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Department of Mathematics-IMAC, Higher School of Technology and Experimental Sciences, Universitat
Jaume I, 12071-Castelló, Spain
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ABSTRACT

Sickle cell disease causes the deformation of erythrocytes into sickle cells. The study of this process using
digital images of peripheral blood smears can help specialists to quantify the number of deformed cells in
order to gauge the severity of the illness. A new method for classifying red blood cells into three categories:
healthy, sickle cell disease, and other deformations is proposed. This method does not require obtaining
the contour of each cell but instead utilizes information obtained from a small number of points, obtained
through appropriate geometric sampling and the use of stereological formulas. The parameters utilized for
classification are the bending energy times length (E) and the circular shape factor (F). In normal cells,
which exhibit an almost circular shape, these parameters typically have values close to (1,1). To assess the
effectiveness of classification using the parameters (E,F), a synthetic curve dataset and a dataset of red blood
cells are employed, applying various supervised and unsupervised classification methods.

Keywords: bending energy, cell classification, geometric sampling, integral geometry, stereology.

INTRODUCTION

Normally, red blood cells are flexible and round,
moving easily through even the smallest of blood
vessels. When a person has sickle cell anemia, many
red blood cells assume a rigid sickle-like shape or
crescent moon, that can hinder their passage through
diminutive capillaries, resulting in oxygen deficiency
to certain tissues as blockages form. Moreover, sickled
red blood cells are unusually fragile and prone to
breakage, so they only survive in the bloodstream for
about a tenth of the time that normal erythrocytes
remain in circulation, increasing the effects of anemia.
Among the most common symptoms of sickle
cell anemia are fatigue, breathlessness, joint pain,
delayed growth, jaundice, rapid heart rate, increased
susceptibility to infections, and sporadic attacks of
pain (often termed crises) in the abdomen or other
areas of the body.

One method to assess the clinical status of patients
is the classification of cells based on their morphology.
Cells are generally classified into three categories:
normal, sickle, or other abnormalities. Although even
today this classification is carried out mostly by
specialists, looking directly into the microscope or at
the computer screen to decide each cell of what type
it is, nowadays there are more and more studies that
use automatic cell classification methods, based on
image processing techniques and machine learning.
Initially, the images are obtained from a peripheral

blood smear that gives rise to the microscopic images
that are observed by the specialist. However, in order
to apply automatic classification techniques, these
images are processed and segmented to distinguish
the outline of the cells and, in most methods, the
outline (flat curve) is used to obtain the classification
Sadafi et al. (2023). This classification can be made
from characteristics that are extracted from the contour
(length, area, eccentricity...) (Bischin el al. (2012)),
or considering the contour (curve) as an element of a
more complicated geometric manifold (Epifanio et al.
(2020)) in which the distances used in the classification
are defined or using, for instance, neural nets. The
state of the art of segmentation methods and cell
classification methods, based on boundary features
and geodesic distances in the shape space of curves,
can be found at Delgado-Font et al. (2020), and a
literature review of image processing methods and
machine learning methods can be found in Alzubaidi
el al. (2022). In any case, as we will also see in this
work, the classification depends on the segmentation of
the cell contours, and fluctuations in the segmentation
can strongly influence the classification results.

In this paper we propose a semiautomatic method
for classifying red blood cells into three groups:
normal, elongated (sickle-shaped) and with other
deformations; based on stereological estimators of
contour features. The specialists must select certain
points of the microscope image of the peripheral
blood smear, and from these points the characteristics
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used in the classification will be estimated. These
characteristics are the circular shape factor F (based on
the isoperimetric inequality and already used in other
works) and the bending energy times length E, which
is a new proposal based on the bending energy of the
flat curve (contour). The objective of the paper is not
to compare our method with other existing methods
for red blood cell classification based on cell boundary
segmentation. Instead, the aim is to provide a new
classification method without the need to segment each
cell, but by observing what happens at the intersection
of lines with the cell boundary through appropriate
geometric sampling. The computational burden of our
method depends on the density of lines considered in
the geometric sampling (see Fig. 1).

Although stereology is defined as a discipline that
allows obtaining efficient and unbiased estimates of
3D quantitative characteristics from an appropriate
geometric sampling based on 2D measurements of the
structure of interest (Baddeley and Jensen (2005);
Howard and Reed (2005)), estimates of 2-dimensional
parameters on the plane (area, curve length...) based
on sampling with measurements of dimension less
than two (lines and points) have also been considered
in the literature (see, for instance, Eq. (7.5) and Eq.
(7.9) of Baddeley and Jensen (2005)). It is in this
sense that we will define stereological estimates of the
characteristics F and E.

