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ABSTRACT

Morphological models are commonly used to describe microstructures observed in heterogeneous materials.
Usually, these models depend upon a set of parameters ®, that must be chosen carefully to match experimental
observations conducted on the microstructure. A common approach to perform the parameters determination
is to try to minimize an objective function, usually taken to be the discrepancy between measurements
computed on the simulations and on the experimental observations, respectively. In this article, we present
a Bayesian approach for determining the parameters of morphological models, based upon the definition of
a posterior distribution for the parameters. A Monte Carlo Markov Chains (MCMC) algorithm is then used
to generate samples from the posterior distribution and to identify a set of optimal parameters. We show on
several examples that the Bayesian approach allows us to properly identify the optimal parameters of distinct
morphological models and to identify potential correlations between the parameters of the models.

Keywords: Bayesian models, Monte Carlo Markov Chains algorithms, Morphological models.

INTRODUCTION

Materials used in industry often present a complex
internal microstructure, which largely determines
most of their physical properties at the macroscopic
level (Jeulin, 1991; Ohser, 2009; Torquato, 2013;
Moussaoui, 2018; 2019; Figliuzzi, 2019). A common
way to carry out a quantitative study of the
microstructure influence on the macroscopic properties
of materials is to generate random microstructures that
reproduce their geometrical characteristics (Moreaud,
2012; Wang, 2015). These simulated microstructures
can subsequently be used to analyze the physical
or mechanical properties of heterogeneous materials
through extensive numerical simulations (Gasnier,
2015; Figliuzzi, 2016; Koishi, 2017; Bortolussi, 2018;
Belhadj, 2018). This approach is particularly efficient
to determine microstructures yielding optimized
functional properties for some considered application.

Stochastic geometry models are often used to
describe microstructures observed in heterogeneous
materials (Chiu, 2013). Hence, microstructure
simulation approaches based upon classical
morphological models have drawn significant attention
in the literature (Jeulin, 1991; 2012; 2017). A general
introduction to this topic can be found in (Jeulin,
2021). Usually, the morphological models depend
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upon a set of parameters ®, that must be chosen
carefully to match the experimental observations
conducted on the material. A common approach to
perform the parameters determination is to try to
minimize an objective function, usually taken to be
the discrepancy between measurements computed on
the simulations and on the experimental observations,
respectively. To that end, several methods have been
proposed in the literature.

A classical approach is to minimize the objective
function through a gradient descent algorithm.
Gradient descent algorithms are first-order iterative
optimization algorithms that seek local minima of
a differentiable function by iteratively progressing
toward steps proportional to the negative of
the gradient in the parameters space. Gradient
descent algorithms are very efficient to perform the
minimization of strongly convex functionals and are
extensively used in a number of fields. Nevertheless,
several difficulties are associated to these methods
when applied to the problem considered here. Firstly,
for morphological models, the computation of the
objective function gradient is often untrackable
analytically, and one has therefore to rely on a finite
difference scheme to evaluate the gradient at each
iteration of the descent algorithm. At each step, this
requires to compute at least D + 1 evaluations of
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the objective function, D being the dimension of the
parameters space. In addition, the intrinsic statistical
variability of the morphological models often leads to
noisy estimates of the gradient. Secondly, the objective
function that one seeks to minimize is often non-
convex, which means that a gradient descent algorithm
will only converge toward a local minimum of the
objective function.

Several alternatives to the gradient descent
algorithm have been proposed in the literature.
In (Wang, 2015) and (Figliuzzi, 2016) the authors
notably propose to conduct the optimization
procedure by employing the Nelder-Mead algorithm,
a heuristic that can be used to determine the
minimum or maximum of an objective function in a
multidimensional space. It is a direct search method
that only relies upon iterative evaluations of the
objective function, and which can therefore be applied
to problems for which the computation of the gradient
is not trackable analytically.

