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ABSTRACT

The paper concerns a new statistical method for assessing dissimilarity of two random sets based on one
realisation of each of them. The method focuses on shapes of the components of the random sets, namely on
the curvature of their boundaries together with the ratios of their perimeters and areas. Theoretical background
is introduced and then, the method is described, justified by a simulation study and applied to real data of two
different types of tissue - mammary cancer and mastopathy.

Keywords: connected component, curvature, similarity, N-distance, random set.

INTRODUCTION

In the last years, modelling and statistical analyses
of random sets have become very popular. It has been
studied both from theoretical point of view (Matheron,
1975; Molchanov, 2005; Serra, 1982) as well as from
the practical side, because they have many applications
in biology (Moeller and Helisová, 2010), medicine
(Hermann et al., 2015), material sciences (Neumann et
al., 2016) and other branches. They can describe and
explain many events, for example behaviour of cells in
organisms, particles in materials, presence of different
plants etc. Therefore, mathematical methods dealing
with random sets must be developed and improved.

Usually, when we are given a realisation of a
random set, we try to find, based on the realisation,
a model in order to make further statistical analyses.
However, there are situations when the knowledge
about the concrete model is not necessary, because the
aim is to decide whether two realisations are similar
in some sense, i.e. whether they may come from the
same process, e.g. we need only to distinguish between
two types of cells in tissue from microscopic pictures,
recognise different tendency of growth of some plants,
detect defects in materials etc.

In the presented paper, we focus on planar
random sets, nevertheless, the method described here
can be easily extended to more dimensional spaces.
Although there exist classical tools for comparing
random sets like covariance function or contact
distribution function (Chiu et al., 2013), functions on
morphological operations, namely dilation, erosion,
opening and closing (Serra, 1982), etc., there are
situations when these characteristics are not sufficient

to distinguish between two realisations. E.g. we
can obtain the same estimate of contact distribution
function for different shapes or, on the other hand,
two realisations consisting of components of the
same shapes but different mutual distances have very
different estimate of the covariance function etc., so
they cannot be used when the main objects of interest
are the shapes of the components, as in this paper.
Another disadvantage of the mentioned characteristics
is that for one realisation, we obtain only one function.
Then, it is difficult to formulate the task of comparing
two random sets when we have only one realisation of
each of them. In this case, it would be helpful to have
data consisting of more functions for each realisation.

New methods taking this into account have been
developed in the last five years (Debayle et al., 2021;
Gotovac, 2019; Gotovac Ðogaš and Helisová, 2021;
Gotovac et al., 2016). In Debayle et al. (2021),
morphological skeletons (Serra, 1982) of compared
realisations are constructed and then, similarity of two
realisations is defined through a function describing
mass growth around selected points of the skeletons.
This method shows the highest power in simulation
study, compared to the methods in the remaining
three papers. However, it is closely tied to the
placement of components in realisations, which is
not always desirable. Further approach can be found
in Gotovac (2019), where the author also focuses
on similarity of shapes and positions of components
in realisations, but the positions can be omitted in
special cases. The considered components are either
the connected components or some more specific
set components obtained by further decomposing of
the observed set (e.g. cells in a tissue which are
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connected but they can be determined in their binary
image). The positions of the components are described
by the so-called neighbourhood tessellation of the
observation window constructed from the components
and by using the Hausdorff metric (Chiu et al.,
2013). The samples of pairs of the components and
neighbouring tessellation cells are compared using the
test based on the N -distance (Klebanov, 2006), where
a suitable kernel involving the symmetric difference
of the sets is constructed. For omitting dependence
on locations, the components can be considered
without their neighbourhoods. A disadvantage of
the method is that the test of similarity in this
sense is weak, especially when the neighbourhoods
are omitted, so in order to achieve better accuracy,
the positions of the components must be taken
into account again. An approach independent of the
positions of the components is introduced in Gotovac
et al. (2016) and improved in Gotovac Ðogaš and
Helisová (2021). The authors of the papers distinguish
between two realisations via a heuristic approach
based on approximation of the components by unions
of convex compact sets using Voronoi tessellation
(Chiu et al., 2013) with respect to a special hard-
core point process on the realisations and consequent
comparison of the support functions of the convex
compact cells of the tessellation using the envelope
test from Myllymäki et al. (2017) and the test based
on N -distance (sometimes also called the kernel test
(Gretton et al., 2012)), respectively. The authors in
Gotovac Ðogaš and Helisová (2021) and Gotovac et
al. (2016) declare that the method focuses on the
structure of the components like clustering or repulsion
tendencies, generating rounded or angular objects,
long and thin or short and thick formations, etc.,
because it recognises how much mass is concentrated
on the boundaries of the components and what is the
approximate shape of the boundary. The results of
simulation are satisfactory, however, there is weakness
in the heuristic procedure because the approximation
of the components is not unique, but random and
there are quite large differences between the shapes
of the original realisations and their approximations.
Moreover, some free parameters must be chosen,
which can affect the results.