The paper can be divided into two parts. In the first
part (Materials and Methods), the circular shape factor
F and the bending energy times length E of a planar
closed curve are defined, and two approximations
(F̃ , Ẽ) and two stereological estimations (F̂ , Ê) are
proposed along with their corresponding square
coefficients of error. In the second part, two databases
are considered. One consists of thirty synthetic curves
for which we know their parametrizations, allowing
us to obtain (F,E) exactly. The other is composed of
segmented images of peripheral blood smear samples,
therefore, we can only obtain approximations and
estimations of (F,E). Based on these curve databases,
we propose an unsupervised classification of the
curves to observe, firstly, if (F,E) provide an adequate
classification, and secondly, if this classification
remains suitable and is not significantly altered when
considering the approximations (F̃ , Ẽ) or estimations
(F̂ , Ê).

MATERIALS AND METHODS

Let α : [a,b] −→ R2, with α(t) = {x(t),y(t)}, be
a natural regular curve. Let C denote the graph of the
curve. We suppose that C bounds a domain D in the

plane. Let A and B denote the area of D and the length
of C, respectively. The curvature of α at the point α(t)
is given by (Gual-Arnau et al. (2017))

κ(t) =
x′y′′− x′′y′

(x′2 + y′2)
3
2
. (1)

The bending energy of the curve α is defined as
(Canham (1970), Young et al. (1974))

E(C) =
∫ b

a
κ

2(t)∥α
′(t)∥dt. (2)

The parameters A, B and E(C) do not depend
on the parameterization α , they only depend on the
geometrical curve C. The real interval [a,b] defining
the curve will be [0,B] when the curve is parameterized
by arc length and [0,2π] for the closed curves
considered in the experimental study.

The bending energy of a closed object in 2D has
been frequently used as shape discriminator; in fact,
two of the pioneering papers in relating the shape
of red blood cells with the bending energy of their
boundaries are Canham (1970) and Young et al.
(1974).

The two features that we will consider in this paper
as shape descriptors are the following.

Definition 1. The circular shape factor of D is defined
as

F =
B2

4πA
. (3)

The bending energy times length of C is defined as

E =
BE(C)

4π2 . (4)

In this paper, the shape of a plane domain will
be the geometric information that remains invariant
when rotations, translations and/or changes of scale
act on the domain. Since the area of a domain and
the length and curvature of a curve are invariant under
translations and rotations, we have that the circular
shape factor F and bending energy times length E will
be also invariant. Now we will see that F and E are
also invariant under changes of scale.

Let Dλ = {λ (x,y)/(x,y) ∈ D} with λ > 0,
and Cλ be the curve that bounds Dλ . Then
A(Dλ ) = λ 2A(D), B(Cλ ) = λB(C) and, from Eq. (1),
κ(Cλ )(t) =

1
λ

κ(C)(t); therefore, E(Cλ ) = (1/λ )E(C).
We conclude from Eq. (3) and Eq. (4) that E and F are
rescaling invariants and therefore shape descriptors.
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In fact, from the well-known isoperimetric
inequality in the plane, we have that F ≥ 1 and equality
is given if and only if D is a circle.

Proposition 2. Given a domain D bounded by a
differentiable simple closed curve C, then E ≥ 1 and
equality holds if and only if D is a circle.

Proof of Proposition 2. In the proof, we will use the
Fourier series technique employed in Young et al.
(1974), adapted to our definition of E.

Let C be a differentiable simple closed curve which
bounds a planar domain D. Let α(s) = {x(s),y(s)} be
a parametrization of C by arc length; then ||α ′(s)||2 =
x′(s)2 + y′(s)2 = 1, ∀s ∈ [0,B].

x(s) and y(s) are periodic functions; that is, x(s+
B) = x(s) and y(s+B) = y(s); then, we consider the
Fourier series of both functions

x(s) =
a0

2
+

∞

∑
n=1

(
an cos

(
2πn

B
s
)
+bn sin

(
2πn

B
s
))

,

y(s) =
c0

2
+

∞

∑
n=1

(
cn cos

(
2πn

B
s
)
+dn sin

(
2πn

B
s
))

.

