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ABSTRACT

A wide variety of applications are used in lossless image compression models, especially in medical, space,
and aerial imaging domains. Predictive coding improves the performance of lossless image compression,
which highly relies on entropy error. Lower entropy error results in better image compression. The main focus
of this research is to improve the prediction process by minimizing the entropy error. This paper proposes
a novel idea for improved Median Edge Detection (iMED) predictor for lossless image compression. MED
predictor is improved using k-means clustering and finding the local context of pixels using 20-Dimensional
Difference (DDx20) for input images and updates the cluster weights using learning rates (µi) to minimize the
prediction errors of pixels. The performance of the proposed predictor is evaluated on the standard grey-scale
test images dataset and KODAK image dataset. Results are obtained and compared based on entropy error, bits
per pixel (bpp), and computational running time in seconds(s) with the MED, GAP, FLIF, and LBP predictors.
The performance of the proposed iMED predictor improves significantly in terms of the entropy error, bpp,
and computational running time in seconds(s) after comparison with different state-of-the-art predictors.

Keywords: Difference Vector, K-means clustering, Learning rate, Lossless image compression, Median Edge
Detector (MED), Predictive Coding.

INTRODUCTION

In many data storage and transmission
applications, the importance of image compression
has been increasing continuously (Li et al., 2019;
Marlapalli et al., 2021). For example, in storage disks,
many images need a large amount of storage space
and more time for wireless transmission. Therefore,
an efficient compression algorithm plays a vital role
in saving storage space and transmission time (Siddeq
and Rodrigues, 2017; Hameed et al., 2020; Vura et
al., 2021). Image compression is a process in which
compression is done by encoding image data with
fewer bits, and redundant data is removed. Image
compression is a cost-effective tool that preserves
expensive resources, i.e., transmission bandwidth and
data storage space. The basic categories of Image
compression are lossy or lossless (LS) compression
(Prasanna et al., 2021; Qasim et al., 2020). Various
methods are used for encoding and decoding images
for the digital image compression process. Lossless
image compression technique is chosen where the
nature of data is sensitive, like military or medical
images. Lossless can achieve two to three times of

total compression without losing image information
(Wu et al., 2012; Zhou and Kwan, 2018; Kwan
and Luk, 2018; Kwan and Larkin, 2018; Rahman
et al., 2021). There are three basic types of lossless
image compression methods, i.e., entropy coding,
dictionary coding, and predictive coding. In entropy
coding, the representation of symbols is done by taking
the average number of bits. In dictionary coding,
during the transmission of an image, the actual pixel
values are represented by values in the database
(dictionary). In predictive coding, the difference
between the actual values and the predicted values
of an image is transmitted (Shanmathi and Maniyath,
2017). A general view of the predictive lossless
image compression scheme is presented in Fig. 1.
Prediction of the current pixel value is calculated
by using the predictor, and then its output is coded
using an entropy coder, which removes the spatial
redundancy. Information of an image is used by the
context modeling block to improves the predictor’s
output.

In Lossless Predictive coding, the method of
predictive coding depends upon context modeling,
entropy coding, and a predictor (Tiwari and Kumar,
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2005; Kamisli, 2016; Venugopal et al., 2016). A
large quantity of spatial redundancy is eliminated at
the most important phase, i.e., predictor. Recently
predictive coding has been used by many researchers
in image compression due to the efficiency, symmetry,
and simplicity of this coding scheme (Al-Mahmood
and Al-Rubaye, 2014). Gradient Adjusted Predictor
(GAP) (Tiwari and Kumar, 2008) is used in CALIC
and JPEG LS (Weinberger et al., 2000), Median Edge
Detector (MED) (Fouad, 2015), and Gradient Edge
Detection (GED) (Shanmathi and Maniyath, 2017)
are basic and well-known predictors used for lossless
predictive coding. Gradient adjusted predictor (GAP)
is built on the least mean square adaptation of linear
predictive coefficients (Li and Orchard, 2001). The
adaptation is based on linking neighbor pixels, and
an optimal predictor will predict the intensity value of
each pixel. MED consists of a static predictor, which is
a switching predictor and is proficient at acclimatizing
context of different types like smooth area, vertical
edge, or horizontal edge (Weinberger et al., 2000).
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Coding 

Context
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Fig. 1. General predictive lossless image compression
scheme.