In the present paper, we focus on testing similarity
of two realisations of random sets, where the similarity
is given by similar shapes of their components.
However, instead of the heuristic approximation of
realisations, we use description by uniquely defined
characteristics of components in the realisations,
namely the ratio of the perimeter and the area of each
component, and the curvature (Bullard et al., 1995) of
the boundary of each component.

The paper is organised as follows. The section
"Methods" introduces basic terms and approaches,
while the subsection "Theoretical background"
summarises definitions and already existing theoretical
results concerning curvatures of planar curves and
statistical testing via the N -distance theory, and in
the subsection "Methodology", we present our new
matters, namely we define similarity of two random
sets and describe the procedure of assessing similarity
from two realisations. This is the main result of the
paper. In the section "Results", the procedure is first
justified by a simulation study, and then applied to
real histological data. The section "Discussion" is
dedicated to comparison of the new results to the
results obtained by the previous methods.

METHODS

THEORETICAL BACKGROUND

Curvature of a planar curve

The definition and claims in this section can be
found in Bullard et al. (1995).

Definition 2.1 Consider a smooth 2D curve c
parameterised by a parameter ϕ ∈ [0,φ ] ⊂ R, i.e.
c(ϕ) = (x(ϕ),y(ϕ)). Then the curvature κ of c is
defined as

κ(c(ϕ)) =
x′(ϕ)y′′(ϕ)− x′′(ϕ)y′(ϕ)

(x′2(ϕ)+ y′2(ϕ))3/2 .

It means that κ(c(ϕ)) =±1/R(ϕ) , where R(ϕ) is the
radius of the osculating circle touching the curve in
the point [x(ϕ),y(ϕ)] and the choice between “+” and
“−” is determined by the local convexity convention.

Let us assume that the curve c is continuous, closed
(i.e. c(0) = c(φ)) and it does not intersect itself (i.e.
c(ϕ1) = c(ϕ2) ⇒ ϕ1 = ϕ2). Consider a (connected)
planar set X whose boundary is given by the curve c. It
can be shown that for the curvature κ(z) evaluated in a
given point z ∈ c and for a disc b(z,r) with the center
in z and a radius r small enough, it holds that

κ(z)≈
3A∗b(z,r)

r3 − 3π

2r
=

3π

r

(
A∗b(z,r)
Ab(z,r)

− 1
2

)
, (1)

where Ab(z,r) is the area of the disc b(z,r) and A∗b(z,r) is
the area of b(z,r)∩X .

This is used below in the section "Methodology"
when estimating the curvature of boundary of binary
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image of the set X . The center of discretised disc
b with the radius r pixels is placed to the boundary
pixel in which we want to evaluate the curvature, and
approximate the ratio A∗b(z,r)/Ab(z,r) by the number of
pixels of the disc b inside the set X divided by the
number of all pixels forming the disc b.

Testing equality in distribution based on
N -distance of probability measures
In this paper, the procedure of testing equality in

distribution of random variables and random functions
comes from the theory of N -distances, which is
briefly recalled in the following paragraphs. More
details concerning this topic can be found in Klebanov
(2006).

Let X be a nonempty set. Consider a negative
definite kernel L : X ×X → C.