(5)

Since x′(s)2 + y′(s)2 = 1,
∫ B

0 (x′(s)2 + y′(s)2)ds =
B; then, from the derivatives of (5), we have

B2 =
∞

∑
n=1

2π
2n2 (a2

n +b2
n + c2

n +d2
n
)
. (6)

Let T⃗ be the unit tangent vector to α(s); then,
|T⃗ ′(s)| = κ(s) and |T⃗ ′(s)|2 = x′′(s)2 + y′′(s)2; then,
applying the Parseval’s identity to the Fourier series
of x′,y′,x′′ and y′′ we obtain

E =
BE(C)

4π2 =
B

4π2

∫ B

0
κ

2(s)ds

=
B2

8π2

∞

∑
n=1

16π4n4

B4

(
a2

n +b2
n + c2

n +d2
n
)
.

(7)

Having in mind the above equation; to determine
the set of Fourier coefficients that yield a minimum E
subject to the equality constraint given in Eq. (6) for
B2, we form the function

f = E +λ

(
B2 −

∞

∑
n=1

2π
2n2 (a2

n +b2
n + c2

n +d2
n
))

,

(8)

and we apply the method of Lagrange multipliers
where the variables will be z2

n = a2
n +b2

n + c2
n +d2

n and
the Lagrange multiplier λ ; that is

f = E +λ

(
B2 −

∞

∑
n=1

2π
2n2z2

n

)
. (9)

Then, from (7),

∂ f
∂ zk

=
4π2k4

B2 zk −4λπ
2k2zk = 4π

2k2zk(
k2

B2 −λ ),

(10)
and for ∂ f

∂ zk
= 0 to hold, it must be satisfied that λ = k2

B2 ,
which implies that at most one zk is nonzero.

From Eq. (6) and Eq. (7), it leads to

Emin

B2 =
k2

B2 . (11)

So, the minimum value of E is given when k = 1; that
is, Emin = 1. Moreover, in this case, from Eq. (5) we
have

x(s) =
a0

2
+a1 cos

(
2π

B
s
)
+b1 sin

(
2π

B
s
)
,

y(s) =
c0

2
+ c1 cos

(
2π

B
s
)
+d1 sin

(
2π

B
s
)
.

(12)

Then, we can write(
x(s)− a0

2

)2
+
(

y(s)− c0

2

)2
=

= a2
1 +b2

1 + c2
1 +d2

1

−a2
1 sin2

(
2π

B
s
)
−b2

1 cos2
(

2π

B
s
)

+2a1b1 cos
(

2π

B
s
)

sin
(

2π

B
s
)

− c2
1 sin2

(
2π

B
s
)
−d2

1 cos2
(

2π

B
s
)

+2c1d1 cos
(

2π

B
s
)

sin
(

2π

B
s
)
.

(13)

Differentiating the functions x and y in Eq. (12) and
substituting them into x′(s)2+y′(s)2 = 1, we can write
Eq. (13) as:

(
x(s)− a0

2

)2
+
(

y(s)− c0

2

)2

= a2
1 +b2

1 + c2
1 +d2

1 −
B2

4π2 .

(14)

Now, from Eq. (6),
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(
x(s)− a0

2

)2
+
(

y(s)− c0

2

)2
=

B2

2π2 −
B2

4π2 =
B2

4π2 ,

(15)
which is the equation of a circle of radius B

2π
centered

at (a0
2 ,

c0
2 ).

Therefore, to each plane domain D we will
associate the pair of points, both greater than or equal
to one, (F,E) and whose value will be (1,1) if and only
if the domain is a circle.

MATERIALS

The objective of this paper is to characterize a
plane shape through the pair (F,E). First we will
consider a synthetic base formed by 30 curves of
which we know their parameterization αi (see Fig. 2);
therefore, we will be able to obtain the pair (F,E)
for each shape exactly. Next we will work with a
discretization of the curves, so that we will have a big
number of points for each curve and, from them, we
will obtain the approximate values (F̃ , Ẽ) of (F,E).
Finally, we will use stereological estimators to obtain
an estimate (F̂ , Ê) of the values (F,E) of each curve.