This paper proposes a new improved Median
Edge Detection (iMED) predictor for lossless image
compression. In this method, the MED predictor
is improved by making clusters of an input image
using k-means clustering and then finding the local
context of pixels using DDx20. In lossless predictive
coding, the predictor’s performance highly relies on
the difference between the actual value and entropy
error of the pixels in an image. The performance
of the predictor is increased with the reduction of
the entropy error value. The value of entropy, bpp,
and computational running time in second(s) of the
prediction process is calculated to evaluate the iMED
predictor performance. The proposed method results
demonstrate significant improvement in entropy value,
bpp, and computational running time(s) compared to
state-of-the-art MED (Fouad, 2015), GAP (Tiwari and
Kumar, 2008), FLIF (Sneyers and Wuille, 2016), and
LBP (Novikov et al., 2016) predictors.

In this paper, section 2 presents some related work
about the predictive lossless compression techniques.
And proposed iMED method is discussed in section
3. Experimental results and detailed discussion on the

proposed predictor are discussed in section 4. Finally,
section 5 concludes the paper.

RELATED WORK:

In lossless image compression, predictive coding is
an important and well-known compression technique
(Hussain et al., 2018). This technique utilizes the
spatial domain efficiently by involving two main steps,
i.e., differentiation and prediction. In differentiation,
the residual difference between the original and
predicted image is calculated. In prediction, an
approximation of the image to the original one
is created (Al-Khafaji, 2012). The predicted image
relies on the least difference values, either from the
vertical or horizontal value or the left bottom value
of the current pixel (Al-Khafaji and Al-Mahmood,
2016). In this section, some commonly used predictive
techniques for lossless image compression and MED
predictor are discussed.

COMMON PREDICTION MODELS:
The proposed algorithm for lossless image

compression (Azman et al., 2019) can achieve
the desired results by combining Integer Wavelet
Transform (IWT) and Differential Pulse Code
Modulation (DPCM). To analyze the performance
of this hybrid algorithm, two parameters, i.e.,
compression ratio and entropy, are used. The
experimental results show that the DPCM-IWT-
Huffman sequence performs better than the IWT-
DPCM-Huffman sequence in terms of low entropy
and better compression ratio. Bits size is reduced by
48%, 36%, 34%, and 13% for the Cameraman, Lena,
Pepper, and Baboon, respectively.

Among different lossless image compression
techniques for the predictive coding approach, the
medical images have low complexity and high
coding efficiency. In the predictive coding approach,
GED is based on prediction value. The author
proposed an efficient prediction approach named
Resolution Independent Gradient Edge Predictor
(RIGED) (Sharma et al., 2021). This algorithm
supports 8-bit and 16-bit medical images data.
Experimental results are compared with MED and
GAP’s well-known techniques of predictive coding.
The analysis of experimental results shows that
the RIGED method improvement percentage over
MED and GAP methods are 30.39% and 0.92%
respectively in terms of entropy for the medical images
dataset. Therefore, the proposed method achieves
better performance in terms of low entropy than MED
and GAP, which is simple for implementation.
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Prediction-based Transformation and Entropy
Coding (PTEC) is another technique that is used for
pixelated type images (Kabir and Mondal, 2018).
The input image is divided hierarchically in the first
stage of the PTEC method to predict the current
pixel value using values of neighboring pixels. After
that, in the latter phase, two different matrices are
formed, where the first matrix contains the value of
absolute error and the second matrix contains the
prediction error’s polarity. After these two stages,
entropy coding is applied to these matrices. The results
of PTEC are compared with the existing lossless state-
of-the-art techniques, i.e., Edge-based Transformation
and Entropy Coding (ETEC), Differential Pulse Code
Modulation (DPCM), Joint Photographic Experts
Group Lossless (JPEG-LS), and Set Partitioning
in Hierarchical Trees (SPIHT). Experimental result
shows that PTEC and ETEC provide much better
compression as compared to other techniques. The
computation time of PTEC is better than ETEC.
PTEC performs better than ETEC if we consider both
compression and computation time for pixelated and
non-pixelated images.

LOCO-I (LOw COmplexity LOssless
Compression for Images) is another algorithm used for
near-lossless and lossless compression (Weinberger et
al., 2000). LOCO-I is based on a fixed context model
in a simple form, in which high-order dependencies are
also captured. The main strength is that this method
can achieve similar or better compression ratios
compared to other relevant techniques. For natural
images, Li and Orchard (Li and Orchard, 2001) expose
the superiority of lossless-based adaptation schemes
and reduce the computational complexity. The main
process of this approach involves, if the prediction
error’s magnitude is beyond the preselected threshold
value, then prediction coefficients are updated instead
of performing LS-based optimization on pixels.

In another image compression technique, Tiwari
and Kumar (Tiwari and Kumar, 2008) tries to improve
the capability in terms of accuracy with a slight
increase in computational complexity of GAP. In this
method, to find an optimal prediction for different
slope bins Least Square (LS) technique is used. After
the quantization process at the encoder and decoder
end, various switched predictors are used. The strength
of this approach is an encoder, in which the encoder
is computationally much simpler. It can be used to
compress Medical images.