In this article, we propose an approach based
upon a Bayesian formulation of the problem, which
allows us to define a posterior distribution for the
parameters of the microstructure model depending
on the experimental observations. A Monte Carlo
Markov Chains (MCMC) algorithm allows us to
generate samples from the posterior distribution. This
approach presents several advantages when compared
to other methods. In particular, the MCMC algorithm
outputs samples that reproduce the actual posterior
distribution, which enables detecting correlations
between parameters of the model and quantifying the
respective influences of the parameters.

MATHEMATICAL MODEL
PROBLEM STATEMENT

From now on, we assume that we dispose of a
set of experimental images, or alternatively of a large
experimental image of some materials microstructure.
The experimental images can be transformed into
binary images where the microstructure elements are
represented by the value 1 (white) and the background
by the value 0 (black). We will refer to these binary
images as the observations . It is possible to
extract measurements from the observations & by
considering several statistical features, including the
covariance, the granulometry or the granulometry of
the complementary image:

The covariance of a random set A C R? is the
function C, defined on R? x RP by

Calx,x+h)=P{xeAx+hecA}, (1)

172

where £ is some vector of RP. The covariance of
the set A at a given point x and for a distance 4 is
simply the probability that x and x + /& both belong
to A. For a stationary random set, the covariance is
a function of the distance & only:
Ca(x,x+h) = Ca(h). 2
If the set A is ergodic, the covariance C(h) can be
estimated from the volume fraction of ANA_j to
be
Ca(h)=P{x€ANA_,} =V(ANA_), 3
where A_j, is the translation of the set A by the
vector —h. The covariance C4 provides useful
information about the spatial arrangement of the
random set A. In particular, it can account for the

presence of several scales in the studied set or for
periodicity.

The granulometry by openings of a random set A
provides a characterization of the size distribution
of the elements of A. Let K be a convex set.
We consider the family of structuring elements
{K;,A > 0}, where K; = AK. The operator
defined for all closed set A C R” by

D;(A) = (ASKy) DKy, @)
where © is the morphological erosion and & the
morphological dilation, is a granulometry. The
random set A can be characterized by recording,
for distinct values of A, the volume fraction
of the residual set A\®;(A). Granulometry
measurements can be computed on the random A,
as well as on its complementary set A°.

In the remainder of the article, the quantities mg
and mg will denote the statistical measurements as
conducted on the observations and on the binary
simulations, respectively. As discussed in section 1,
the set of parameters ® is fixed as to minimize
the discrepancy between mg and mg. This can be
formulated as the following constrained optimization
problem:

c)

&)
(6)

argm@%n |lme —m@H%

subject to ® € ¥

where 2 denotes the set of admissible parameters for
the model.
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BAYESIAN FORMULATION

To determine a set of parameters, we propose in
this article to rely on a Bayesian approach. Let us
consider measurements obtained from a morphological
model with parameters ® and measurements
conducted on the observation. By considering the
quantity

p(0]0)

1
- \/T]A] exp((mg — m@)TA_1 (mg —mg)),
@)

it is possible to define a notion of probability that
the observations were obtained with the set of
parameters ®. This quantity is indeed maximal when
the measurements computed on realizations of the
model exactly match the measurements computed on
the observations. In Eq. (7), the covariance matrix
A is usually taken to be diagonal, and allows to
assign a weight to the parameters corresponding to
their respective importance. Others distributions can
potentially be selected for the likelihood as long as
the likelihood remains maximal when the simulated
measurements match the observations. The choice of a
Gaussian distribution is therefore mostly motivated by
its simplicity.

