamatha et al.(Mamatha et al., 2013)

Dhandra et al. made use of zoning to
derive features for subsequent recognition of
both handwritten and print numerals, and also
vowels.(Dhandra et al., 2011),(Mukarambi et al.,
2011) A relatively unorthodox approach involving
Fourier descriptor plates and crack codes was used
by Rajput (Rajput et al., 2010) to further improve the
performance. Recently, deep neural networks were
used by Ganesh et al. (Ganesh et al., 2016) for this
task, a welcome improvement considering the use of
recent architecture.

An observable trend in the majority of previous
works is that they have focused on using primitive
methods and traditional approaches, not looking
beyond these concepts to use contemporary superior
architectures or methods. Further, the results achieved
have not been up to the mark of those achieved on
English or other language numerals.

182



Image Anal Stereol 2021;40:181-191

PROPOSED METHODOLOGIES

We are proposing two different strategies for
Kannada handwritten numeral recognition. Given an
input image, we predict the class label of the input
image into one of the ten possible numeral classes. We
elaborate on each of the proposed methodologies in the
following subsections:

Approach SVM
(Dhandra
et al.,
2011)

CNN
(Killedar,
2015)

K-NN
(Mamatha
et al.,
2013)

BP-
NN
(Hallur
and
Hegadi,
2013)

Dataset
samples

1000 200 1000 50

Result(%) 97.4 86.28 91 95

Table 1. Comparison of previous works in terms of
accuracy.

CONVOLUTIONAL AUTOENCODER FOR
BETTER INITIALIZATION

Convolutional autoencoder (CAE) is used as
an unsupervised learning algorithm to provide the
initialization weights to the CNN architecture. The
input images are passed through the autoencoder to
reconstruct back the same input at the output layer.
This helps in retaining only the relevant features
and eliminating any other noise, (Chen et al., 2017)
thus providing a better initialization and in turn
faster convergence during the CNN training. The
Convolutional autoencoder architecture consists of two
main modules-the the encoder and the decoder. The
reconstruction of input involves first scaling it down to
a low dimension intermediate representation and then
scaling it back up to its original size. The downscaling
is done by the Encoder that itself consists of multiple
layers stacked together. The decoder does the job of
returning the original dimension reconstructed input.
The CAE is trained by mapping the input images to
themselves. There is no X to Y mapping, but rather X
to X mapping.

The encoder consists of a combination of
convolutional layers and pooling layers stacked
together such that maximum information retention
takes place while still gradually decreasing the
dimensions of the input image. Our input image is of
dimension 28x28 that we scale down to a size of 7x7
across 16 filters. While convolution layers focus more
upon extracting relevant feature maps from the inputs,
pooling layers are more responsible for dimension

reduction via sub-selection from amongst these feature
maps before passing them to the next layers

The decoder consists of a combination
of convolutional layers and upscaling layers.
Convolutional layers are used to ensure consistent
feature extractions. In this stage, we use the same
padding during convolution operations to ensure that
the dimension does not decrease. In the decoder, the
succeeding layers have at least the same dimension as
the previous layer.

Algorithm 1 CAECNN
Input: Image I(iwxih), Filter f, Learning rate α,

Number of channels nc, Stride S, padding P,
weights w, bias b

Output: Output Feature map
1: {CAE training}
2: Initialize weights and bias between 0 and 1
3: wim = iw {Reconstructed input width dimension}
4: him = ih {Reconstructed input height dimension}
5: for each image I in training data do
6: read(I)
7: downsample(I) {Encoder}
8: upsample(I) {Decoder}
9: Update weights w and bias b

10: end for
11: Store w and b
12: {Forward propagation of CNN}
13: Initialize weights and bias to w and b values

obtained from CAE training
14: wu = int((wim − f )/S) + p
15: hu = int((him − f )/S) + p
16: for each h,w in (hu,wu) pixel do
17: for each c in nc channels do
18: layer slc = prev layer[vs : ve,hs : he,:]
19: orp = sum(layer slc * w) + b
20: end for
21: end for
22: output[output ≤ 0] = 0 {ReLU layer}
23: output = max(pool window(output)) {Max