Definition 2.2 The negative definite kernel L is
called strongly negative definite kernel if for an
arbitrary probability measure µ and an arbitrary
f : X → R such that

∫
X f (x)dµ(x) = 0 holds

and
∫
X

∫
X L (x,y) f (x) f (y)dµ(x)dµ(y) exists and is

finite, the relation∫
X

∫
X

L (x,y) f (x) f (y)dµ(x)dµ(y) = 0

implies that f (x) = 0 µ-a.e.

For a map L : X ×X → C, denote BL the set
of all measures µ such that

∫
X

∫
X L (x,y)dµ(x)dµ(y)

exists.

Theorem 2.1 (Klebanov, 2006) Let L (x,y) =
L (y,x). Then

N (µ,ν) =2
∫

X

∫
X

L (x,y)dµ(x)dν(y) (2)

−
∫

X

∫
X

L (x,y)dµ(x)dµ(y)

−
∫

X

∫
X

L (x,y)dν(x)dν(y)≥ 0

holds for all measures µ,ν ∈BL with equality in the
case µ = ν only, if and only if L is a strongly negative
definite kernel.

In the following text, the term N (µ,ν) from Eq. 2
is called the N -distance of the measures µ and ν . The
approach to testing equality of distributions given by
the (probability) measures µ and ν is described below.

First, let the measures µ and ν correspond to
distributions of real random variables. Suppose we

have observations x1, . . . ,xm1 ∈R from the distribution
µ and y1, . . . ,ym2 ∈R from the distribution ν . The N -
distance of the measures µ and ν is estimated as

N̂1 =
2

m1m2

m1

∑
i=1

m2

∑
j=1

L (xi,y j) (3)

− 1
m2

1

m1

∑
i=1

m1

∑
j=1

L (xi,x j)−
1

m2
2

m2

∑
i=1

m2

∑
j=1

L (yi,y j),

where we use the Euclidean distance as the negative
definite kernel L . The value N̂1 plays the role of test
statistic. Then, we use Monte Carlo permutation test,
i.e. we make s permutations of all observed values
x1, . . . ,xm1 ,y1, . . .ym2 , split each permutation into two
groups of the lengths m1 and m2, and, analogously
to Eq. ??, we calculate ˆNi for the i-th permutation,
i = 2, . . . ,s+1. Then the p-value of the test is

p =
]{i ∈ {2, . . . ,s+1} : N̂i ≥ N̂1}+1

s+1
. (4)

When the measures µ and ν correspond to
distributions of random functions, then testing the
equality of µ and ν runs analogously as above, only
with the difference in the choice of the negative
definite kernel L . Here, we use the kernel introduced
in Gotovac Ðogaš and Helisová (2021), constructed
especially for random functions as follows. We
evaluate testing functions t(1) and t(2) in discrete
arguments u1, . . . ,un, n ∈N. Then the negative definite
kernel is

L (t(1), t(2)) = (5)

=
D

∑
m=1

∑
{k1,...,km}⊆{1,...,n}

(
m

∑
l=1

(
t(1)(ukl )− t(2)(ukl ))

)2
)1/2

,

where D is a chosen constant specifying the depth
of dependence (more precisely, it allows testing the
equality of finite-dimensional distributions of random
functions t(1) and t(2) for the dimensions less than or
equal to D). The estimate of the N -distance of the
functions t(1) and t(2) based on the random samples
t(1)i , i = 1, . . . ,m1, and t(2)j , j = 1, . . . ,m2, respectively,
is evaluated as

N̂1 =
2

m1m2

m1

∑
i=1

m2

∑
j=1

L (t(1)i , t(2)j ) (6)

− 1
m2

1

m1

∑
i=1

m1

∑
j=1

L (t(1)i , t(1)j )

− 1
m2

2

m2

∑
i=1

m2

∑
j=1

L (t(2)i , t(2)j ).
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Then, we again apply the Monte Carlo permutation
test, i.e. we make s permutations of all functions
t(1)1 (u), . . . , t(1)m1 (u), t

(2)
1 (u), . . . t(2)m2 (u) in order to obtain

ˆNi, i = 2, . . . ,s + 1, and evaluate the p-value as
described above by Eq. 4.

METHODOLOGY

Testing characteristics

In this paper, we define the similarity of random
sets through their components, namely through the
curvature of their boundaries and the ratios of their
perimeters and areas.