It is also possible to define a prior distribution
on the parameters ®. Usually, we are able, at least
approximately, to define a range of variation for all
parameters of the model:

Opin 20 = ®mam (8)
where < is a component-wise inequality. For instance,
in the case of a Boolean model of disks with constant
radii, the parameters of the model are the intensity 0
of the underlying Poisson point process, as well as the
radius R of the disks:

®:=(6,R). 9
In this case, it is usually possible to estimate upper and
lower bounds on these parameters. A simple way of
defining a prior distribution is therefore to consider a
uniform distribution between the lower and the upper
bound for each parameter:

p(®) = %(amim@max‘ (10)

Using Bayes formula, it is possible to find
an expression for the posterior distribution of the
parameters ® with respect to the observations &

p(®[0)p(0) = p(0]0)p(0) (11
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Obviously, the prior probability law for the
observation remains unknown. However, this quantity
is independent from ®. Hence, we find that the
posterior distribution is proportional to the likelihood
multiplied by the prior distribution:

p(®[0) = p(0]0)p(O).

Starting from the posterior distribution of the
parameters, several approaches can be considered
to compute an optimal set of parameters. A first
possibility is to maximize the posterior distribution
with respect to the parameters ®. This can be for
instance performed by using a projected gradient
descent algorithm or any other classical optimization
method.

(12)

SAMPLING FROM THE POSTERIOR
DISTRIBUTION

In this section, we propose an alternative approach,
which relies on a Monte Carlo Markov Chains
(MCMC) algorithm to generate samples from the
posterior distribution (Robert, 2004; Andrieu, 2003).
This approach presents several advantages when
compared to other methods including gradient descent.
First, it is usually difficult to compute the gradient
of the measurements with respect to the parameters,
due to two main issues: there is usually no available
analytical formula to compute the gradient, and
the function mg 1is a stochastic function of the
set of parameters ®, which makes it difficult to
estimate the gradient through a finite difference
scheme. An additional advantage of the MCMC
approach is that it allows to obtain samples that
reproduce the actual posterior distribution, which
enables us to capture some interesting features of
the microstructure, including correlations between
parameters or characteristic ranges of variation of the
parameters.

In what follows, we rely on a Metropolis-Hastings
algorithm to generate a sequence of samples from the
posterior distribution. The algorithm works as follows:

Initialization: A set of parameters is first generated
from the prior distribution:

0 ~ U (13)

mins @max *

n-th iteration: At each iteration, we repeat the
following steps:

1. Parameters sampling A set of parameters O is
generated from the current state ®,, according
to a proposal distribution g:

O ~q(0|®,) (14)
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2. Simulation A single simulation of the
morphological model is computed with this set
of parameters and a measurement vector myg
is extracted from the microstructure computed
with the model. The measurement vector is
used to compute the posterior distribution, up
to the constant factor p(0):

p(8|0) = p(010)p(O). (15)

3. Accept/reject step A quantity r referred to as the
Hastings ratio is computed:

) (16)

r = min (1,

Noteworthy, the Hastings ratio r is independent
of the quantity p(&). The new set of parameters
O is accepted or rejected with probability r. In
practice, a random variable u is drawn from the
uniform distribution %/ (0, 1), and the novel set
of parameters is set according to the following

formula:
®n+1 = {

P(©]0)4(©,|6)
P(©,]0)q(0]©,)

6
0,

ifu<r

otherwise a7

05 0.6 07

0.4

Fig. 1: Scatterplot of the parameters 1/R’> and 6
sampled by the Metropolis-Hastings algorithm for
the Boolean model of disks. The color intensity
of each points corresponds to the frequency of the
corresponding parameters within the samples

NUMERICAL EXPERIMENTS

BOOLEAN MODEL OF DISKS WITH
CONSTANT RADII

We first illustrate our optimization approach on
a purely numerical example, where a set of N = 10
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random microstructures are generated in a domain
of size 30 by 30 in R? using a Boolean model
of disks. The intensity of the Boolean model is
taken equal to 0.45, and the radius of the disks
to 0.5 in this specific example. A sample of the
simulated microstructure is displayed in Fig. 2. The
covariance, the granulometry and the granulometry of
the complementary are computed and averaged for
each one of the microstructures to yield a measurement
vector mg.