Pooling}
24: layer slc = prev layer[vs : ve,hs : he,:]
25: dw = dw + layer slc * orp[h,w,c]
26: db = db + orp[h,w,c]
27: w -= α * dw
28: b -= α * db
29: return Output weights

Upscaling layer operates exactly opposite to that
of the pooling layer. Similar to a pooling window,
there is an upscaling window beneath which the
nearest neighbors or bilinear sampling is considered
to increase the dimension of the image. As this is
a function-based upscaling, no separate provision of

183



UPADHYE GD et al.: Kannada Handwritten Numeral Recognition

Fig. 2. Block diagram of proposed CNN architecture used after CAE training.

training or parameters is required for this layer. As a
result, this layer is quite efficient in use and does not
add extra complexity to the architecture.

The CCNN architecture contains only the encoder
layers, or the first 7 layers of the CAE architecture,
further connected to three dense layers. The weights
obtained from the training of CAE are used to initialize
the CNN architecture and this collectively becomes
our final CAECNN topology. The CAE is trained in an
unsupervised manner first on a separate subset of the
original dataset by mapping the input image to itself
in the output layer of the decoder.(Erhan et al., 2010)
The model is trained on binary cross-entropy loss and
optimized using the Adadelta optimizer. The ReLU
(Nair and Hinton, 2010) activation function is used for
all layers except the last one, and the Dropout layer is
also introduced amongst the dense layers for explicit
regularization.(Srivastava et al., 2014)

Table 2 indicates the model summary of the
proposed CAE architecture. The first parameter of
output shape is set to None as it is based on the
batch size. It can be seen that the pooling layers
and upsampling layers do not contribute any trainable
parameters in the CAE architecture thus making it
more efficient. while Fig. 2 depicts the block diagram
of the proposed CNN architecture. It can be observed
that the first seven layers from the CAE architecture,
that constituted the encoder part are connected with the
feed-forward dense layers to constitute the final CNN
architecture.

PARTICLE SWARM OPTIMIZATION FOR
ARCHITECTURE CONFIGURATION

The architecture configuration of CNN is derived
iteratively until the best possible configuration is not
obtained. This leads to an introduction of human

bias as well as an additional time requirement before
obtaining the best configuration of the involved layers.
Particle Swarm Optimization (PSO) is an evolutionary
algorithm that helps to solve this issue. We propose the
use of PSO as an optimization technique to derive the
ideal CNN architecture.

PSO derives inspiration from the way swarms
operate in nature. The algorithm itself consists of two
stages that are:

– Communication

– Learning

Table 2. Model summary of the proposed CAE.

Layer Output shape # of
parameters

Conv layer 1 (None, 8, 28, 28) 80
Conv layer 2 (None, 8, 28, 28) 584
Max layer 1 (None, 8, 14, 14) 0
Conv layer 3 (None, 16, 14, 14) 1168
Conv layer 4 (None, 16, 14, 14) 2320
Max layer 2 (None, 16, 7, 7) 0
Conv layer 5 (None, 16, 7, 7) 2320
Upsampling 1 (None, 784) 0
Conv layer 6 (None, 16, 14, 14) 2320
Conv layer 7 (None, 16, 14, 14) 2320
Upsampling 2 (None, 16, 28, 28) 0
Conv layer 8 (None, 8, 28, 28) 1160
Conv layer 9 (None, 8, 28, 28) 584
Conv layer 10 (None, 1, 28, 28) 73
Total parameters 12,929

Every possible architecture configuration is

184



Image Anal Stereol 2021;40:181-191

considered as a particle. In the communication phase,
every particle transmits information to all the other
particles present in the swarm. The algorithm needs to
keep moving towards the best possible configuration
i.e. the global minima. If at any stage, it can find a
configuration better than the current one, it is rightfully
following the concept of better. This is where the
learning phase begins, and if the system can move
towards a better state, eventually it will achieve the
best possible state. (D. T. Mane, 2018) Such a tuned
system will be able to work on optimizing problems of
any type.(D. T. Mane, 2018),(Roy et al., 2013)

Various configurations of CNN are possible to
solve the problem in the hand of handwritten digit
recognition. The PSO algorithm will consider each
of them as a particle, and these particles are defined
using two different entities or vectors.(Kennedy and
Eberhart, 1995),(D. T. Mane, 2018) One is the
position vector which focuses upon the current
state coordinates of the particle. The other is the
velocity vector which takes into consideration both, the
intensity of the particle and also its potential direction.