Consider a connected random set X, i.e. the
random set whose realisations are connected. Denote
BX the boundary of X and κX(z) the (random)
curvature in the point z ∈ BX. From Eq. 1, we can see
that for a disc b(z,r) with suitable chosen radius r,

κX(z) ∝

A∗b(z,r),X
Ab(z,r)

,

where Ab(z,r) is the area of the disc b(z,r) and A∗b(z,r),X
is the area of b(z,r)∩X. Therefore, we focus only on
the ratio of these two areas. Denote

OX,b(z,r) =
A∗b(z,r),X
Ab(z,r)

and define the function

κ̃X,r(u) = |BX|−1
∫

BX
1{OX,b(z,r) ≤ u}dz, u ∈ [0,1],

which is basically an analogy of the distribution
function of the curvature at points on the boundary, but
it is evaluated for all boundary points, so it describes
the distribution for strongly dependent values. The
object of our interest is the function, analogous to
density function, describing the distribution of the
curvature along the boundary, i.e.

tX,r(u) = κ̃
′
X,r(u). (7)

Finally, denote RX the random variable describing
the ratio of the perimeter and the area of the random
set X.

Definition 2.3 Two connected random sets X and Y
are considered to be similar if the distributions of
limr→0 tX,r and limr→0 tY,r as well as the distributions
of RX and RY are equal.

In practice, we usually observe realisations X and
Y of the random sets X and Y, respectively, in the
form of binary images, so we need to adjust the task
of assessing dissimilarity of the realisations consisting
of black and white pixels. The pixels play the role
of units in the following sections. The ratio of the
perimeter and the area is then simply given by the
number of boundary pixels divided by the number
of all pixels of the component. For evaluating of the
function describing the curvature, fix a radius r ∈ N,
denote P the set of all pixels of the binary image X ,
z1, . . . ,zn all boundary pixels, and for each boundary
pixel zi, define

K(zi) =
]{p ∈ P : p ∈ b(zi,r)∩X}
]{p ∈ P : p ∈ b(zi,r)}

.

Then, the approximation of the function tX,r(u) from
Eq. 7 is

t(u) =
]{i ∈ {1, . . . ,n} : K(zi) ∈ [u−1/l,u)}

n
(8)

for u = 1
l ,

2
l , . . . ,1, which plays the role of testing

function.

Testing similarity of connected random
sets

Consider two samples, namely X1, . . . ,Xm1 and
Y1, . . . ,Ym2 , of realisations of connected random sets
X and Y, respectively. We want to test the null
hypothesis that X and Y are similar. First we evaluate
the ratios RX1 , . . . ,RXm1

, RY1 , . . . ,RYm2
of the perimeters

and areas of the corresponding realisations. Based on
these values, we estimate the N -distance of the ratios
of X and Y by Eq. ??, where we set xi = RXi , i =
1, . . . ,m1 and y j = RX j , j = 1, . . . ,m2. Let us denote

it N̂ R
1 . Then, we evaluate the testing functions t(u)

from Eq. 8, which describe the boundary curvatures
tX1(u), . . . , tXm1

(u), tY1(u), . . . , tYm2
(u), calculate the N -

distance of the functions corresponding to X and Y,
respectively, using Eq. 6 and Eq. ??, and denote this
N -distance as N̂ t

1 . The couple (N̂ R
1 ,N̂ t

1 ) is the test
statistic. Here, we use the Monte Carlo permutation
test described above, i.e. we make s permutations of all
realisations X1, . . . ,Xm1 and Y1, . . . ,Ym2 , and split them
into two groups of the sizes m1 and m2, respectively,
in order to obtain ( ˆN R

i , ˆN t
i ), i = 2, . . . ,s + 1, and

evaluate the p-value as

p=
]{i ∈ {2, . . . ,s+1} : N̂ R

i ≥ N̂ R
1 ∧ N̂ t

i ≥ N̂ t
1 }+1

s+1
.