Next, we will consider images of peripheral blood
smear samples from patients with sickle cell disease
in the Special Department of Hematology of the
General Hospital ‘Dr. Juan Bruno Zayas Alfonso’
from Santiago de Cuba. A specialist prepared the
blood samples and manually segmented and classified
each cell as normal, sickle (elongated) or with other
deformations. The dataset used in this study is
available at http://erythrocytesidb.uib.es/. From these
images we will obtain the approximate values (F̃ , Ẽ)
and the stereological estimators (F̂ , Ê) of each red
blood cell. We will see that the values of Ẽ and
especially F̃ depend heavily on the segmentation
performed, as variations in the contour strongly affect
the curvature and length of the curve. However, the
value of the estimations (F̂ , Ê) does not depend as
much on these variations in the segmentation, and the
values are more stable and similar to those obtained in
the synthetic dataset.

METHODS

If we know the parameterizations αi : [0,2π] −→
R2 with αi(t) = (xi(t),yi(t)), we compute for each
curve

B=
∫ 2π

0

√
(x′(t))2 +(y′(t))2dt, A=

∫ 2π

0
x′(t)y(t)dt,

(16)

and κ(t) from Eq. (1). Then, we associate to each
synthetic shape a point in R2 given by the exact values(

F =
B2

4πA
, E =

BE(C)

4π2

)
. (17)

If we know α(t) in a discrete number of points
α(ti) = (x(ti),y(ti))) = (xi,yi), i = 0,1, . . . ,N, where
ti = 2πi

N , the approximate values of A, B and E(C) are
obtained from numerical methods. Then we obtain the
approximations (F̃ , Ẽ) of (F,E).

To approximate A there exist some numerical
methods based, for instance, on the Green’s theorem
or the trapezoidal rule. Here we use the trapezoidal
method, then we have two approximations:

A ≈ 1
2

∣∣∣∣∣N−1

∑
i=0

(yi + yi+1)(xi+1 − xi)

∣∣∣∣∣ ,
A ≈ 1

2

∣∣∣∣∣N−1

∑
i=0

(xi + xi+1)(yi+1 − yi)

∣∣∣∣∣ .
(18)

The length B will be approximated as the sum of
the lengths of the segments joining consecutive points
α(ti) and α(ti+1); that is,

B ≈
N−1

∑
i=0

√
(xi+1 − xi)2 +(yi+1 − yi)2. (19)

The curvature κi at each point α(ti) can be
approximated following different methods (Gual-
Arnau et al. (2017)), we consider the following,

κ̃i =
4A(Ti)

aibici
, (20)

where Ti is the triangle formed by the points α(ti−1),
α(ti) and α(ti+1) and ai,bi,ci the lengths of the
triangle sides. Now, E(C) is approximated as

E(C)≈
N−1

∑
i=0

κ̃
2
i

√
(xi+1 − xi)2 +(yi+1 − yi)2. (21)

Finally, to use stereological estimators, we need
a suitable geometric sampling. We will consider a
square grid of test lines which is isotropic uniform
random (IUR) relative to the cells to be estimated.
A square grid of test lines is the union of two
mutually perpendicular IUR series of parallel test
lines a constant distance T > 0 apart (see Fig. 1). In
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practice, isotropic uniform randomness is attempted by
superimposing the grid ”at random”, without looking
at the image.

Fig. 1. A square grid of test lines and a cell in R2.

Unbiased estimators of A, B and E(C), in the line,
for example, of equations (4.4), (4.5), (4.38), (7.5), and
(7.9) in Baddeley and Jensen (2005), are:

Â = T 2 P,

B̂ =
π

4
T I,

Ê(C) =
π

4
T

I

∑
i=1

κ
2
i ,

(22)

where P is the number of test points hitting D, I the
number of intersection points of lines with C = ∂D and
κi denotes the curvature of C at an intersection point of
C with a line. In Fig. 1, P = 3 and I = 8. In practice, κi
is substituted by κ̃i.

Then, the estimates of F and E are, respectively,(
F̂ =

B̂2

4πÂ
, Ê =

B̂ Ê(C)

4π2

)
. (23)

The error variance predictors of the above
estimators are detailed in Appendix A.

RESULTS

Classification is a type of machine learning
task that involves training an algorithm to identify

which category or class an observation belongs to.
Classification methods are divided into supervised
and unsupervised methods. The cluster analysis, also
known as unsupervised classification, is a technique
used to identify natural groupings or clusters in a
dataset based on the values of one or more variables; in
our case in the variables F and E. There exist several
unsupervised classification methods. We consider a
model-based classification method provided by the
Expectation-Maximization (EM) algorithm using the
MClust library in R, to see if the unsupervised
classification we obtain with the factors (F,E), and
their approximations and estimations aligns with
the known classification. On the other hand, the
calculation of (F̃ , Ẽ) and (F̂ , Ê) has been carried out
using custom codes developed in MATLAB.