Fig. 2: Sample of the microstructure generated with the
Boolean model of disks

The upper and lower bounds for the model
parameters used to define the prior distribution are
indicated in table 1. The covariance matrix A used
to define the covariance in the likelihood function (7)
is taken to be diagonal. However, to put more
emphasis on the correlations at small scale, we rely
on the following expression for the coefficients of A
corresponding to the covariance measurements:

1 -1
An,nzk<1+> )
n

where A, , is the diagonal coefficient of A
corresponding to the n-th covariance measurement
C(nAh) and A > 0. The variance of the covariance
measurements is set uniformly equal to A.

(18)

We initialize the Metropolis-Hastings algorithm
by sampling a first set of parameters ®; := (6;,R))
directly from the prior distribution. We select A = 0.1
in our computations. At each step of the algorithm, the
proposal distribution for each parameter is defined by
the truncated normal distribution:

Q(elen) :r/%r(enaoeyeminvemux)y (19)

where 0, (resp. O4y) is the minimal (resp. maximal)
possible value of the parameter, and the standard
deviation o is set to:

Gmax — emin
A
The parameter A in this equation must be carefully
selected. By decreasing the value of A, we enable

Og = (20)
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(b) Granulometry measurements of the microstructure (left) and of the complementary (right)

Fig. 3: Comparison between the experimental measurements and the measurements obtained with simulations
conducted with the MAP parameters identified by the MCMC algorithm for the Boolean model of disks .

proposals that are far from the current state, therefore
reducing the acceptation rate. By contrast, increasing
the value of A leads to proposals that are closer to
the current state, at the detriment of the exploration
properties of the algorithm. Here, we fix A = 20 to get
an acceptation rate of 0.3 in the algorithm.

We stop the algorithm after 500 iterations, and
we discard the first 100 parameters sampled by the
algorithm. We estimate the set of optimal parameters
for the microstructure by considering the maximal a
posteriori value found for the sampled parameters:

A

®:=arg max

0,|0).
nG{IOO,..‘,SOO}p( 19)

1)

In our experiment, we found the estimation of the
models parameters to be already accurate after around
200 sampling iterations, and drawing additional
samples only improve marginally the estimation. The
optimal set of parameters ® found by the Metropolis-
Hastings algorithm for the Boolean model of disks are
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displayed in Tab. 1, along with the standard deviation
of the sampled parameters. The standard deviation
yields a useful information regarding the sensibility of
the parameters with respect to the Bayesian model. We
can note that there is a good agreement between the
parameters identified by the algorithm and the ones
corresponding to the experimental microstructure. A
comparison between the measurements as conducted
on the experimental microstructure and as obtained

with the optimal set of parameters @ is displayed in
Fig. 3.

[ 6L RIL]
Target 0.45 0.5
6 0.44 £0.05 0.52 +0.025
Min. Val. | 0.2 0.15
Max. val. | 0.9 1.05

Table 1: Optimal parameters found by the Metropolis-
Hastings algorithm for the Boolean model of disks
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(b) Granulometry measurements of the microstructure (left) and of the complementary (right)

Fig. 4: Comparison between the experimental measurements and the measurements obtained with simulations
conducted with the MAP parameters identified by the MCMC algorithm for the Cox-Boolean model of disks .

Fig. 1 displays a scatterplot of the parameters
sampled by the Metropolis-Hastings algorithm.
Interestingly, we note that the parameters 6 and R
sampled by the algorithm are strongly correlated. We
performed a linear regression between the parameters
6 and 1/R?, to find a coefficient of determination equal
to 0.81. For a Boolean model of disks, the volume
fraction v is known to be given by

v=1—exp(nR*0). (22)
This leads to the linear relationship
1 T
—=—-——286. 23
R? log(1—v) @3)

The covariance measurements are highly sensitive
to the volume fraction. Hence, by construction,
the Metropolis-Hastings will usually select a set of
parameters that allows to obtain a volume fraction
similar to the one measured on the experimental
samples. As evidenced in Fig. 1 , the parameters are
indeed distributed around a straight line.