(9)

130



Image Anal Stereol 2021;40:127-140

Similarity of random sets consisting of
more components

Usually in practice, we have the data in the form of
realisations consisting of more than one component. If
we can suppose that the components are independent
and come from the same distribution, then we can
define similarity of two random sets it the way that
they are considered to be similar, if their components
are similar in the meaning of Definition 2.3. It is used
in simulation study below in the section "Simulation
study".

Nevertheless, the independence of the components
can be supposed in very specific cases, e.g. in germ-
grain models (Chiu et al., 2013) in which the intensity
of germs is low with respect to the volume of grains.
However, the components are usually dependent. In
order to avoid this complication, we make suitable
random samples of the components in each realisation.
The size of such samples is discussed below in the
section "Simulation study". Just note that since we
use permutation version of the test, the condition of
independence of the components can be weakened to
their exchangeability.

In this way, we obtain two samples of components
which are then used as the input samples X1, . . . ,Xm1
and Y1, . . . ,Ym2 from the section "Testing similarity of
connected random sets".

RESULTS

SIMULATION STUDY

In the simulation study, we first focus on four
models which illustrate the usage of the procedure. The
models and approach to simulation can be found in
Debayle et al. (2021), Gotovac (2019), Gotovac Ðogaš
and Helisová (2021) and Gotovac et al. (2016). For all
considered models, we simulate 200 realisations and
compare 100 vs 100 realisations of the same models
as well as 100 vs 100 realisations of different models.
Since the outputs of the tests are the p-values, we
obtain 100 p-values for each couple. Some of their
histograms are shown and commented below. Note
that p-value close to zero means that the equality of
distributions of the corresponding testing functions is
rejected. Thus, the p-value should be concentrated
close to zero when comparing realisations of different
models, while it should be uniformly distributed in the
interval [0,1] when comparing realisations of the same
models.

In this simulation study, we moreover have to
choose the radius of the disc used to estimate the

curvature. Briefly said, too large disc does not detect
localised changes in curvature in the sense that it can
capture more than one interface, on the other hand,
too small disc has large error due to discretisation.
All realisation images in our simulation study are
in resolution of 400 × 400 pixels (units). Some
recommendations on how to choose a suitable radius
can be found in Bullard et al. (1995). Based on
these conditions and personal consultation with Matěj
Lébl (Institute of Information Theory and Automation,
Czech Academy of Science), we use the radii r = 3 and
r = 5. Note that the results of the simulation study are
very similar for both radii. The presented histograms
show the p-values of the tests using r = 5 (with one
exception mentioned below).

Examples of realisations of the illustrating models
are shown in Fig. 1. The first picture is a realisation
of the random disc Boolean model used in previous
studies. The second realisation is simulated so that
in (another) realisation of the Boolean model, each
connected component is deleted with probability
1/2. It is called the reduced Boolean model in the
following paragraphs. The third realisation is formed
by disjoint squares whose ratio of the perimeter
and the area comes from the same distribution as
the ratio for the Boolean model (namely from the
empirical distribution obtained from 100 realisations
of the Boolean model). We call it the square model
in the following paragraphs. The fourth realisation is
simulated as the process of disjoint rectangles with
the same distribution of perimeters as the square
perimeters, while one side has fixed length of 4 pixels
(note that in this case, we use the disc with radius r = 3
only for estimating the boundary curvature). It is called
the rectangle model in the following paragraphs.

We want to show that the method does not
distinguish between the Boolean model and reduced
Boolean model since it is based only on the similarity
of the components, but it distinguishes between the
Boolean models and the square model due to the
boundary curvature, as well as between the square
model and the rectangle model due to the ratios of
the perimeter and the area of the components. Indeed,
we can see it in the first column of Fig. 2. The
histogram of p-values shows approximately uniform
distribution when comparing the Boolean model and
reduced Boolean model, but the p-values are very
close to zero when testing the Boolean model vs
the square model and the square model vs the
rectangle model. Moreover, we test the equality
in distribution of the curvature functions and of
the ratios of perimeters and areas separately. The
histograms of the p-values of the test for the ratios
are shown in the second column of Fig. 2, and the
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Fig. 1. Example of realisation of the Boolean, the reduced Boolean, the square and the rectangle model,
respectively.

p-values of the test for the curvature functions are
shown in the third column. It is natural that the p-
values are approximately uniformly distributed for
both tests of the Boolean model vs reduced Boolean
model. The meaning of the procedure is clear from
other histograms. There, we can observe the equal
distributions of the ratios of perimeters and areas,
but clearly different distributions of the curvature
functions when comparing the Boolean model and the
square model, and conversely the agreement of the
distribution of the curvature functions and different
distributions of the ratios of perimeters and areas when
testing the square model vs the rectangle model. Thus,
when we want to distinguish between realisations with
differently shaped components, both characteristics
must be taken into account.