As we keep moving towards a better state, both the
position vector and velocity vector of the particle are
updated using the following equations:

X t+1
i = X t

i +V t+1
i (1)

V t+1
i = wV t

i + c1r1(Pt
i −X t

i )+ c2r2(Gt
i −X t

i ) (2)

where X t+1
i is the position vector for next iteration,

V t+1
i is the velocity vector for next iteration, t is

the current iteration, w is the inertia factor related to
the velocity, P is the personal best solution of given
particle, G is the global best solution of particle in the
population, c1 and c2 are the learning factors, and r1
and r2 are random weights in the range of 0 and 1.

PSO keeps adjusting all the possible solutions by
modifying their vectors and keeps propagating until it
does not find the best solution. Individual changes in
velocity also depend upon other particles present in the
swarm. The position is updated based on its velocity
and current state, and also considering the distance
from the personal best P and global best solutions G.

Table 3 indicates the configuration range through
which the PSO optimizer searches to find the best
architecture. Once these values are derived, the
architecture is trained using the train set and tested
on the test subset to check precision in its predictions.
It can be seen that two different types of searches are
possible. The first is to derive the distinct quantity as
seen for filters, the second is to derive the best option
from a predetermined category of options as in the

case of activation functions. We have also fixed certain
values as in the case of model train epochs or loss.
Algorithm 2 indicates the procedure followed by the
optimizer to derive the ideal configuration.

It should be noted that this configuration is
not a fixed one and hence we cannot represent it
diagrammatically in advance. The optimizer looks to
derive these values based on empirical intermediate
results. Thus, the training, in this case, differs by the
fact that a heuristic-based approach has been used to
achieve the ideal goal state (i.e. best possible results)
whereas, in the case of traditional CNN, a pre-defined
architecture has to be trained and then altered manually
every time.

The parameter values related to the updation
of optimizers (Eberhart and Kennedy, 1995) are as
follows: the number of iterations and the number of
particles are both set to 2. The inertia factor is set to
the value of 0.7. While both c 1 and c 2 values are set
to 2. A 5 fold cross-validation strategy is deployed with
a split of train and test set of 4:1.

DATASET DESCRIPTION

The proposed approaches are evaluated on two
different sets. The first is the Dig-MNIST dataset,
which is one of the few standard-sized test datasets
available for Kannada numerals in the public
domain.(Prabhu, 2019) Secondly, we also create our
dataset following standard practices to demonstrate the
generalization ability of our proposed architectures.

The Dig-MNIST dataset consists of over 10000
handwritten digits in the Kannada language.(Prabhu,
2019) It was created using handwritten digits filled
by adult volunteers and later scanned to get grayscale
images. Cropping and dimension reduction were
performed to derive the image size to a resolution of
28x28. Every Kannada numeral has 1024 images in
this dataset. Some sample numerals in different font
styles are depicted in Fig. 3.

However there are certain shortcomings in this
dataset. The dataset size is not very vast enough thus
making the training and feature extraction process
difficult. While we do evaluate the approaches on the
Dig-MNIST dataset, these limitations also encourage
us to create a new dataset.

Handwritten Kannada digits were collected from
native speakers of varying age categories. An A4-
size sheet consisting of a 4x3 rectangular grid was
used for the volunteers to write the ten numerals. 505
individuals volunteered for this cause, thereby creating
a dataset of a total of 5050 digit instances as images.

185



UPADHYE GD et al.: Kannada Handwritten Numeral Recognition

Some samples of the handwritten numerals are shown
in Fig. 4.