(Avramović and Reljin, 2010) proposed Gradient
Edge Detection (GED) predictor tends to use
advantages of described MED (Haijiang et al.,
2005) and GAP predictors. GED is designed by
combining these two techniques. In GED, values of

five neighboring pixels are used to estimate the local
gradient of pixels. It is a compromise between MED
and GAP predictors. GED chooses among vertical
edge, horizontal edge, or smooth area like MED
predictor, but the mechanism for prediction is based on
GAP predictor. The strength of GED comparing with
GAP is that this gives about 1% higher bit rates but is
considerably simpler.

MEDIAN EDGE PREDICTOR (MED):
The Median edge detector (MED) prediction

method is used to generate the predicted values
of the original pixels and calculate the prediction
errors. MED is one of the most successful prediction
schemes and serves as the core part of the LOCO-I
algorithm (Weinberger et al., 2000). It combined good
compression efficiency with very low computational
complexity. MED detects horizontal or vertical edge
orientations based on the template consists of the
n,w,and nw neighbors of current pixel x, as shown in
Fig. 2.

nw n

w x

Fig. 2. Neighboring pixels template of MED predictor.

x′ = min(n,w) i f nw≥ max(n,w)

x′ = max(n,w) i f nw≤ max(n,w)

x′ = n+w−nw Otherwise

(1)

MED predictor chooses a median value between n,
w, and n+w−nw as shown in Equation 1. The first two
rows indicate an edge is assumed when the nw value is
minimum or maximum compared to other neighboring
pixels of x. Pixel n value is selected as a prediction in
the case of vertical edge and w in case of horizontal
edge. MED predictor predicts the current pixel x value
according to the context of three neighboring pixels.

PROPOSED METHOD (IMED):

Methods for lossless predictive coding mainly
depend on context model, entropy coding, and a
predictor. Predictor is the most important part of the
proposed method because it removes redundancies
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Fig. 3. Flow Diagram of iMED. Prediction is made on each pixel after applying k-means clustering and using
iMED Predictor.

in the image by reducing the entropy error. The
prediction mechanism of MED is improved by
updating the original values of neighboring pixels
XA and XB. Algorithm and detailed description of the
proposed method is presented in section 3.1 and 3.2,
respectively. The flow of the proposed predictor iMED
is presented in Fig. 3. The core part of this method
is the iMED predictor, which focuses on minimizing
the entropy error using the local context of a pixel, as
shown in Fig. 4. The local context of the current pixel
(X) is calculated using a 20-Dimensional Difference
(DDx20), as presented in Table 1.

ALGORITHM:

Step 1- Read an input image.

Step 2- Make clusters of the input image using the k-
means algorithm.

Step 3- Chose a pixel (X) from the image and forward
it to the iMED predictor to calculate entropy error.

3.1Find the belonging cluster of a pixel using
Difference Vector (Dv) as shown in Equation 4.

3.2Find local context of a pixel XA, XB using 20-
Dimensional Difference (DDx20) as shown in
Equation 5 and 6, respectively.

3.3Calculate prediction error eA and eB.

3.4Update weights of pixels XA and XB using
learning rate µi.

3.5Predict value of current pixel (X)

Step 4- Calculate the entropy error.

Step 5- Take another pixel from the input image and
repeat steps 3 and 4 for all pixels.

IMED PREDICTOR:
In this proposed iMED predictor, a novel

context-sensitive prediction scheme is used, detailed
description is explained as follows:

K-means clustering:
Read an input image, and calculate the total

number of rows (height) and columns (width) of the
image. Then total numbers of clusters for an input
image is made using Equation 2.

NC =

√
width∗height

10
(2)

Where NC is the number of clusters, NC is formed
optimally according to the height and width ratio of
the input image, with ten as a denominator. This is
an optimal value found during experiments. If this
value decreases, then the predictor’s performance also
decreases, and if it increases, then the computational
cost of the predictor increases. After that, we randomly
select the number of training samples from an image
using Equation 3. These random training samples
calculate the distance between pixels and compute the
cluster’s centroid.

SN = 500∗NC (3)

Where SN is the number of training samples formed
according to the total number of clusters NC formed
using Equation 2.

Difference Vector:
Difference Vector (DV ) is used to find the

belonging cluster of a pixel (X). To randomly select the
number of training samples SN from cropped image,
index numbers are randomly selected. Then this index
number is used to get its DV from the original image.
DV of each randomly selected pixels are obtained using
Equation 4. Minimum distance from the centroid of
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each cluster and its index number against each pixel
is obtained after calculating DV .