Next thing we observe in our simulation study is
that when we have all components of the realisation in
the sample, the p-values are greater than we expect.
It is seen when comparing the same models. The
histograms of p-values are located to the right, while
they become more uniform when we sample less
components for testing, see Fig. 3. It is the effect
of dependence of components in each realisation. In
realisations with densely placed components, the shape
of one component affects the shape of another one,
so they form something like a puzzle. Such sets of
components are then more similar then sets formed by
independent components. From histograms in Fig. 3,
we conclude that in our case, we can take a sample of
10 components from realisation of Boolean model to
eliminate the effect of dependence of the components.

Further, we consider models compared in
the previous papers. Except the Boolean model
mentioned above, which appears in all the mentioned
publications, we consider a model of partially
repulsive particles (called the repulsive model in the
following paragraphs and a model of particles forming
clusters (called the cluster model in the following
paragraphs). Realisations of both these models are
simulated as realisations of the random disc Quermass-
interaction process (Moeller and Helisová, 2008) with

suitable chosen parameters. More details about the
parameters can be found in Gotovac et al. (2016)
and Gotovac (2019). Note that the same repulsive
model is employed for simulation studies in all above
mentioned papers, similarly as the Boolean model,
while the same cluster model is used only in Gotovac
(2019). In Debayle et al. (2021), Gotovac Ðogaš and
Helisová (2021) and Gotovac et al. (2016), another
cluster model is considered, which is not suitable
for our current study since its realisations consist
of too few components. The fourth model is the
Boolean model with grains to be ellipses (called the
ellipse model in the following paragraphs). It appears,
similarly as the cluster model, only in Gotovac (2019),
because in the other papers, its application would not
be interesting. Examples of realisations of the four
models are shown in Fig. 4.

First, we test the similarity of the same models.
For the Boolean model, we can see in Fig. 3 that the
p-values are approximately uniformly distributed for
samples of the size between 10 and 20 components.
Such a large sample can be viewed as a sample
of weakly dependent components. Therefore, we
make samples of 10 and 20 components from each
realisation of the remaining models. The histograms in
Fig. 5 shows that the p-values are uniformly distributed
when testing the samples of 20 components for the
repulsive model and for the ellipse model, while for
the cluster model, the sample is not rare enough, it has
uniformly distributed p-values for the samples of 10
components.

Based on this observation, we use the samples
of 10 components for testing similarity of different
models. Their histograms are shown in Fig. 6. We can
see that the p-values are more or less close to zero, but
the rejection of the similarity hypothesis is not very
convincing.

We assume that this is due to the small number
of components in the test sample, but we cannot
create a larger sample from our simulated realisations
because of the interdependence of the components.
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Fig. 2. Histograms of p-values when testing the Boolean model vs the reduced Boolean model (the first row), the
Boolean model vs the square model (the second row) and the square morel vs the rectangle model using both
characteristics, i.e. the curvatures of the boundary and the ratios of the area and perimeter of the components
(the first colomn), only the ratios (the second columns) and only the curvatures (the third columns).

Therefore, we try to apply the boot strap method. We
mix all the components from each model together and,
when testing the similarity of the two models, we
randomly select 100 components of one model and
100 components of the second one and calculate the
p-value of the similarity test. We repeat this approach
one hundred times to get 100 p-values for construction
of histogram. The histograms are shown in Fig. 7. We
can see that except comparing the repulsive model and
the cluster model, almost all p-values are less than
0.05 now. The reason for larger p-values in the case
of the repulsive model and the cluster model is the fact
that many components in these models are formed by
isolated discs that come from the same distribution.