A couple of preprocessing steps were performed
on this raw dataset. These include converting the
image to grayscale format and also the application of
skewing and transformations for data augmentation.
These transformations increased the dataset size by
four times, leading to 20200 images, 2020 images for
each numeral digit. We augment our created dataset
further using similar steps to reach a size of 70000
images. Every image in this dataset was now of size
28x28x1, and all of them were combined and saved
together in a 70000 x 785 sized multidimensional
array in a .csv file. This dataset was more suitable for
modeling.

Algorithm 2 Algorithm for PSO optimized CNN
Input: Population set PS, Personal best pbest and

global best gbest
Output: Velocity vector vvec and Position vector pvec

1: Initialize Particle set PS
2: for each iteration do
3: for a constituent c in PS do
4: fc = f(c);
5: if fc > f(pbest) then
6: pbest = c;
7: end if
8: end for
9: gbest = best c in PS;

10: for individual particle c in PS do
11: vvec = v + c1 * r1 * (pbest - c) + c2 * r2 * (gbest

- c);
12: pvec = pvec + v
13: end for
14: end for
15: {Forward propagation of CNN}
16: Initialize the CNN configuration based on PSO

output
17: for each h,w in (hu,wu) pixel do
18: for each c in nc channels do
19: layer slc = prev layer[vs : ve,hs : he,:]
20: orp = sum(layer slc * w) + b
21: end for
22: end for
23: output[output ≤ 0] = 0 {ReLU layer}
24: output = max(pool window(output)) {Max

Pooling}
25: layer slc = prev layer[vs : ve,hs : he,:]
26: dw = dw + layer slc * orp[h,w,c]
27: db = db + orp[h,w,c]
28: w -= α * dw
29: b -= α * db
30: return Output model

Fig. 3. Sample renderings of the numerals in different
font styles.

Table 3. Search configuration of CNN for PSO.

Model
parameter

Parameter Possible value
range

Conv layer 1

Filters (3,101)
Kernel
size

[3,5,7]

Activation [Sigmoid,
ReLU, tanh]

Input
shape

[(28,28,1)]

Max layer 1 Pool size [(2,2)]

Conv layer 2
Filters (3,101)
Kernel
size

[3,5,7]

Activation [Sigmoid,
ReLU, tanh]

Max layer 2 Pool size [(2,2)]
Flatten layer

Dense layer 1
Units (3,101)
Activation [Sigmoid,

ReLU, tanh]

Dense layer 2
Units (3,101)
Activation [Sigmoid,

ReLU, tanh]

Dense layer 3
Units [10]
Activation [Softmax]

Model compile
Loss [Categorical

crossentropy]
Optimizer [Adam, SGD]

Model fit
Epochs [10]
Batch size (9,101)
Verbose [2]

186



Image Anal Stereol 2021;40:181-191

Fig. 4. Samples of handwritten Kannada digits in the
grid.

Both the datasets are split into training and testing
sets by standard procedure. For the CAE approach,
in the Dig-MNIST dataset, 7000 images were used
for the unsupervised training of the CAE, including
6500 for training and 500 images for validation. Out
of the remaining images, 3760 images were used for
training the CNN while 1240 were used for testing
the CNN. From our created dataset, 45000 images
were used for training of CAE, and 5000 images were
used for validation while 16000 images were used for
training the CNN, and 4000 images were used for
testing purposes. In the case of the PSO optimization
approach, in our created dataset, 65000 images are
used for training while 5000 images are used for
testing purposes. From the Dig-MNIST dataset, 8000
images were used for training while 2240 images were
used for testing purposes.

RESULTS OBTAINED

We discuss the obtained results separately for each
of the two datasets on which the performance of the
approaches was evaluated. Results are calculated and
analyzed on multiple performance metrics.

RESULTS ON DIG-MNIST DATASET

We compare the total accuracy of both the
proposed approaches with standard baseline methods
in Table 6. Further, the class-wise accuracy for each
of the ten numeral digits are tabulated in Table 4
and Table 5. These numbers give an overview of the
generalization ability of the model.