Dv = [XA−XC,XC−XB,XE −XD,

XA−XE ,XB−XH ,SF ∗XA]
(4)

where XA,XB,XC,XD,XE ,XH , are position of
neighboring pixels and SF is the Scaling Factor. We
used six different combinations of neighboring pixels
of X to calculate six DV values. The distance of a pixel
(X) is calculated from all NC to find the belonging
clusters with less computational cost.

XN XO XP

XM XG XH XI XQ

XL XF XC XB XD XJ XR

XK XE XA X

Fig. 4. Local Context of a pixel (X) using its
neighboring pixel values.

Calculate value of pixels XA, XB using local
context of a pixel:
Image is ready for prediction after finding the

belonging cluster of a pixel. The local context of
the current pixel (X) is calculated using a 20-
Dimensional Difference (DDx20), as presented in
Table 1. DDX20 is used to update the neighboring
pixels XA and XB values according to Equation 5
and 6, respectively. DDx20 is calculated for a pixel
from its neighboring pixel values, as shown in Table
1 from DDx201,DDx202,DDx203, . . . ,DDx2020. We
take values from the top, right, and left neighboring
pixels to make the prediction better.

Table 1. 20-Dimensional Difference (DDx20).

DDx201 = XA−XC DDx2011 = XH −XO
DDx202 = XC−XB DDx2012 = XF −XM
DDx203 = XB−XD DDx2013 = XK−XL
DDx204 = XA−XE DDx2014 = XO−XN
DDx205 = XB−XH DDx2015 = XJ−XQ
DDx206 = XC−XG DDx2016 = XJ−XR
DDx207 = XE −XF DDx2017 = XC−XF
DDx208 = XD−XI DDx2018 = XI−XP
DDx209 = XD−XJ DDx2019 = XH −XI
DDx2010 = XE −XK DDx2020 = XH −XG

X
′
A = XA

20

∑
i=1

wi[X ].DDx20i (5)

X
′
B = XB

20

∑
i=1

wi[X ].DDx20i (6)

We initialize the cluster weights wi to zero and
calculate the value of neighboring pixel X

′
A according

to Equation 5 using the local context of pixels. And
calculate the value of neighboring pixel X

′
B according

to Equation 6. Where XA and XB are original values
of neighboring pixels, these values are multiplied with
weights of corresponding pixel and DDx20i value to
get the new predicted value of X

′
AandX

′
B.

Calculate prediction error eA and eB:
Prediction error eA for current pixel (X) with

respect to the value of neighboring pixel A is
calculated according to Equation 7.

eA = X−X
′
A (7)

Prediction error eB for current pixel (X) with
respect to the value of neighboring pixel B is calculated
according to Equation 8.

eB = X−X
′
B (8)

Threshold values (e
′
A,e

′
B) are used to update

the weight of pixels using the predicted value of
neighboring pixels A and B. Threshold for errors are
shown in Equations 9 and 10 according to neighboring
pixels A and B, respectively.

e
′
A = sign(eA ∗min(|eA|, thA)) (9)

e
′
B = sign(eB ∗min(|eB|, thB)) (10)

where eA and eB are prediction errors with respect
to neighboring pixels XA and XB of a corresponding
cluster. thA and thB are threshold values for prediction
error eA and eB.

Update weights of pixels XA and XB using
learning rate:
Initialize the learning rate (µi) of the prediction

process for DDx20 according to Equation 11. This
learning rate is used to update the weights of pixels
XA and XB.

µi =


4

10000 f ori← 1,2,3
2

10000 f ori← 4,5
1

10000 f ori← 6,7,8, ...,20
(11)

wiA = wi +µi ∗ e
′
A(

DDx20i

|DDx20i|+1
) (12)
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wiB = wi +µi ∗ e
′
B(

DDx20i

|DDx20i|+1
) (13)

Weights of neighboring pixels XA and XB are
updated using Equations 12 and 13, respectively. We
first initialize weight (wi) to zero, then update the
weight of corresponding pixels XA and XB according
to the learning rate (µi), predicted threshold value
of pixel A and B, and 20-Dimensional Difference
(DDx20). This learning rate (µi) for DDX20 plays a
vital role in improving the iMED predictor.

Predict the value of current pixel (X):

After getting the updated value of neighboring
pixels XA and XB using DDx20, the current pixel
(X) value is calculated according to Equation 14.
And we choose the value of XC without finding the
local context of a pixel. Finally, the entropy value is
calculated using these predicted values.

X ′ = min(XA,XB) i f XC ≥ max(XA,XB)

X ′ = max(XA,XB) i f XC ≤ max(XA,XB)

X ′ = XA +XB−XC Otherwise

(14)

EXPERIMENTS AND RESULTS:

In this section, detail about the experimental setup,
dataset, and results are discussed. The performance
of the proposed method is also compared with state-
of-the-art predictors, i.e., MED (Fouad, 2015), GAP
(Tiwari and Kumar, 2008), FLIF (Sneyers and Wuille,
2016), and LBP (Novikov et al., 2016).