COX-BOOLEAN MODEL OF DISKS

In this section, we illustrate the optimization
approach on a more complicated numerical example,
where a set of N = 10 random microstructures are
generated in R? using a Cox-Boolean model of disks.
In this example, the microstructure is composed of
two scales. A first scale defines exclusion zones that
remains empty of any inclusions. These exclusion
zones are modelled by a Boolean model of disk with
constant radii. The intensity 6, of the Boolean model
is taken equal to 0.1, and the radius R, of the disks to
1 in this specific example. The second scale simulates
the inclusions of the microstructure, and is modelled
by a Boolean model of disks with intensity 6 = 0.45.
The radii of the disks are sampled according to a
normal distribution with mean R equal to 0.5 and
standard deviation 0.1. A sample of the simulated
microstructure is displayed in Fig. 5. As in the previous
example, the covariance, the granulometry and the
granulometry of the complementary set are computed
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and averaged for each one of the microstructures to
yield a measurement vector m.

Fig. 5: Sample of the microstructure generated with the
Cox-Boolean model of disks

The upper and lower bounds for the model
parameters used to define the prior distribution are
indicated in table 2. The covariance matrix A used to
define the covariance in the likelihood function 7 is
the same as the one used in the previous example, as
well as the proposal distribution. Again, we initialize
the Metropolis-Hastings algorithm by sampling a first
set of parameters directly from the prior distribution
and we fix the value of A to 0.1 in the simulation. We
stop the algorithm after 500 iterations, and we discard
the first 100 parameters sampled by the algorithm.
We estimate the set of optimal parameters for the
microstructure by considering the sample exhibiting
the maximal a posteriori probability (MAP) within all
sampled parameters.

The optimal set of parameters ® found by the
Metropolis-Hastings algorithm for the Cox-Boolean
model of disks is displayed in Tab. 2. Again, we
can note that there is a good agreement between the
parameters identified by the algorithm and the ones
corresponding to the experimental microstructure.
Noteworthy, due to the smaller influence of the
parameters R, and 6., the estimation error is larger
for these parameters. A comparison between the
measurements as conducted on the experimental
microstructure and as obtained with the optimal set
of parameters O is displayed in Fig. 4.

6.[L""] R.[L] O[L7'] R
Target 0.1 1. 0.45 0.5
Q] 0.13 0.85 045 0.5
Std. Dev. | 0.03 025  0.05 0.04
Min. Val. | 0.05 0.5 0.2 0.15
Max. val. | 0.2 2. 0.9 1.05

Table 2: Optimal parameters found by the Metropolis-
Hastings algorithm for the Cox-Boolean model of
disks

0.5 06 0.7 08 0.9

Fig. 6: Scatterplot of the parameters 1/R? and
sampled by the Metropolis-Hastings algorithm for the
Cox-Boolean model of disks

It is also interesting to use the sampled parameters
to determine if there is still a linear correlation
between the values sampled for 1/R? and 6. Fig. 6
displays a scatterplot of the parameters sampled by the
Metropolis-Hastings algorithm. For the Cox-Boolean
model, we note that the parameters 6 and R sampled
by the algorithm remain correlated, but the correlation
is less obsvious than for the Boolean model. A linear
regression performed between the parameters 68 and
1/R? yields a coefficient of determination equal to
0.51. Due to the presence of exclusion zones in the
microstructure, Eq. (23) is not valid anymore, which
explains this smaller value.

EXPERIMENTS

In this last section, we present an application of
the proposed optimization approach to an experimental
microstructure. The corresponding material is a colloid
film constituted of pigments embedded in a matrix.
The pigments have an elongated ellipsoidal form close
to the one of a needle. A dataset of experimental
images of the microstructure was obtained using
transmission electron microscopy (TEM) imaging.
An example is shown in Fig 8. We can note on
the experimental TEM images that the pigments
tend to aggregate in the microstructure, therefore
forming clusters whose characteristic size significantly
surpasses the size of the pigments.