We observe that the class-wise as well as the total
accuracy has significantly improved and has crossed
the mark of 90% in terms of the overall average
accuracy. It can be observed that we have further
gained over 2-3% in terms of accuracy with the use of
PSO and it has helped the model get considerable gains

in its performance. Further, we show the variation
in training loss to the number of epochs during the
training of the CAE in Fig. 6. A sample reconstructed
input obtained from the CAE on the Dig-MNIST
dataset is shown in Fig. 5. As a part of ablation
studies, we also tabulate the accuracy achieved on
each fold during the k-fold cross validation training of
the PSO optimized CNN in Table 7. We compare the
performance of both our proposed approaches across
all the task-related metrics in Table 8.

Table 6. Comparison of proposed methods with
various methods on Dig-MNIST dataset.

Classifier Accuracy(%)
Decision tree 72.02
Multilayer Perceptron 86.13
Linear SVM 81.29
Non linear SVM 84.19
LeNet CNN 76.61
CNN (random initialization) 87.02
CAECNN (Proposed) 89.44
CNNPSO (Proposed) 91.75

Table 7. Variation in 5-fold training accuracy of
CNNPSO on Dig-MNIST dataset.

Number of fold during training Accuracy
1 92.88
2 92.59
3 98.84
4 90.00
5 98.58
Final 92.53

Fig. 5. Sample input and reconstructed output of CAE
for Dig-MNIST dataset.

187



UPADHYE GD et al.: Kannada Handwritten Numeral Recognition

Table 4. Accuracy of the CAECNN approach on Dig-MNIST dataset.
Dig. 0 1 2 3 4 5 6 7 8 9 Avg
Acc. 94.12 91.80 84.62 91.16 86.21 93.08 86.79 89.31 88.37 88.18 89.44

Table 5. Accuracy of the PSO optimized CNN on Dig-MNIST dataset.
Dig. 0 1 2 3 4 5 6 7 8 9 Avg
Acc. 87.79 92.79 95.87 93.40 88.24 97.24 83.41 94.3 92.75 92.48 91.75

Fig. 6. Variation in CAE model loss over epochs for
Dig-MNIST dataset.

Table 8. Results of the proposed approaches across
multiple metrics on the Dig-MNIST dataset.

Approach CAE+CNN CNN+PSO
Accuracy (%) 89.44 91.75
Precision 0.893 0.919
Recall 0.893 0.917
F1 score 0.894 0.917

RESULTS ON OUR CREATED DATASET

Similar to the previous dataset, the performance
of the proposed approaches is calculated and analyzed
on all the aforementioned parameters. We start off by
tabulating the class-wise accuracies and comparisons
in Table 9, 10, and 11 respectively. Variation in CAE
model loss over epochs for our dataset is represented
in Fig. 7. A sample reconstructed input obtained from
the CAE on our created dataset is shown in Fig. 8.

It can be seen that we have achieved the best
possible results on both the datasets across all three
splits of data as compared to all of the previous
approaches. Further, we also see how out of the two
proposed approaches in this paper, the second one
turns out to be the best in terms of performance on all
metrics as shown in Table 8 and 13. Performance of the
proposed CAECNN and CNNPSO on both datasets is
represented in Table 14, Table 15 respectively.

Table 11. Comparison of CNNPSO with various
methods on our dataset.

Classifier Accuracy(%)
Decision tree 35.10
Multilayer Perceptron 50.22
Linear SVM 33.18
Non linear SVM 36.64
LeNet CNN 73.26
CNN (random initialization) 88.06
CAECNN (Proposed) 89.56
CNNPSO (Proposed) 91.66

Fig. 7. Variation in CAE model loss over epochs for
our dataset.

Fig. 8. Sample input and reconstructed output of CAE
for our dataset.