DATASET:

For comparisons, we performed experiments on
a standard grey-scale images test dataset (Dataset 1,
2022) and True color KODAK images dataset (Dataset
2, 2022).

Dataset-1: Eight standard grey-scale test images
(Lena, Cameraman, Livingroom, Mandrill, Peppers,
Pirate, Woman blonde, and Woman darkhair) of size
256x256 are selected for experiments from standard
grey-scale images test data to verify the performance
of the proposed iMED predictor. These test data
images are used in tiff (Tagged Image File) format with
8-bit depth, which is found frequently in the literature
of image compression is shown in Fig. 5.

Dataset-2: Additionally, we also evaluate the
performance of our proposed predictor by performing
experiments on the True color KODAK images

dataset. KODAK is a widely used dataset for testing
the performance of compression models. This dataset
contains 24 color images of type PNG as shown in Fig.
6, out of which eighteen images have 768x512 pixels
(landscape), and six images have 512x768 pixels
(portrait). The photographic quality of the KODAK
dataset involves a variety of subjects in many locations
under different lighting conditions. For experiments,
the KODAK dataset is converted to grey-scale and
resized to suitable resolution for prediction. All the
landscape images are resized to 256x170 pixels, and
all the portrait images are resized to 170x256 pixels.

Fig. 5. Standard grey-scale test images dataset.

Fig. 6. True color Kodak images dataset.

EXPERIMENTAL DESIGN:
Experiments are carried out in the MATLAB

R2021a environment. All the experiments are
conducted and evaluated in terms of entropy and
running time in seconds(s) on a machine with
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz laptop
along with 32GB of RAM. System Type is 64-bit
operating system Windows 11 Home edition, x64-
based processor.

Evaluation on the benchmarks.
The main parameter to evaluate the performance

or efficiency of a predictor is entropy. Entropy is
the minimum number of bits required to represent
complete information of an image. The efficiency of
the predictor is considered high with a lower entropy
value (Sharma et al., 2021). Entropy H(X) of an image
is calculated as shown in Equation 15,
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H(X) =−∑
xεY

p(X)logp(X) (15)

Where p(X) is the probability of symbol (X).
Bits per pixels (bpp) is another evaluation parameter
used to check the performance of the proposed
predictor. Bpp is an exact metric that reflects the
average number of bits required to encode the
information of each pixel in an image. Additionally,
the proposed predictor’s performance is also evaluated
on computational running time in terms of seconds(s).
The computational complexity of a predictor is
calculated based on two parameters, i.e., running
time for algorithm execution and the number of
operations required for its implementation. Running
time for execution of a predictor increases with the
complexity of the method. The efficiency of a predictor
increases if its complexity and running time decreases.
In these experiments, entropy, bpp, and computation
time(s) are used to evaluate the proposed predictor’s
effectiveness compared to baseline predictors.

RESULTS AND DISCUSSION:
In experiments, dataset-1 and dataset-2, publicly

available without any conflicts of interest, are used
to calculate the value of entropy, bpp, and the
computational running time in second(s). Three
different experiments are performed on dataset-1 and
dataset-2. In the first experiment, we calculate the
entropy value of the proposed predictor (iMED) and
other baseline predictors on both datasets. We calculate
the bpp of the proposed predictor and baseline
predictors in the second experiment. And similarly, in
our third experiment, we calculate the computational
running time in the second(s) of all the predictors for
comparison.

Table 2. Entropy for MED, GAP, FLIF, LBP and
iMED (ours) predictors on dataset-1. Where Av. Ent
= Average Entropy

Image Name MED GAP FLIF LBP iMED

Lena 0. 9954 0. 9131 0.8216 0.7561 0. 5203
Cameraman 0. 9972 0. 8807 0.7546 0.6054 0. 6197
Livingroom 0. 9982 0. 9647 0.7981 0.6549 0. 4195
Mandrill 0. 9996 0. 9941 0.8316 0.7615 0. 1922
Peppers 0. 9918 0. 9261 0.7615 0.5987 0. 4881
Pirate 0. 9984 0. 9636 0.8345 0.6885 0. 4072
Woman blonde 0. 9976 0. 9509 0.8012 0.7916 0. 4222
Woman darkhair 1.0000 0. 8534 0.6981 0.7659 0. 6698