EXPERIMENTAL STUDY OF SYNTHETIC
FIGURES

In this section we consider the set of synthetic
curves given in Fig. 2 and we apply the classification
method from the values of (F,E).

In Fig. 3, we have an example of each class into
which we have divided the synthetic figures.

The classification algorithm divides the cells using
the factors (F,E) into three distinct groups. In the first
group we have the normal (‘almost circular’) cells,
whose values of (F,E) are close to (1,1), the sickle
cells form the second group and, finally, we have the
group of other cells (see Fig. 4).
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Fig. 2. (a) Parametrizations of the synthetic shapes. (b)
Exact values of (F,E).

Fig. 3. Synthetic figures of simulated cells. (a) Normal.
(b) Sickle. (c) Other.

Fig. 4. MClust method for data classification from
(F,E).

The cluster vector obtained using the MClust
library is provided in Eq. (24). This vector indicates
the group to which each curve in Fig. 2 has been
classified. Therefore, considering the shapes of the
synthetic figures, the result aligns with expectations,
with ten cells in each group. To provide a rough
characterization of the defining features of each group,
we have included the average F and E values for each
group in Table 1.

1111111111 2222222222 3333333333 (24)

Table 1. Average F and E values of each group.

Normal Sickle Other
F 1.01 3.95 1.58
E 1.02 25.97 10.74

Using the classification method provided by the
MClust library in R and utilizing the approximate
values (F̃ , Ẽ), we also derive the cluster vector
presented in Eq. (24). Consequently, a classification
with ten cells in each expected group is achieved (refer
to Fig. 5).
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Fig. 5. MClust method for data classification from
(F̃ , Ẽ).

In Table 2 we have the average F̃ and Ẽ values of
each group.

Table 2. Average F̃ and Ẽ values of each group.

Normal Sickle Other
F 1.01 3.95 1.57
E 1.01 24.44 10.61

Now, we consider the unbiased estimators of
A, B and E(C) derived from Eq. (22). To classify
the estimates of F and E, a code draws the
parameterizations and the grid of UR lines. The
estimation of length and area has been manually
calculated by counting the interior points and
intersection points; and then, the value of F̂ has been
obtained. To calculate Ê, we must find the sum of
squared curvatures at each intersection point of the grid
with the curve. To do this, the corresponding points
must be clicked, and when all points are clicked, a code
calculates Ê. To calculate the curvature at a point, we
need the point itself and two neighboring points. For
this reason, we have only calculated the estimated (F̂ ,
Ê) values for twelve cells.

As our database is segmented, we have utilized
the segmentation points. However, since the curvature
depends on the segmentation, our proposal for the
future is to not segment the image and have the
specialist mark only three points at each intersection
between curve and straight line.

We have already seen that the classification of the
synthetic figures in Table 2 using the real values of F

and E, as well as the approximate values (F̃ , Ẽ), yields
the expected results. However, with stereological
estimations, the classification will depend on the
errors made in these estimations, specifically with the
number of lines used and therefore the value of T . We
will only use a fixed value of T , and we will give a
predicted approximations of the square coefficients of
error of F̂ and Ê. It is possible to adjust the value of T
as we please or depending on how precise we want the
estimation to be.

In our case, using the line density shown in Fig. 1,
and based on the classification method provided by the
MClust library in R, employing the estimated values
(F̂ , Ê), we also obtain the cluster vector presented in
Eq. (24). (see Fig. 6).

Fig. 6. MClust method for data classification from
(F̂ , Ê).

In Table 3 we have the average F̂ and Ê values of
each group.

Table 3. Average F̂ and Ê values of each group.

Normal Sickle Other
F 0.94 4.48 1.37
E 0.96 27.12 8.73

Therefore, given the shapes of the synthetic
figures, the classification outcome is as expected, with
ten cells in each group, whether we use E and F
or their approximations or estimates. Furthermore,
the probability that each curve belongs to the group
to which it has been classified consistently exceeds
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0.9999987; thus, the classification is accurate, well-
separated, and correct for all three groups in all cases.