188



Image Anal Stereol 2021;40:181-191

Table 9. Accuracy of the CAECNN on our dataset.
Dig. 0 1 2 3 4 5 6 7 8 9 Avg
Acc. 89.47 90.08 89.72 89.17 87.04 93.35 85.68 89.79 91.52 89.96 89.56

Table 10. Accuracy of the PSO optimized CNN on our dataset.
Dig. 0 1 2 3 4 5 6 7 8 9 Avg
Acc. 94.71 90.93 90.68 92.84 91.37 91.08 92.18 92.7 89.75 90.46 91.66

Table 12. Variation in 5-fold training accuracy of
CNNPSO on our dataset.

Number of fold during training Accuracy
1 91.78
2 92.33
3 96.81
4 89.50
5 93.14
Final 92.94

Table 13. Comparison of the two proposed approaches
across all metrics on our dataset.

Approach CAECNN CNNPSO

Accuracy (%) 89.56 91.66
Precision 0.895 0.917
Recall 0.896 0.916
F1 score 0.897 0.915

Table 14. Performance of the proposed CAECNN on
both datasets.

Accuracy Created
dataset

Dig-
MNIST
dataset

Training accuracy 90.07 90.23
Validation accuracy 88.60 89.72
Test accuracy 89.56 89.44

Table 15. Performance of the proposed CNNPSO on
both datasets.

Accuracy Created
dataset

Dig-
MNIST
dataset

Training accuracy 92.94 92.53
Validation accuracy 91.85 90.59
Test accuracy 91.66 91.75

CONCLUSION

In this paper, multiple new approaches were
proposed for the task of handwritten Kannada numeral

recognition. These two approaches were inspired by
the need to ameliorate issues in model initialization
and configuration optimization strategies. We propose
the unsupervised convolutional autoencoder as an for
the initialization of the CNN architecture. We apply
the natural algorithm of particle swarm optimization
that focuses on particle space search for deriving
the ideal configuration of the CNN architecture. The
performance of these proposed systems was compared
with the standard techniques used traditionally in the
domain. We found the PSO optimized CNN to deliver
the best overall results with above 91% accuracy
while also generalizing well across all class labels.
In the future, transfer learning could be applied as
a technique to extend further the initialization of
the CNN architecture. There has been limited work
on context transfer for Kannada numerals. A new
membership function or strategy of configuration
space search could be proposed to work upon PSO
such that the ideal configuration is obtained even faster.
Also, the interpretability of these systems could be
improved so that the domain users are provided with
more useful explanations for the predictions beyond
classifier function values and probabilities.

REFERENCES

Chen M, Shi X, Zhang Y, Wu D, Guizani M (2017).
Deep features learning for medical image analysis
with convolutional autoencoder neural network.
IEEE Trans Big Data 7:750–8.

D. T. Mane UVK (2018). Pattern recognition of iris
flower using neural network based particle swarm
optimization. International Journal of Computer
Sciences and Engineering 6:916–20.

Dhandra B, Mukarambi G, Hangarge M (2011).
Zone based features for handwritten and printed
mixed kannada digits recognition. In: IJCA
Proceedings on International Conference on Vlsi
Communications and Instrumentation.

Eberhart R, Kennedy J (1995). A new optimizer using
particle swarm theory. In: Proceedings of the Sixth
International Symposium on Micro Machine and
Human Science.

189



UPADHYE GD et al.: Kannada Handwritten Numeral Recognition

El-Sawy A, Loey M, El-Bakry H (2017). Arabic
handwritten characters recognition using
convolutional neural network. WSEAS Trans
Comp Res 5:11–9.

Erhan D, Courville A, Bengio Y, Vincent P (2010).
Why does unsupervised pre-training help deep
learning? In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics.

Ganesh A, Jadhav AR, Pragadeesh KC (2016). Deep
learning approach for recognition of handwritten
kannada numerals. Adv Intell Syst :294–303.

Gurudath K, Ravi D (2016). Isolated digits recognition
in kannada language. Int J Comput Appl
140(10):23–9.

Hallur VC, Hegadi R (2013). Kannada handwritten
digits recognition: neural network approach. Int J
Sci Res :417–9.