Av. Ent 0.9972 0.9308 0.7876 0.7028 0.4673

Experiment 1:
Experiment 1 is performed on dataset-1 (Lena,

Cameraman, Livingroom, Mandrill, Peppers, Pirate,
Woman blonde, and Woman darkhair) and images of

dataset-2 to calculate the entropy value. The entropy
of the proposed predictor is compared with MED,
GAP, FLIF, and LBP predictors. Detailed results from
the perspective of entropy on dataset-1 are shown in
Table 2. Average entropy summarizes results based
on entropy for all the predictors, i.e., MED, GAP,
FLIF, LBP, and iMED (ours). Their values are obtained
as 0.9972, 0.9308, 0.7876, 0.7028, and 0.4673,
respectively. It clearly shows that the proposed iMED
predictor entropy significantly improves compared
to MED, GAP, FLIF, and LBP predictors. Entropy
comparison results on dataset-1 are shown in Fig. 7.
The iMED predictor entropy value is low on all images
of dataset-1 as compared to baseline predictors.

MED GAP FLIF LBP iMED
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Fig. 7. Entropy comparison of MED, GAP, FLIF,
LBP and iMED (ours) predictors on dataset-1 (lower
entropy is better)
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Fig. 8. Entropy comparison of MED, GAP, FLIF,
LBP and iMED (ours) predictors on dataset-2 (lower
entropy is better)

Detailed results from the perspective of entropy on
dataset-2 are shown in Table 3. Average entropy values
of the MED, GAP, FLIF, LBP, and iMED predictors
are 0.9935, 0.9328, 0.7637, 0.7051, and 0.4727,
respectively. It clearly shows that the proposed iMED
predictor entropy significantly improves compared to
MED, GAP, FLIF, and LBP predictors on dataset-2
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Table 3. Entropy for MED, GAP, FLIF, LBP and iMED (ours) predictors on dataset-2. Where Av. Ent = Average
Entropy

Model K01 K02 K03 K04 K05 K06 K07 K08 K09 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 Av.
Ent

MED 0.9995 0.9998 0.9950 0.9979 0.9986 0.9967 0.9983 0.9982 0.9975 0.9976 0.9971 0.9965 0.9988 0.9963 0.9954 0.9972 0.9984 0.9980 0.9983 0.9917 0.9982 0.9970 0.9999 0.9954 0.9935
GAP 0.9821 0.9107 0.8576 0.9480 0.9921 0.9590 0.9156 0.9795 0.8871 0.9294 0.9534 0.8999 0.9948 0.9859 0.8805 0.9371 0.9548 0.9764 0.9595 0.7838 0.9202 0.9598 0.8578 0.9646 0.9328
FLIF 0.7964 0.8952 0.7988 0.8193 0.7135 0.6842 0.8442 0.6326 0.8369 0.6942 0.8158 0.6473 0.8634 0.8123 0.6881 0.8125 0.7135 0.6914 0.7861 0.8361 0.6981 0.8156 0.6875 0.7459 0.7637
LBP 0.8786 0.6536 0.7488 0.6852 0.6824 0.6145 0.5971 0.7789 0.6485 0.7892 0.7925 0.5698 0.7557 0.6415 0.6018 0.7202 0.7946 0.7865 0.6871 0.8226 0.7136 0.6459 0.6152 0.6987 0.7051
iMED 0.3327 0.5209 0.6510 0.4478 0.2121 0.5326 0.6025 0.3180 0.6150 0.5402 0.5038 0.5879 0.1936 0.2698 0.6523 0.5240 0.4642 0.3103 0.4138 0.6093 0.5297 0.3890 0.6338 0.4908 0.4727

as well. Entropy comparison results on dataset-2 are
shown in Fig. 8. The iMED predictor entropy value is
low on all images of dataset-2 as compared to baseline
predictors except K07, K12, K15, and K23, where the
LBP entropy value is better than iMED.

Table 4. Bpp for MED, GAP, FLIF, LBP and iMED
(ours) predictors on dataset-1. Where Av. bpp =
Average bpp

Image name MED GAP FLIF LBP iMED

Lena 5.5836 4.5997 5.3546 4.8954 4.0420
Cameraman 5.9305 4.3754 4.6255 4.6492 4.2378
Livingroom 5.6641 5.1831 4.9846 5.9863 4.4391
Mandrill 7.4788 6.8632 6.8715 4.9664 5.7646
Peppers 5.4063 4.5247 5.9592 4.1368 3.9929
Pirate 5.9298 5.3411 4.9584 5.6871 4.7565
Woman blonde 5.6226 4.9374 5.1284 4.1545 4.3296
Woman darkhair 5. 9442 6.8341 5.6828 4.9875 3.3588

Av. bpp 5.9450 5.3323 5.4456 4.9321 4.3651

Experiment 2:

Experiment 2 is performed to calculate the bpp
value on dataset-1 (Lena, Cameraman, Livingroom,
Mandrill, Peppers, Pirate, Woman blonde, and
Woman darkhair) and images of dataset-2. First, we
calculate the bpp value of MED, GAP, FLIF, LBP, and
iMED predictors on dataset-1, which detailed results
are shown in Table 4. Average bpp value summarizes
results based on bpp for all the predictors, i.e., MED,
GAP, FLIF, LBP, and iMED (ours). The bpp values
for MED, GAP, FLIF, LBP, and iMED are 5.9450,
5.3323, 5.4456, 4.9321, and 4.3651, respectively. It
clearly shows that the proposed iMED predictor takes
less number of bits per pixel to store the final image
compared to MED, GAP, FLIF, and LBP predictors.
Bpp comparison results on dataset-1 are summarized
in Fig. 9. The iMED predictor bpp value is low
on all images of dataset-1 as compared to baseline
predictors except on Mandrill and Woman blonde
image, where the LBP predictor bpp value is better
than iMED. Detailed results from the perspective of
bpp on dataset-2 are shown in Table 5. Average bpp
values of the MED, GAP, FLIF, LBP, and iMED
predictors are 6.1664, 5.1590, 5.2094, 4.0681, and
1.5535, respectively. It clearly shows that the proposed
iMED predictor takes less number of bits per pixel
to store the final image compared to MED, GAP,

FLIF, and LBP predictors. Bpp comparison results
on dataset-2 are summarized in Fig. 10. The iMED
predictor bpp value is low on all images of dataset-2
as compared to baseline predictors.
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Fig. 9. Bpp comparison of MED, GAP, FLIF, LBP and
iMED (ours) predictors on dataset-1 (lower bpp is
better)
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Fig. 10. Bpp comparison of MED, GAP, FLIF, LBP
and iMED (ours) predictors on dataset-2 (lower bpp
is better)
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Table 5. Bpp for MED, GAP, FLIF, LBP and iMED (ours) predictors on dataset-2. Where Av. bpp = Average bpp
Model K01 K02 K03 K04 K05 K06 K07 K08 K09 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 A.bpp

MED 6.6320 5.7621 5.5169 5.5555 7.7013 6.2108 6.3072 6.9248 6.2860 5.6116 5.8561 5.5186 7.6090 6.5972 5.9197 5.7686 5.7250 6.6921 5.6956 4.9631 6.6357 5.9320 6.3408 6.2338 6.1664
GAP 6.1031 4.4335 4.1344 4.9397 7.0509 5.3118 4.8517 6.4518 4.2441 4.5439 5.1020 4.3629 7.0618 6.1114 4.3318 4.6781 5.1164 6.1017 5.1051 3.5233 5.0290 5.3175 4.0836 5.8276 5.1590
FLIF 4.9823 5.9845 5.1684 5.1654 6.1459 5.9895 4.9875 5.9232 4.9125 4.0916 4.1791 5.6982 4.8413 4.8165 6.5565 4.9127 4.5468 5.3685 4.6975 4.7954 5.7826 5.9356 4.6546 4.8911 5.2094
LBP 5.3258 4.5385 4.1615 4.9877 5.8912 4.4613 4.6489 4.5732 3.9445 2.3164 4.2997 3.0124 5.1975 5.1026 3.4635 2.1986 3.1788 4.4568 4.9873 2.9721 3.5648 3.8713 3.2654 3.2164 4.0681
iMED 1.7793 1.4195 1.2900 1.5235 2.0248 1.5730 1.4985 1.8610 1.2806 1.3915 1.5012 1.3173 1.9665 1.8058 1.4052 1.3852 1.5325 1.7656 1.5366 1.3254 1.5138 1.5751 1.2314 1.7809 1.5535

Table 6. Computational running time in second(s) for MED, GAP, FLIF, LBP and iMED (ours) predictors on
dataset-2. Where Av. CT = Average Computational Time

Model K01 K02 K03 K04 K05 K06 K07 K08 K09 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 Av.
CT

MED 23.90 14.92 15.43 13.22 12.30 28.67 15.94 12.41 15.17 15.12 14.46 15.35 14.34 14.21 18.23 16.96 15.69 22.35 15.38 40.34 17.46 15.31 17.80 15.93 17.53
GAP 20.79 14.05 15.41 13.13 12.41 23.14 14.33 12.51 14.69 14.07 14.37 15.12 12.72 12.79 15.30 14.47 15.16 12.90 13.72 21.65 15.07 13.37 14.77 13.07 14.96
FLIF 17.36 12.85 13.25 12.54 11.35 19.24 11.89 9.34 13.78 12.43 11.49 13.25 10.54 11.30 13.63 11.31 13.32 10.76 11.22 16.42 14.31 10.75 12.68 9.34 12.68
LBP 16.71 9.31 12.38 10.65 10.87 14.65 10.51 10.39 12.82 9.24 11.01 12.73 9.87 10.57 10.78 11.98 10.94 9.81 10.56 11.83 11.72 10.96 11.01 10.15 11.31
iMED 7.48 7.21 10.14 11.00 11.55 9.35 8.39 8.26 9.78 7.86 8.03 8.99 8.19 8.26 7.96 8.61 9.93 8.45 8.91 9.06 8.35 9.35 8.65 9.11 8.87