APPLICATION TO REAL DATA
Finally, we apply the procedure to real data

kindly provided by the authors of Mrkvička and
Mattfeld (2011). We work with binary images of two
different types of mammary tissue, namely 8 images of
mastopathy tissue and 8 images of mammary cancer,
see Fig. 8 and 9. The samples present histological
images of cross sections of the ducts branches,
where the black areas represent the surrounding tissue
between ducts and glands. The same images are
analysed in Gotovac (2019).

The images are in resolution of 512× 5120 pixels.
Each image is made by pasting together ten square
pictures in the resolution 512 × 512 pixels, which
have been provided to us. Since this resolution is
similar to the resolution of the realisations used for
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Fig. 3. Histograms of p-values when testing the Boolean model vs the Boolean model using 50 (upper left), 30
(upper right), 20 (lower left) and 10 (lower right) components from each realisation.

Fig. 4. Example of realisation of the Boolean, the repulsive, the cluster and the ellipse model, respectively.
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Fig. 5. Histograms of p-values when testing similarity of the same models, namely the repulsive models (left), the
cluster models (middle) and the ellipse models (right) using the samples of 10 components (upper row) and 20
components (lower row).

Fig. 6. Histograms of p-values when testing similarity of the Boolean model vs the repulsive model (upper left),
the Boolean model vs the cluster model (upper middle), the repulsive model vs the cluster model (upper right),
the ellipse model vs the Boolean model (lower left), the ellipse model vs repulsive model (lower middle) and the
ellipse model vs the cluster model (lower right) using the samples of 10 components.
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Fig. 7. Histograms of p-values when testing similarity of the Boolean model vs the repulsive model (upper left),
the Boolean model vs the cluster model (upper middle), the repulsive model vs the cluster model (upper right), the
ellipse model vs the Boolean model (lower left), the ellipse model vs repulsive model (lower left) and the ellipse
model vs the cluster model (lower left) using boot strap method and the samples of 100 components.

the simulation study, and since visually, the pictures
look very similar to that ones in the simulated models
(in the sense of smoothness of component boundaries,
distances between components etc.), we make the
analysis of the real data with the same parameters as
used in the simulation study, i.e. we take R = 3 and
R = 5, respectively, and the samples of 10 and 20
components, respectively.

We test the similarity of the random sets
represented by the images each to each. We repeat the
procedure 100 times, while we evaluate the mean p-
value of the test for each couple of images (including
the image with itself) and the number of p-values
below 0.05, which indicate significant dissimilarity
on the classical level. The results for the samples of
20 components and R = 5 are introduced in Tab. 1
and Tab. 2. We can observe that the p-values are
significantly lower and the number of p-values below
0.05 is significantly higher when comparing pairs of
different types of tissue than that ones for pairs of the
same types of tissue. Just note that for R = 3 and for
the samples of 10 components from each image, the
results are very similar.

DISCUSSION

A new statistical test for assessing (dis)similarity
of two random sets has been constructed. It works
with two realisations - one realisation of each of the
random sets. The procedure focuses only on shapes
of the components of the random sets, namely on the
curvature of their boundaries together with the ratios
of their perimeters and areas, and it does not take
into account the positions of the components in the
realisations, since it is very often required in practical
applications.

The described method is equipped by a
simulation study. The study shows that under quite
mild conditions, the test has large power when
distinguishing realisations of different models. The
power is larger than the method in Gotovac et al.
(2016) and one of the methods in Gotovac (2019),
which also distinguishes realisations based on the
shape of the components, and is comparable to
another method in Gotovac (2019) and to the method
in Debayle et al. (2021), which, however, takes
into account the placement of components. Another
advantage with respect to the method in Gotovac et
al. (2016) is that it is not heuristic, and moreover, it
does not require a lot of input parameters as needed in
Gotovac et al. (2016) and Debayle et al. (2021).
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Sample ”m1”

Sample ”m2”

Sample ”m3”

Sample ”m4”

Sample ”m5”

Sample ”m6”

Sample ”m7”

Sample ”m8”

Fig. 8. Samples of mastopathy breast tissue.
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Sample ”c1”

Sample ”c2”

Sample ”c3”

Sample ”c4”