Since we know the exact values of F and E for
synthetic figures, we can obtain the sample variance
and squared error coefficient of F̂ and Ê for each curve,
and we have obtained the following results:

For nearly circular curves: ce2(F̂) < 3% and
ce2(Ê)< 3%.

For sickle curves: ce2(F̂) < 10% and ce2(Ê) <
10%.

For the group of other curves: ce2(F̂) < 5% and
ce2(Ê)< 5%.

SEGMENTED CELLS

In this section we first consider a database from
the Department of Hematology of the General Hospital
‘Dr. Juan Bruno Zayas Alfonso’ from Santiago de
Cuba, formed by 513 cells of which 202 are normal,
100 have the sickle cell disease and 211 present
other deformations. The initial idea is to use the
approximations and estimations of F and E for
performing an unsupervised classification of these
cells. In Wheeless et al. (1994) the circular shape
factor is used for the same purpose.

Fig. 7. Selected figures of segmented red blood cells.

However, when performing a classification
process, it is advisable to remove from the database
those elements considered atypical. In this regard, if
we observe Fig. 7, we can see that the length of a curve
and, especially, the integral of the squared curvature
are highly sensitive to curve perturbations; therefore,
especially the value of E can vary abruptly with
curve perturbations. Therefore, before initiating the
classification process with the complete database, we
have proceeded to eliminate elements with F > 92.211
or E > 92.229. As a result, we are left with a database
consisting of 202 normal cells and 100 sickle cells, as
well as 192 cells with other deformations.

In Fig. 8, we have one erythrocyte from each class
of the database and their segmentation (in blue). To
obtain the values of Ẽ and F̃ , complete segmentation
is necessary. However, the values of Ê and F̂ do not
require the entire segmentation but only the values at
the intersection points of the boundary with a square
grid of test lines.

Fig. 8. Some types of erythrocytes from the database.

In this section, we are going to calculate the
approximate descriptors of E and F for the cells
corresponding to the refined and outlier-free database.
Let’s remember that this is a real database, and
therefore we do not have the curves given as
parameterizations but as a set of points. The code
used to calculate the approximate F̃ and Ẽ values is
the same as we used in the previous section when
calculating a series of points for each parameterization
and working with them.

Using Mclust, we have three groups, each
composed of 202, 106, and 186 cells, representing
normal, sickle, and other cells, respectively. In Fig. 9,
we can observe how the groups have been classified.
As we can see, three groups emerge. The 202 cells
considered normal appear in a single group; therefore,
all normal cells are classified within a group where
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cells from the other two groups do not appear. Then we
have a group where the majority cells are sickle cells
but some ’other’ cells are also classified in this group.
The last group is formed by other cells.

Fig. 9. MClust method for database classification from
approximations.

Finally, we need to calculate the Ê and F̂ values
for each cell using stereology. The code to be used
is the same as in the preceding section, with the only
difference that now we cannot draw the cell in order to
click on the intersection points and calculate the two
descriptors Ê and F̂ . The solution to this problem has
been to use the scatter function provided by MATLAB,
which draws the contour formed by connecting the
given points. Therefore, we can use the same code, but
using also the code that draw the cell.

We have considered the cell dataset after the
removal of atypical elements, meaning we start with
the database in which 202 cells are normal, 100 cells
are sickle cells, and 192 exhibit other deformations. As
a result, we have calculated the estimated Ê and F̂ for
all the cells in this dataset and subsequently classified
them. Applying MClust again, we obtained three
groups, one composed of 202 normal cells, a second
group consisting of 127 cells classified as sickle cells,
and a third group with 165 cells classified with other
deformations. Five sickle cells were classified in the
group of other deformations, and 32 cells that belonged
to the group of other deformations were classified as
sickle cells.

The classification results of the MClust method
based on the estimates depend on the grid of test lines
used and their density. In our case, the grid of lines

used and one of the cells can be seen in Fig. 1, and the
classification results are shown in Fig. 10.

Fig. 10. MClust method for database classification
from estimations.

In this case, since we do not have the exact values
of F and E, we will approximate the squared error
coefficient of F̂ and Ê of the cells of Fig. 8 using the
approximations from the Appendix, and we obtain the
following results:

For the normal cell: ce2(F̂) = 2.69% and ce2(Ê) =
1.97%.

For the sickle cell: ce2(F̂) = 9.39% and ce2(Ê) =
13.29%.

For the other group cell: ce2(F̂) = 9.11% and
ce2(Ê) = 8.51%.