To describe the 3D microstructure, we rely on a
two-scale model. The model is as follows:

— The first scale of the simulation aims at
describing the pigments aggregates. We describe
these aggregates by considering a Boolean
model of spheres with constant radius R;. The
model describing the aggregates is therefore
characterized by two parameters, namely the
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(b) Granulometry measurements

Fig. 7: Comparison between the covariance and the granulometries as obtained on the experimental TEM images
(dashed lines) and on the simulated TEM images for the “needles” microstructure.

Fig. 8: Needles microstructure: experimental TEM image (left) and binary image simulated with the
morphological model using the optimal set of parameters identified by the Bayesian approach

6 (um~3) | R (um) | 6 (um>) | Lum) | I(um) | h(um) |
0.56 7054 | 45, |056+0.08|007£001] 02 |

Table 3: Optimal parameters for the “needles” microstructure
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intensity 6; of the Poisson point &2 process used
to construct the Boolean model and the radii R; of
the spheres. The first scale therefore correspond to
the geometrical set defined by the union

S = Uie1S4, 24)
where .7 is the sphere implanted on the i-th point
of the process.

The second scale of the model simulates the
pigments within the aggregates. The pigments
are represented by a Boolean model of ellipsoids
whose largest semi-axis follows a normal law with
mean L and standard deviation o7, and whose
smallest semi-axes follow a normal law with mean
[ and standard deviation ¢;. An hardcore distance
h is introduced in the underlying point process.
For each sphere .#;, the ellipsoids are implanted
at locations sampled from a Poisson point process
with intensity 0 restricted to the sphere. In each
sphere .7, a single orientation for the ellipsoids is
sampled uniformly from Euler’s angles.

Overall, the model for describing the
microstructure requires eight parameters, namely the
intensity 6; of the Poisson point process for the
aggregates, their radius R;, the semi-axes lengths L
and [ of the pigments, along with the corresponding
standard variations o7 and oj, the intensity 6 of the
point process used for the pigments and the hardcore
distance h.

To determine the model parameters, we rely on the
Bayesian approach described in the previous section.
We initialize the Metropolis-Hastings algorithm with
a value of A equal to 1 in the simulation, and we
stop the algorithm after 200 iterations. As previously,
we estimate the set of optimal parameters for the
microstructure by considering the sample exhibiting
the maximal a posteriori probability (MAP) within
all sampled parameters. During the MCMC run, we
simulate TEM images of the microstructure by first
generating a 3D sample of the model, then extracting
a thick slice of the 3D volume whose thickness
matches the one of the experimental slices used
to obtain the TEM images and finally projecting
the thick slice on a single plane. An illustrative
example of the microstructure generated with this
approach is presented in Fig. 8. Covariance and
granulometry measurements are finally conducted on
the experimental and simulated TEM images.

The optimal set of parameters ® found by the
Metropolis-Hastings algorithm for the morphological
model is displayed in Tab. 3. A comparison between
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the measurements as conducted on the experimental
microstructure and as obtained with the optimal set of
parameters is displayed in Fig. 7. Again, we can note
that the optimal set of parameters allows us to obtain
a good match between the experimental measurements
and the measurements conducted on simulations of the
morphological models.

CONCLUSION

In this article, we proposed a Bayesian approach
to determine the parameters of morphological models
of microstructure based upon measurements conducted
on experimental images of the microstructure. We
demonstrate on several examples that this approach
allows us to properly identify the optimal parameters
of distinct morphological models and to identify
potential correlations between the parameters of the
models. The proposed methodology present several
advantages when compared to other approaches used
to perform the parameters determination. In particular,
it does not require the computation of the gradient of
the model with respect to the parameters, and it yields
a sequence of samples of parameters, which allows
to quantify the sensibility of the parameters to the
model and to highlight potential correlation between
parameters of the model.
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