Hallur VC, Hegadi R (2014). Offline kannada
handwritten numeral recognition: holistic
approach. In: Proceeding of Second International
Conference on Emerging Research in Computing,
Information, Communication and Applications.

Hu (2020). Evaluation of deep learning models
for kannada handwritten digit recognition. In:
International Conference on Computing and Data
Science.

Karthik S, Murthy KS (2015). Handwritten
kannada numerals recognition using histogram of
oriented gradient descriptors and support vector
machines. In: Emerging Ict for Bridging the
Future-Proceedings of the 49th Annual Convention
of the Computer Society of India.

Kavya T, Pratibha V, Priyadarshini B, Vijaya Bharathi
M, Vijayalakshmi G (2016). Kannada characters
and numerical recognition system using hybrid
zone-wise feature extraction and fused classifier.
Int J Eng Res Technol 5:506–10.

Kennedy J, Eberhart R (1995). Particle swarm
optimization. In: Proceedings of ICNN’95-
International Conference on Neural Networks,
vol. 4.

Killedar ea (2015). Kannada handwritten numerals
recognition and translation using template
matching. International Journal on Recent
Technologies in Mechanical and Electrical
Engineering 2:77–80.

Mamatha H, Srirangaprasad S, Srikantamurthy K
(2013). Data fusion based framework for
the recognition of isolated handwritten kannada
numerals. Int J Adv Comput Sci Appl 4:174–82.

Mane D, Kulkarni UV (2020). A survey on
supervised convolutional neural network and its

major applications. In: Deep Learning and Neural
Networks: Concepts, Methodologies, Tools, and
Applications. IGI Global, 1058–71.

Mukarambi G, Dhandrab V, Hangarge M (2011).
Recognition system for handwritten and printed
kannada numerals and vowels. Int J Mach Intell
3:259–62.

Nair V, Hinton GE (2010). Rectified linear units
improve restricted boltzmann machines. In: ICML.

Prabhu VU (2019). Kannada-mnist: A new
handwritten digits dataset for the kannada
language. arXiv preprint arXiv190801242 .

Prasanna Kumar K (2013). Algorithm to identify
kannada vowels using minimum features
extraction method. International Journal of
Innovative Technology and Exploring Engineering
5:79–84.

Ragha LR, Sasikumar M (2010). Adapting moments
for handwritten kannada kagunita recognition.
In: Second IEEE International Conference on
Machine Learning and Computing.

Rajput G, Horakeri R, Chandrakant S (2010). Printed
and handwritten kannada numeral recognition
using crack codes and fourier descriptors plate.
International Journal of Computer Application
IJCA On Recent Trends in Image Processing and
Pattern Recognition RTIPPR :53–8.

Ratadiya P, Asawa K, Nikhal O (2020). A
decentralized aggregation mechanism for training
deep learning models using smart contract system
for bank loan prediction. ARXIV PREPRINT
ARXIV201110981 .

Ratadiya P, Mishra D (2019). An attention ensemble
based approach for multilabel profanity detection.
In: IEEE International Conference on Data Mining
Workshops.

Roy A, Dutta D, Choudhury K (2013). Training
artificial neural network using particle swarm
optimization algorithm. Int J Adv Res Comput Sci
Softw Eng 3.

Saini A, Daniel S, Saini S, Mittal A (2021).
Effkannadares-next: An efficient residual network
for kannada numeral recognition. Multimed Tools
Appl 3.

Sheshadri K, Ambekar PKT, Prasad DP, Kumar RP
(2010). An ocr system for printed kannada
using k-means clustering. In: IEEE International
Conference On Industrial Technology.

Shettar S, Basavaprasad B, Bhagya H (2015).
Recognition of printed kannada numerals by
nearest neighbor method. In: Proceedings of
the International Conference on Computational
Systems for Health Sustainability.

190



Image Anal Stereol 2021;40:181-191

Srivastava N, Hinton G, Krizhevsky A, Sutskever I,
Salakhutdinov R (2014). Dropout: a simple way to

prevent neural networks from overfitting. J Mach
Learn Res 15:1929–58.

191