DISCUSSION

In this paper, we have proposed two parameters,
one known as the circular shape factor F and a new
one based on the curvature of the curve, the bending
energy times length E, which, when associated with
red blood cells, have allowed for the classification of
these cells into three groups: healthy, with sickle cell
disease, and with other deformations. Furthermore, it
has been demonstrated that both the values of F and E
are greater than one, and when they take the value of
1, they characterize a circle.

The classification has been carried out using both
supervised and unsupervised methods, and it has been
found that when the values of F and E are replaced
with approximations F̃ and Ẽ or estimations F̂ and Ê,
the classification does not vary substantially.
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GUAL-VAYÀ L: Red blood cells classification

The idea would be to incorporate the calculation of
F̂ and Ê into interactive stereology programs adapted
to microscopes so that, by directly observing the
microscope images without segmenting the cells, these
estimations could be obtained. In this study, since we
had a database of segmented images, we used them
to compare the results with those obtained using the
estimations F̃ and Ẽ. The two factors F and E vary
with fluctuations in the cell segmentation, especially
the factor E heavily relies on variations in the contour,
as it is based on the curvature of the curve. Therefore,
approximating the curvature at a few points directly on
the microscope, without the need to segment all the
cells, could be better for both the microscope observer
and the cell classification.

This way of classifying cells based on information
from a small number of points on the boundary can
also be useful when there is overlap between cells and
it is difficult to obtain the segmentation of each one
separately.

APPENDIX

To give an expression of the variance of estimators
B̂ and Ê(C) in Eq. (22) we are going to give a new
expression of both estimators.

Let n1 be the number of parallel lines in one
direction that intersect the curve C and n2 the number
of lines perpendicular to the previous ones that
intersect C. Let

{Ii1, Ii2, . . . , Iini}, i = 1,2, (25)

denote the total numbers of intersections determined in
the curve by the lines hitting the curve. We denote

Q̂ =
π

4
T

2

∑
i=1

ni

∑
j=1

fi j. (26)

Then, Q̂ = B̂ if fi j = Ii j (see Eq. (12) of Gómez et al.
(2016)) and Q̂ = Ê(C) if fi j = ∑

Ii j
k=1 κ2

k .

A predictor of Var(Q̂) from a single IUR
superimposition of the grid and the curve is (Eq. (5.7.5)
of Cruz-Orive (2024)),

var(Q̂) =
π2T 2

96

( n1

∑
j=1

f1 j −
n2

∑
j=1

f2 j

)2

+
5
12

v̂

 ,
(27)

where, for ni ≥ 3,

v̂ =
2

∑
i=1

(3C0i −4C1i +C2i) , (28)

and

Cki =
ni−k

∑
j=1

fi j fi j+k, k = 0,1, . . . ,ni −1; i = 1,2.

(29)

On the other hand, when considering the Taylor
expansion of the function (B̂)2 around the mean value
of B̂, E(B̂), the following approximations to order
Var(B̂) are obtained (for more details, refer to Section
4.3.2 of Benaroya et al. (2005)):

E(B̂)2 ≈ E2(B̂)+Var(B̂),

Var(B̂)2 ≈ 4E2(B̂)Var(B̂).
(30)

Then, we have the following predictors of the
square coefficients of error of (B̂)2, Â and Ê(C);

ce2((B̂)2) =
Var((B̂)2)

E2((B̂)2)
=

4E2(B̂)Var(B̂)
(E2(B̂)+Var(B̂))2

.

ce2(Â) =
Var(Â)
E2(Â)

= 0.07284
B̂√
ÂP

3
2
.

ce2(Ê(C)) =
Var(Ê(C))

E2(Ê(C))
.

(31)

The second equation can be found in Gundersen
and Jensen (1987). Finally, using Cochran’s formula
and Goodman’s formula, respectively, and supposing
independent estimators of A, B, and E(C), we obtain
the following predicted approximations of the squared
coefficients of error for F̂ and Ê (Cruz-Orive (2024),
Sections A.2.3 and A.2.4):

ce2(F̂) = ce2((B̂)2)+ ce2(Â).

ce2(Ê) = ce2(B̂)+ ce2(Ê(C)).
(32)
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Gómez AI, Cruz M, Cruz-Orive LM (2016). On the
precision of curve length estimation in the plane.
Image Anal Stereol 35(1):1–14.
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