Sample ”c5”

Sample ”c6”

Sample ”c7”

Sample ”c8”

Fig. 9. Samples of mammary cancer.
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Table 1. Mean p-values (rounded to 2 decimal places) when comparing the corresponding samples 100 times.
The values related to couples of different types of tissue are underlined.

m1 m2 m3 m4 m5 m6 m7 m8 c1 c2 c3 c4 c5 c6 c7 c8
m1 .81 .46 .35 .02 .19 .41 .04 .04 .01 .02 .04 .10 .02 .03 .04 .06
m2 .60 .10 .00 .05 .38 .07 .03 .01 .04 .06 .20 .03 .05 .06 .11
m3 .87 .35 .57 .20 .00 .00 .00 .00 .01 .01 .00 .01 .00 .00
m4 .90 .13 .04 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00
m5 .78 .32 .00 .00 .00 .00 .01 .01 .00 .01 .00 .01
m6 .65 .03 .01 .01 .03 .03 .14 .01 .09 .04 .10
m7 .59 .49 .14 .16 .10 .36 .45 .02 .19 .15
m8 .61 .10 .19 .10 .28 .40 .01 .15 .13
c1 .53 .38 .32 .17 .27 .11 .35 .26
c2 .55 .43 .41 .35 .17 .50 .37
c3 .57 .29 .18 .31 .47 .38
c4 .57 .25 .20 .35 .40
c5 .55 .03 .35 .16
c6 .54 .24 .40
c7 .51 .42
c8 .54

Table 2. The number of p-values bellow .05 when comparing the corresponding samples 100 times. The values
related to couples of different types of tissue are underlined.

m1 m2 m3 m4 m5 m6 m7 m8 c1 c2 c3 c4 c5 c6 c7 c8
m1 0 4 9 92 29 5 81 81 97 92 82 57 88 79 80 70
m2 3 67 100 71 13 71 84 95 86 78 37 86 65 74 57
m3 0 5 1 29 99 100 100 100 98 98 100 96 99 98
m4 0 47 77 100 100 100 100 100 100 100 96 100 100
m5 0 19 100 100 100 100 97 96 100 95 99 93
m6 0 87 96 96 91 89 54 97 62 84 62
m7 1 5 40 36 64 16 6 91 29 50
m8 1 52 29 60 15 17 97 33 50
c1 6 12 19 43 20 63 13 28
c2 2 13 8 20 52 3 14
c3 2 18 47 18 5 12
c4 1 21 39 20 12
c5 1 89 23 44
c6 7 35 16
c7 2 12
c8 3
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A small complication occurs when components
of compared realisations are too close to each
other, because the method assumes independence of
the components, which is not satisfied when the
components are too densely placed. However, the
problem has an easy solution - only a sample of
the components can be considered instead of all
components. In this case, the dependence is reduced
and the method works very well. Concerning the
sample size, it is very individual for different data. For
a suitable choice, it is possible to apply, for example,
the pre-analysis described in the section "Simulation
study" and shown in Fig. 3, i.e. from one model (or
from one realisation in practice), repeatedly select two
samples of m components for a chosen number m, test
the similarity of the samples, and check for which m
the corresponding p-values are distributed uniformly.

Finally, the procedure is applied to real data. The
data consists of pictures of two different types of
tissue, namely the tissue of mammary cancer and
mastopathic tissue. We have 8 pictures of each type.
The aim is to distinguish between different types and
to assess the pictures of the same type of the tissue
as similar. Considering how different the images of
the same type appear to be at first glance and how
difficult it is to identify specific distinguishing features
for different types, the results of the method are very
good. For comparison to previous results, note that
in the presented method, the type 2 error is slightly
higher (i.e. the test power is slightly lower), but the
type 1 error is significantly less than that ones observed
in Gotovac (2019), where the similarity of realisations
of random sets was tested using the same images.

From the above observations, we can conclude
that the new method works very well and has a high
potential to be a useful tool for comparing realisations
of random sets.
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Mrkvička T, Mattfeldt T (2011). Testing histological
images of mammary tissues on compatibility with
the Boolean model of random sets. Image Anal
Stereol. Vol. 30(1): 11–18.
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