Experiment 3:

Experiment 3 is performed to calculate the
computational running time in second(s) of proposed
and baseline predictors on dataset-1 and dataset-
2. First, we calculate the running time of MED,
GAP, FLIF, LBP, and iMED predictors on dataset-
1, which detailed results are shown in Table 7.
Average Computational Time (C. Time) summarizes
results based on running time in second(s) for all the
predictors, i.e., MED, GAP, FLIF, LBP, and iMED
(ours). The C. Time for MED, GAP, FLIF, LBP, and
iMED are 25.23s, 20.27s, 18.35s, 15.59s, and 11.42s,
respectively. It clearly shows that the proposed iMED
predictor takes less computational running time in
second(s) compared to MED, GAP, FLIF, and LBP
predictors. C. Time comparison results on dataset-1 are
summarized in Fig. 11. The iMED predictor C. Time is
low on all images of dataset-1 as compared to baseline
predictors. Detailed results from the perspective of
C. Time on dataset-2 are shown in Table 6. Average
C. Time of the MED, GAP, FLIF, LBP, and iMED
predictors are 17.53s, 14.96s, 12.68s, 11.31s, and
8.87s, respectively. It clearly shows that the proposed
iMED predictor takes less computational running time
in second(s) compared to MED, GAP, FLIF, and LBP
predictors. C. Time comparison results on dataset-2 are
summarized in Fig. 12. The iMED predictor C. Time is
less on all images of dataset-2 as compared to baseline
predictors except on K04 and K05 images.

Results of experiment 1 and experiment 2 clearly
show that entropy value and bpp values on both
dataset-1 and dataset-2 are less in the case of iMED
predictor compared to MED, GAP, FLIF, and LBP
predictors. Additionally, according to experiment 3,
the proposed predictor (iMED) improves in terms of
computational running time in second(s) compared
to baseline predictors MED, GAP, FLIF, and LBP.
However, the limitation of the iMED predictor is that
it takes too much computational time when running

on high-resolution images due to k-means clustering
and calculating the local context of a pixel using a 20-
dimensional difference (DDx20).

Table 7. Computational running time in second(s) for
MED, GAP, FLIF, LBP and iMED (ours) predictors
on dataset-1. Where Av. CT = Average Computational
Time

Image name MED GAP FLIF LBP iMED

Lena 21.90 20.16 20.24 18.36 10.48
Cameraman 23.87 21.56 20.99 16.58 13.239
Livingroom 20.29 19.01 18.96 15.70 11.42
Mandrill 19.26 18.79 17.16 15.17 14.98
Peppers 21.92 21.92 19.91 17.69 10.73
Pirate 21.07 19.77 17.37 14.36 10.38
Woman blonde 33.56 19.91 15.78 12.15 09.85
Woman darkhair 39.93 22.41 16.42 14.71 10.31

Av. CT 25.23 20.27 18.35 15.59 11.42
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Fig. 11. Computational running time in second(s) for
MED, GAP, FLIF, LBP and iMED (ours) predictors on
dataset-1 (lower is better)
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Fig. 12. Computational running time in second(s) for
MED, GAP, FLIF, LBP and iMED (ours) predictors on
dataset-2 (lower is better)

CONCLUSION:

A new predictor is proposed in this paper,
i.e., “improved Median Edge Detection (iMED) for
lossless image compression.” The iMED predictor is
designed specifically to improve the performance of
the MED predictor by minimizing the entropy value,
bpp, and the computational running time in terms
of seconds(s). In this method, the MED predictor is
improved by making k-means clusters of an input
image and finding the local context of each pixel using
DDx20. The performance of the proposed predictor
is evaluated on standard bench-marked grey-scale test
images and the KODAK images dataset. Experimental
results demonstrate the visible improvement of entropy
value and bpp compared to MED, GAP, FLIF, and LBP
predictors. Experimental results also show that the
proposed predictor takes less computational running
time in seconds(s) than state-of-the-art predictors.
However, the limitation of the iMED predictor is that
it takes too much running time in seconds(s) for high-
resolution images (i.e., 512x512 or higher resolution
images) due to the clustering process and finding the
local context of each pixel using DDx20. This iMED
predictor for higher resolution images needs to be
improved in the future.
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